

Groovy in Action

Groovy in Action

DIERK KÖNIG

WITH ANDREW GLOVER, PAUL KING
GUILLAUME LAFORGE, AND JON SKEET

M A N N I N G

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books, please go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Cherokee Station
PO Box 20386 Fax: (609) 877-8256
New York, NY 10021 email: orders@manning.com

©2007 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books they publish printed on acid-free paper, and we exert our best efforts
to that end.

Manning Publications Co.
Cherokee Station Copyeditor: Benjamin Berg
PO Box 20386 Typesetter: Denis Dalinnik
New York, NY 10021 Cover designer: Leslie Haimes

ISBN 1-932394-84-2

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 10 09 08 07 06

 To the love of my life
 —D.K.

brief contents

1 ■ Your way to Groovy 1

PART 1 THE GROOVY LANGUAGE 27

2 ■ Overture: The Groovy basics 29

3 ■ The simple Groovy datatypes 55

4 ■ The collective Groovy datatypes 93

5 ■ Working with closures 122

6 ■ Groovy control structures 153

7 ■ Dynamic object orientation, Groovy style 174

PART 2 AROUND THE GROOVY LIBRARY 227

8 ■ Working with builders 229

9 ■ Working with the GDK 277

10 ■ Database programming with Groovy 323

11 ■ Integrating Groovy 360

12 ■ Working with XML 401
vii

viii BRIEF CONTENTS
PART 3 EVERYDAY GROOVY .. 451

13 ■ Tips and tricks 453

14 ■ Unit testing with Groovy 503

15 ■ Groovy on Windows 546

16 ■ Seeing the Grails light 572

appendix A ■ Installation and documentation 606

appendix B ■ Groovy language info 610

appendix C ■ GDK API quick reference 613

appendix D ■ Cheat sheets 631

contents

foreword xix
preface xx
acknowledgments xxiii
about this book xxv
about the authors xxix
about the title xxxii
about the cover illustration xxxiii

1 Your way to Groovy 1
1.1 The Groovy story 3

What is Groovy? 4 ■ Playing nicely with Java: seamless
integration 4 ■ Power in your code: a feature-rich language 6
Community-driven but corporate-backed 9

1.2 What Groovy can do for you 10
Groovy for Java professionals 10 ■ Groovy for script
programmers 11 ■ Groovy for pragmatic programmers,
extremos, and agilists 12

1.3 Running Groovy 13
Using groovysh for “Hello World” 14 ■ Using
groovyConsole 17 ■ Using groovy 18
ix

x CONTENTS
1.4 Compiling and running Groovy 19
Compiling Groovy with groovyc 19 ■ Running a compiled
Groovy script with Java 20 ■ Compiling and running
with Ant 21

1.5 Groovy IDE and editor support 22
IntelliJ IDEA plug-in 23 ■ Eclipse plug-in 24
Groovy support in other editors 24

1.6 Summary 25

PART 1 THE GROOVY LANGUAGE 27

2 Overture: The Groovy basics 29
2.1 General code appearance 30

Commenting Groovy code 30 ■ Comparing Groovy and Java
syntax 31 ■ Beauty through brevity 32

2.2 Probing the language with assertions 33

2.3 Groovy at a glance 36
Declaring classes 36 ■ Using scripts 37 ■ GroovyBeans 38
Handling text 39 ■ Numbers are objects 40 ■ Using lists,
maps, and ranges 41 ■ Code as objects: closures 43
Groovy control structures 46

2.4 Groovy’s place in the Java environment 47
My class is your class 47 ■ GDK: the Groovy library 49
The Groovy lifecycle 50

2.5 Summary 53

3 The simple Groovy datatypes 55
3.1 Objects, objects everywhere 56

Java’s type system—primitives and references 56
Groovy’s answer—everything’s an object 57
Interoperating with Java—automatic boxing and unboxing 59
No intermediate unboxing 60

3.2 The concept of optional typing 61
Assigning types 61 ■ Static versus dynamic typing 62

3.3 Overriding operators 63
Overview of overridable operators 63 ■ Overridden operators in
action 65 ■ Making coercion work for you 67

CONTENTS xi
3.4 Working with strings 69
Varieties of string literals 69 ■ Working with GStrings 72
From Java to Groovy 74

3.5 Working with regular expressions 76
Specifying patterns in string literals 78 ■ Applying patterns 81
Patterns in action 82 ■ Patterns and performance 85
Patterns for classification 86

3.6 Working with numbers 87
Coercion with numeric operators 87
GDK methods for numbers 90

3.7 Summary 91

4 The collective Groovy datatypes 93
4.1 Working with ranges 94

Specifying ranges 95 ■ Ranges are objects 97
Ranges in action 98

4.2 Working with lists 100
Specifying lists 100 ■ Using list operators 101
Using list methods 104 ■ Lists in action 109

4.3 Working with maps 111
Specifying maps 111 ■ Using map operators 113
Maps in action 117

4.4 Notes on Groovy collections 119
Understanding concurrent modification 119
Distinguishing between copy and modify semantics 120

4.5 Summary 121

5 Working with closures 122
5.1 A gentle introduction to closures 123

5.2 The case for closures 125
Using iterators 125 ■ Handling resources 127

5.3 Declaring closures 130
The simple declaration 130 ■ Using assignments for
declaration 131 ■ Referring to methods as closures 131
Comparing the available options 133

xii CONTENTS
5.4 Using closures 135
Calling a closure 135 ■ More closure methods 137

5.5 Understanding scoping 141
The simple variable scope 142 ■ The general closure scope 143
Scoping at work: the classic accumulator test 146

5.6 Returning from closures 148

5.7 Support for design patterns 149
Relationship to the Visitor pattern 149 ■ Relationship to the
Builder pattern 150 ■ Relationship to other patterns 151

5.8 Summary 151

6 Groovy control structures 153
6.1 The Groovy truth 154

Evaluating Boolean tests 154 ■ Assignments within
Boolean tests 156

6.2 Conditional execution structures 158
The humble if statement 158 ■ The conditional ?:
operator 159 ■ The switch statement 160
Sanity checking with assertions 163

6.3 Looping 167
Looping with while 167 ■ Looping with for 168

6.4 Exiting blocks and methods 170
Normal termination: return/break/continue 170
Exceptions: throw/try-catch-finally 171

6.5 Summary 172

7 Dynamic object orientation, Groovy style 174
7.1 Defining classes and scripts 175

Defining fields and local variables 176 ■ Methods and
parameters 180 ■ Safe dereferencing with the ?. operator 184
Constructors 185

7.2 Organizing classes and scripts 188
File to class relationship 188 ■ Organizing classes in
packages 190 ■ Further classpath considerations 194

7.3 Advanced OO features 195
Using inheritance 195 ■ Using interfaces 196
Multimethods 197

CONTENTS xiii
7.4 Working with GroovyBeans 199
Declaring beans 200 ■ Working with beans 201
Using bean methods for any object 205
Fields, accessors, maps, and Expando 206

7.5 Using power features 207
Querying objects with GPaths 208 ■ Injecting the
spread operator 212 ■ Mix-in categories with
the use keyword 213

7.6 Meta programming in Groovy 216
Understanding the MetaClass concept 216 ■ Method invocation
and interception 218 ■ Method interception in action 220

7.7 Summary 224

PART 2 AROUND THE GROOVY LIBRARY........................... 227

8 Working with builders 229
8.1 Learning by example—using a builder 231

8.2 Building object trees with NodeBuilder 234
NodeBuilder in action—a closer look at builder code 235
Understanding the builder concept 237 ■ Smart building
with logic 237

8.3 Working with MarkupBuilder 239
Building XML 240 ■ Building HTML 241

8.4 Task automation with AntBuilder 243
From Ant scripts to Groovy scripts 243 ■ How AntBuilder
works 245 ■ Smart automation scripts with logic 246

8.5 Easy GUIs with SwingBuilder 247
Reading a password with SwingBuilder 248 ■ Creating Swing
widgets 250 ■ Arranging your widgets 254 ■ Referring to
widgets 257 ■ Using Swing actions 260 ■ Using
models 262 ■ Putting it all together 264

8.6 Creating your own builder 271
Subclassing BuilderSupport 272
The DebugBuilder example 274

8.7 Summary 276

xiv CONTENTS
9 Working with the GDK 277
9.1 Working with Objects 278

Interactive objects 279 ■ Convenient Object methods 285
Iterative Object methods 288

9.2 Working with files and I/O 291
Traversing the filesystem 294 ■ Reading from input
sources 295 ■ Writing to output destinations 297
Filters and conversions 298 ■ Streaming serialized
objects 300

9.3 Working with threads and processes 301
Groovy multithreading 302
Integrating external processes 304

9.4 Working with templates 309
Understanding the template format 309 ■ Templates in
action 310 ■ Advanced template issues 312

9.5 Working with Groovlets 314
Starting with “hello world” 314 ■ The Groovlet binding 316
Templating Groovlets 319

9.6 Summary 321

10 Database programming with Groovy 323
10.1 Basic database operations 325

Setting up for database access 325 ■ Executing SQL 329
Fetching data 334 ■ Putting it all together 338

10.2 DataSets for SQL without SQL 340
Using DataSet operations 341 ■ DataSets on
database views 344

10.3 Organizing database work 347
Architectural overview 347 ■ Specifying the application
behavior 349 ■ Implementing the infrastructure 350
Using a transparent domain model 355 ■ Implementing the
application layer 355

10.4 Groovy and ORM 357

10.5 Summary 358

CONTENTS xv
11 Integrating Groovy 360
11.1 Getting ready to integrate 361

Integrating appropriately 362 ■ Setting up dependencies 363
11.2 Evaluating expressions and scripts

with GroovyShell 365
Starting simply 365 ■ Passing parameters within a
binding 367 ■ Generating dynamic classes at runtime 369
Parsing scripts 370 ■ Running scripts or classes 371
Further parameterization of GroovyShell 372

11.3 Using the Groovy script engine 376
Setting up the engine 376 ■ Running scripts 377
Defining a different resource connector 377

11.4 Working with the GroovyClassLoader 378
Parsing and loading Groovy classes 378 ■ The chicken and egg
dependency problem 380 ■ Providing a custom resource
loader 384 ■ Playing it safe in a secured sandbox 385

11.5 Spring integration 389
Wiring GroovyBeans 390 ■ Refreshable beans 392
Inline scripts 392

11.6 Riding Mustang and JSR-223 393
Introducing JSR-223 393 ■ The script engine manager
and its script engines 395 ■ Compilable and invocable
script engines 396

11.7 Choosing an integration mechanism 398

11.8 Summary 399

12 Working with XML 401
12.1 Reading XML documents 402

Working with a DOM parser 403 ■ Reading with a Groovy
parser 408 ■ Reading with a SAX parser 414
Reading with a StAX parser 416

12.2 Processing XML 417
In-place processing 418 ■ Streaming processing 421
Combining with XPath 426

xvi CONTENTS
12.3 Distributed processing with XML 434
An overview of web services 435 ■ Reading RSS and
ATOM 435 ■ Using a REST-based API 437
Using XML-RPC 441 ■ Applying SOAP 444

12.4 Summary 449

PART 3 EVERYDAY GROOVY ... 451

13 Tips and tricks 453
13.1 Things to remember 454

Equality versus identity 454 ■ Using parentheses wisely 455
Returning from methods and closures 456 ■ Calling methods in
builder code 457 ■ Qualifying access to “this” 459
Considering number types 460 ■ Leveraging Ant 461
Scripts are classes but different 464

13.2 Useful snippets 467
Shuffling a collection 467 ■ Scrambling text with regular
expressions 468 ■ Console progress bar 468
Self-commenting single-steps 470
Advanced GString usage 471

13.3 Using groovy on the command line 472
Evaluating a command-line script 473 ■ Using print and line
options 474 ■ Using the listen mode 475
In-place editing from the command line 476

13.4 Writing automation scripts 476
Supporting command-line options consistently 477 ■ Expanding
the classpath with RootLoader 481 ■ Scheduling scripts
for execution 483

13.5 Example automation tasks 485
Scraping HTML pages 485 ■ Automating web actions 487
Inspecting version control 489 ■ Pragmatic code analysis 491
More points of interest 492

13.6 Laying out the workspace 493
IDE setup 494 ■ Debugging 495 ■ Profiling 500
Refactoring 501

13.7 Summary 501

CONTENTS xvii
14 Unit testing with Groovy 503
14.1 Getting started 505

Writing tests is easy 505 ■ GroovyTestCase: an
introduction 506 ■ Working with GroovyTestCase 508

14.2 Unit-testing Groovy code 508

14.3 Unit-testing Java code 512

14.4 Organizing your tests 516

14.5 Advanced testing techniques 517
Testing made groovy 518 ■ Stubbing and mocking 520
Using GroovyLogTestCase 525

14.6 IDE integration 527
Using GroovyTestSuite 527 ■ Using AllTestSuite 529
Advanced IDE integration 531

14.7 Tools for Groovy testing 533
Code coverage with Groovy 533 ■ JUnit extensions 537

14.8 Build automation 539
Build integration with Ant 539 ■ Build integration
with Maven 541

14.9 Summary 544

15 Groovy on Windows 546
15.1 Downloading and installing Scriptom 547

15.2 Inside Scriptom 548
Introducing Jacob 548 ■ Instantiating an ActiveX
component 550 ■ Invoking methods 553
Accessing properties and return values 555
Event support 555

15.3 Real-world scenario: automating localization 558
Designing our document format 559 ■ Designing the thesaurus
spreadsheet 560 ■ Creating a Word document 562
Producing the final document 564

15.4 Further application automation 565
Accessing the Windows registry 566 ■ Rolling out your own
automation system 568

xviii CONTENTS
15.5 Where to get documentation 569

15.6 Summary 570

16 Seeing the Grails light 572
16.1 Setting the stage 573

Installing Grails 574 ■ Getting your feet wet 574
16.2 Laying out the domain model 577

Thinking through the use cases 577 ■ Designing relations 578
16.3 Implementing the domain model 579

Scaffolding domain classes 580 ■ Scaffolding views and
controllers 581 ■ Testing the web application 582
Completing the domain model 584

16.4 Customizing the views 585
Bootstrapping data 586 ■ Working with Groovy Server
Pages 587 ■ Working with tag libraries 590

16.5 Working with controllers and finder methods 592

16.6 Elaborating the model 595

16.7 Working with the session 596

16.8 Finishing up 600
Validating constraints 601 ■ Deploying the application 602
Farewell 604

appendix A Installation and documentation 606
appendix B Groovy language info 610
appendix C GDK API quick reference 613
appendix D Cheat sheets 631

index 639

foreword
I first integrated Groovy into a project I was working on almost two years ago.
There is a long and rich history of using “scripting languages” as a flexible
glue to stitch together, in different ways, large modular components from a
variety of frameworks. Groovy is a particularly interesting language from this
tradition, because it doesn’t shy away from linguistic sophistication in the pur-
suit of concise programming, especially in the areas around XML, where it is
particularly strong. Groovy goes beyond the “glue” tradition of the scripting
world to being an effective implementation language in its own right. In fact,
while Groovy is often thought of and referred to as a scripting language, it
really is much more than that.

 It is traditional for scripting languages to have an uneasy relationship with
the underlying linguistic system in which the frameworks are implemented. In
Groovy’s case, they have been able to leverage the underlying Java model to
get integration that is smooth and efficient. And because of the linguistic sim-
ilarities between Java and Groovy, it is fairly painless for developers to shift
between programming in one environment and the other.

 Groovy in Action by Dierk König and his coauthors is a clear and detailed
exposition of what is groovy about Groovy. I’m glad to have it on my bookshelf.

JAMES GOSLING
Creator of Java

Sun Microsystems, Inc.
xix

preface
Fundamental progress has to do with the reinterpretation of basic ideas.

—Alfred North Whitehead

In recent years, we have witnessed major improvements in software develop-
ment with Java—and beyond. It’s easy to overlook these achievements when
you’re bogged down with daily development work. We work with elaborate
tool support, have all kinds of frameworks for various domains, and have dis-
covered new agile ways of organizing software development in teams. Each of
these disciplines—tooling, frameworks, and methodology—has successfully
pushed its limits. We are still waiting for two other important aspects of soft-
ware development to contribute to bringing our trade forward: personal skills
management and programming languages.

 Language does matter. It determines how you perceive the world—and it
determines your world. Your programming language determines how you
think about software solutions and the way you think about the underlying
problems. Your knowledge of programming languages is key to your personal
skill portfolio as a software developer.

 Source code is a means of communication: from you to the compiler, to
other team members, and then back to you. There is both a technical and a
human aspect in this communication. Classical programming languages focus
on the technical aspect and are optimized for performance and resource
xx

PREFACE xxi
consumption. Other languages focus on the human aspect, trying to reveal the
programmer’s intent in the code as clearly as possible. Many attempts have been
made to bridge the two aspects, ranging from Literate Programming to Pro-
gramming in Logic, none of which has taken the world by storm.

 While Groovy is unlikely to dominate traditional languages, what distin-
guishes it from previous attempts is that it allows a smooth transition from
machine-centric to human-centric coding. It builds on the basic idea of the Java
platform with a new interpretation of code appearance. That means that on the
bytecode level, Groovy is Java, allowing a seamless mix-and-match of the two
languages. For example, unlike other projects that try to make scripting lan-
guages available on the Java platform, a literal string in Groovy is of the type
java.lang.String. You get the best of both worlds.

 As a direct consequence, Groovy fully leverages the availability of frameworks,
with the Java standard library being the most important one. James Strachan
and Bob McWhirter founded the Groovy project in 2003, recognizing that appli-
cation development in Java is characterized by using multiple frameworks and
gluing them together to form a product. They designed Groovy to streamline
exactly this kind of work.

 At the same time, Richard Monson-Haefel met James, who introduced him
to Groovy. Richard immediately recognized Groovy’s potential and suggested
the submission of a Java Specification Request (JSR-241). To make a long story
short, this JSR passed “without a hitch,” as Richard puts it in his blog, thanks to
additional support from Geir Magnusson, Jr. and the foresight of the folks at
Sun Microsystems. They don’t see Groovy as Java’s rival but rather as a com-
panion that attracts brilliant developers who might otherwise move to Ruby or
Python and thus away from the Java platform. Since the JSR has been accepted,
Groovy is the second standard language for the Java VM (besides the Java lan-
guage itself).

 The JSR process was the acid test for the Groovy community. It showed where
contributors were pushing in different directions and it imposed more structure
on the development than some were willing to accept. Development slowed
down in late 2004. This was when some key people stepped in and took the lead:
Guillaume Laforge and Jeremy Rayner organized what was later called Groovy-
One. This led to a Groovy Language Specification (GLS), a Test Compatibility Kit
(TCK), and a new parser generated from a descriptive grammar specification.
They got the ball rolling again—a ball that has now become an avalanche.

 From the beginning, it was clear that Groovy would need a book like Groovy
in Action to introduce newcomers to the language, provide comprehensive

xxii PREFACE
documentation, and show what’s possible with Groovy in order to trigger the
reader’s curiosity and imagination.

 John Wilson started this venture and passed the baton to Scott Stirling, who
in turn came across some contributions that I had made to the Groovy Wiki. He
quickly convinced me to join the book effort. By that time, I was downloading
every single bit of information that I could find about Groovy into my personal
knowledge base to have it available offline. I jotted down personal notes about
Groovy idioms that I found helpful. Putting all this into a book seemed natural,
even if it was only for my personal purposes.

 Unfortunately, Scott had to resign and I was left alone for half a year, pushing
things forward as best I could. I was lucky enough to get support from Andrew
and Guillaume, both well-known Groovy experts. Andrew runs the Practically
Groovy online series and Guillaume is not only the Groovy project manager, he is
the heart and soul of Groovy. From day one of this book project, I was aware that
as I am not a native speaker, I would not be able to write a full-length book in
English without serious help. This was the initial reason for asking Dr. Paul King
and Jon Skeet to come on board. I could not have been luckier. It turned out that
they not only plowed tirelessly through every sentence in this book, leaving no
stone unturned, but clarified the book’s arguments, made the text more accessi-
ble, and corrected errors and weaknesses. They also suggested more compelling
examples, and, last but not least, contributed content. This book would never
have come to fruition without their diligent and mindful work.

 Even though we will probably never see the day that Richard envisions “when
Groovy is used to control space flight and has solved world hunger,” I would be
pleased if Groovy, and this book, help to push our profession of software devel-
opment one inch farther.

 DIERK KÖNIG

acknowledgments
I’m very grateful for having had the opportunity to write this book. It has
helped me sharpen my programming skills in both Groovy and Java. Thanks
to my coauthors and editors, especially my development editor, Jackie Carter,
I also learned a great deal about writing. Most of all, I enjoyed working with
so many brilliant people!

 I’m deeply indebted to our reviewing team: Jonas Trindler, Jochen The-
odorou, Jeremy Rayner, Christopher DeBracy, Bob McWhirter, Sam Pullara,
John Stump, Graeme Rocher, Jeff Cunningham, Bas Vodde, Guillaume Alleon,
Doug Warren, Derek Lane, Scott Shaw, Norman Richards, Stuart Caborn, Glen
Smith, John Wilson, and Martin C. Martin. The “most observant reviewer”
award goes to Marc Guillemot!

 Other friends helped with the book in one way or another: Denis Antoni-
oli, Christian Bauer, Gerald Bauer, Tim Bray, Jesse Eichar, Benjamin Feier-
mann, James Gosling, Martin Huber, Stephan Huber, Andy Hunt, Vincent
Massol, Richard Monson-Haefel, Johannes Link, Rolf Pfenninger, Franck
Rasolo, Stefan Roock, Rene Schönfeldt, Tomi Schütz, Scott Stirling, Roman
Strobl, Frank Westphal, John Wilson, Dr. Russel Winder, all Groovy folks, as
well as participants in Manning’s Early Access Program.

 Special thanks to Jochen Theodorou, the technical lead of the Groovy
project, and John Wilson, Groovy’s grandmaster of dynamic programming, for
always being available when we needed advice about Groovy’s inner workings.
xxiii

xxiv ACKNOWLEDGMENTS
In addition, Jochen was the technical proofreader for the book, checking the
code one last time, just before the book went to press. Finally, very special thanks
to James Gosling for writing the foreword to Groovy in Action.

 The book would never had made it to the shelves without the support and
guidance of everyone at Manning Publications, especially our publisher Marjan
Bace and our editor Jackie Carter. We would also like to thank the rest of the team
at Manning: Benjamin Berg, Denis Dalinnik, Gabriel Dobrescu, Dottie Marsico,
Mary Piergies, Iain Shigeoka, Hieu Ta, Tiffany Taylor, Karen Tegtmeyer, Katie
Tennant, Ron Tomich, Helen Trimes, Lianna Wlasiuk, and Megan Yockey.

 My family, and especially my parents, have always supported me when times
were tough and—most importantly—encouraged me to pursue my ideas. Thank
you so much.

about this book
Roadmap
Groovy in Action describes the Groovy language, presents the library classes
and methods that Groovy adds to the standard Java Development Kit, and
leads you through a number of topics that you are likely to encounter in your
daily development work. The book is made up of these three parts:

■ Part 1: The Groovy language
■ Part 2: Around the Groovy library
■ Part 3: Everyday Groovy

An introductory chapter explains what Groovy is and then part 1 starts with a
broad overview of Groovy’s language features, before going into more depth
about scalar and collective datatypes. The language description includes an
explanation of the closure concept that is ubiquitous in Groovy, describing
how it relates to and distinguishes itself from control structures. Part 1 closes
with Groovy’s model of object-orientation and its Meta-Object Protocol, which
makes Groovy the dynamic language that it is.

 Part 2 begins the library description with a presentation of Groovy’s builder
concept, its various implementations, and their relation to template engines,
along with their use in Groovlets for simple web applications. An explanation
of the GDK follows, with Groovy’s enhancements to the Java standard library.
This is the “beef ” of the library description in part 2. The Groovy library
xxv

xxvi ABOUT THIS BOOK
shines with simple but powerful support for database programming and XML
handling, and we include a detailed exposition of both topics. Another big advan-
tage of Groovy is its all-out seamless integration with Java, and we explain the
options provided by the Groovy library for setting this into action.

 If part 1 was a tutorial and part 2 a reference, part 3 is a cookbook. It starts with
tips and tricks, warnings of typical pitfalls and misconceptions, and snippets and
solutions for common tasks, and then it leads you through the organizational
aspects of your daily work with Groovy. A big part of day-to-day programming
work is unit testing, and we describe in detail how Groovy helps with that. Since
many programmers work on the Windows platform, we describe how to leverage
your Groovy knowledge through integration with COM and ActiveX components.

 A final bonus chapter gives a glimpse of how to use Grails, the Groovy web
application framework. Grails is a perfect example for understanding and
appreciating Groovy. It fully exploits Groovy’s dynamic capabilities for runtime
injection of features while using the solid base of the Java enterprise platform
and the performance and scalability of third-party libraries such as Spring and
Hibernate to the fullest. Grails is worth studying on its own; we have included it
in part 3 to demonstrate how mindful engineering can lead to new levels of pro-
ductivity by standing on the shoulders of giants.

 The book ends with a series of appendixes which are intended to serve as a
quick reference.

Who should read this book?
This book is for everyone who wants to learn Groovy as a new agile program-
ming language. Existing Groovy users can use it to deepen their knowledge; and
both new and experienced programmers can use it as a black-and-white refer-
ence. We found ourselves going to our own book to look up details that we had
forgotten. Newcomers to Groovy will need a basic understanding of Java since
Groovy is completely dependent on it; Java basics are not covered in our book.

 Topics have been included that will make reading and understanding easier,
but are not mandatory prerequisites: patterns of object-oriented design, Ant,
Maven, JUnit, HTML, XML, and Swing. It is beneficial—but not required—to have
been exposed to some other scripting language. This enables you to connect what
you read to what you already know. Where appropriate, we point out similarities
and differences between Groovy and other scripting languages.

ABOUT THIS BOOK xxvii
Code conventions
This book provides copious examples that show how you can make use of each of
the topics covered. Source code in listings or in text appears in a fixed-width
font like this to separate it from ordinary text. In addition, class and method
names, object properties, and other code-related terms and content in text are
presented using fixed-width font.

 Occasionally, code is italicized, as in reference.dump(). In this case reference
should not be entered literally but replaced with the content that is required,
such as the appropriate reference.

 Where the text contains the pronouns “I” and “we,” the “we” refers to all the
authors. “I” refers to the lead author of the respective chapter: Guillaume
Laforge for chapters 11 and 15, Andrew Glover for chapter 14, and Dierk König
for the remaining chapters.

 Most of the code examples contain Groovy code. This code is very compact so
we present it “as is” without any omissions. Unless stated otherwise, you can copy
and paste it into a new file and run it right away. In rare cases, when this wasn’t
possible, we have used … ellipsis.

 Java, HTML, XML, and command-line input can be verbose. In many cases,
the original source code (available online) has been reformatted; we’ve added
line breaks and reworked indentation to accommodate the page space available
in the book. In rare cases, when even this was not enough, line-continuation
markers were added.

 Code annotations accompany many of the listings, highlighting important
concepts. In some cases, numbered cueballs link to additional explanations that
follow the listing.

 You can download the source code for all of the examples in the book from
the publisher’s website at www.manning.com/koenig.

Keeping up to date
The world doesn’t stop turning when you finish writing a book, and getting the
book through production also takes time. Therefore, some of the information in
any technical book becomes quickly outdated, especially in the dynamic world of
agile languages.

 This book covers Groovy 1.0. Groovy will see numerous improvements, and
by the time you read this, it’s possible that an updated version will have become
available. New Groovy versions always come with a detailed list of changes. It is
unlikely that any of the core Groovy concepts as laid out in this book will change

xxviii ABOUT THIS BOOK
significantly before Groovy 2.0; and even then the emphasis is likely to be on
additional concepts and features. This outlook makes the book a wise investment,
even in a rapidly changing world.

 We will do our best to keep the online resources for this book reasonably up to
date and provide information about language and library changes as the project
moves on. Please check for updates on the book’s web page at www.manning.
com/koenig.

Author Online
Purchase of Groovy in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask tech-
nical questions, and receive help from the authors and from other users. To
access the forum and subscribe to it, point your web browser to www.man-
ning.com/koenig. This page provides information on how to get on the forum
once you are registered, what kind of help is available, and the rules of conduct
on the forum. It also provides links to the source code for the examples in the
book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a mean-
ingful dialog between individual readers and between readers and the authors
can take place. It is not a commitment to any specific amount of participation on
the part of the authors, whose contribution to the AO remains voluntary (and
unpaid). We suggest you try asking the authors some challenging questions lest
their interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

about the authors
DIERK KÖNIG holds degrees in business administration and computer sci-
ence, and has worked with Java for 10 years as a professional software devel-
oper, mentor, and coach. He is an acknowledged reviewer and/or contributor
to numerous books, including the classic Extreme Programming Explained (Kent
Beck), Test-Driven Development (Kent Beck), Agile Development in the Large
(Eckstein/Josuttis), JUnit (Johannes Link), JUnit and Fit (Frank Westphal), and
Refactorings (Roock/Lippert).

 Dierk publishes in leading German magazines on software development
and speaks at international conferences. Recently, Skillsmatter London hosted
his Groovy and Grails training course and related events. He has worked with
Canoo Engineering AG, Basle, Switzerland, since 2000, where he is a founding
partner and member of the executive board. Dierk founded the open-source
Canoo WebTest project and has been its manager since 2001. His consulting
and engineering activities are related largely to agile software development
practices and test automation. He joined the Groovy project in 2004 and has
worked as a committer ever since.

ANDREW GLOVER is an established expert in automated testing frameworks and
tools. He is an author for multiple online publications, including IBM’s Devel-
operWorks and O’Reilly’s ONJava and ONLamp portals. He is the co-author of
Java Testing Patterns. Andrew is a frequent speaker at Java Users Groups around
xxix

xxx ABOUT THE AUTHORS
the country as well as a speaker for the No Fluff Just Stuff Software Symposium
group. His interest in building quality into software with technologies that lower
software bug counts, reduce integration and testing times, and improve overall
code stability led him to found Vanward Technologies in 2001. Vanward was
acquired by JNetDirect in 2005 and renamed Stelligent in 2006. He blogs actively
about software quality at thediscoblog.com and testearly.com.

DR. PAUL KING’S career spans technical and managerial roles in a number of
organizations, underpinned by deep knowledge of the information technology
and telecommunications markets and a passion for the creation of innovative
organizations. Throughout his career, Paul has provided technical and strategic
consulting to hundreds of organizations in the U.S. and Asia Pacific. The early
stages of Paul’s career were highlighted by his contribution to various research
fields, including object-oriented software development, formal methods, tele-
communications, and distributed systems. He has had numerous publications at
international conferences and in journals and trade magazines. He is an award-
winning author and sought-after speaker at conferences.

 Currently, Paul leads ASERT (Advanced Software Engineering, Research &
Training), which is recognized as a world-class center of expertise in the areas of
middleware technology, agile development, and Internet application develop-
ment and deployment. ASERT has experience teaching thousands of students in
more than 15 countries, and has provided consulting services and development
assistance throughout Asia Pacific to high-profile startups and government
e-commerce sites. In his spare time, Paul is a taxi driver and homework assistant
for his seven children.

GUILLAUME LAFORGE has been the official Groovy project manager since the end
of 2004, after having been a contributor and later a core committer on the
project. He is also the specification lead for JSR-241, the ongoing effort to stan-
dardize the Groovy language through Sun’s Java Community Process. Guillaume
is Groovy’s “public face” and often responds to interviews regarding Groovy and
presents his project at conferences such as at JavaOne 2006, where he spoke
about how scripting can simplify enterprise development. In his professional
life, Guillaume is a software architect working at OCTO Technology, a French-
based consultancy focusing on software and information systems architecture, as
well as on agile methodologies.

ABOUT THE AUTHORS xxxi
JON SKEET is a recent convert to Groovy, but has been helping fellow software
developers through community efforts for several years, primarily through news-
groups, his website of Java and C# articles, and, more recently, through his blog
on software development practices. Jon has been a Microsoft Most Valuable Pro-
fessional since 2003 for his contributions to the C# community, and enjoys seeing
how the worlds of .NET and Java are constantly learning from each other. One
day, perhaps there’ll be a C# equivalent of Groovy. In the meantime, Jon is look-
ing forward to the far-off day when he can teach pair-programming to his twin
sons, who were born while this book was being written. By then, Jon fully expects
that his eldest son, Tom, will know more about computing than his father does.

about the title
By combining introductions, overviews, and how-to examples, Manning’s In
Action books are designed to help learning and remembering. According to
research in cognitive science, the things people remember are things they dis-
cover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that
for learning to become permanent, it must pass through stages of exploration,
play, and, interestingly, retelling of what is being learned. People understand
and remember new things, which is to say they master them, only after
actively exploring them. Humans learn in action. An essential part of an In
Action guide is that it is example-driven. It encourages the reader to try things
out, play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our
readers are busy. They use books to do a job or solve a problem. They need
books that allow them to jump in and jump out easily and learn just what they
want, just when they want it. They need books that aid them in action. The
books in this series are designed for such readers.
xxxii

about the cover illustration
The figure on the cover of Groovy in Action is a “Danzerina del Japon,” a Japa-
nese dancer, taken from a Spanish compendium of regional dress customs first
published in Madrid in 1799. While the artist may have captured the “spirit”
of a Japanese dancer in his drawing, the illustration does not accurately por-
tray the looks, dress, or comportment of a Japanese woman or geisha of the
time, compared to Japanese drawings from the same period. The artwork in
this collection was clearly not researched first hand!

 The book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del
Mundo desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R.
Obra muy util y en special para los que tienen la del viajero universal

which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world,
designed and printed with great exactitude by R.M.V.A.R. This work is very useful
especially for those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who col-
ored this illustration by hand, the “exactitude” of their execution is evident in
this drawing. The “Danzerina del Japon” is just one of many figures in this
colorful collection. Travel for pleasure was a relatively new phenomenon at
the time and books such as this one were popular, introducing both the tourist
xxxiii

xxxiv ABOUT THE COVER ILLUSTRATION
as well as the armchair traveler to the exotic inhabitants, real and imagined, of
other regions of the world

 Dress codes have changed since then and the diversity by nation and by
region, so rich at the time, has faded away. It is now often hard to tell the inhab-
itant of one continent from another. Perhaps, trying to view it optimistically, we
have traded a cultural and visual diversity for a more varied personal life. Or a
more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life
two centuries ago, brought back to life by the pictures from this collection.

Your way to Groovy
One main factor in the upward trend of ani-
mal life has been the power of wandering.

 —Alfred North Whitehead
1

2 CHAPTER 1
Your way to Groovy
Welcome to the world of Groovy.
 You’ve heard of Groovy on blogs and mailing lists. Maybe you’ve seen a snip-

pet here and there. Perhaps a colleague has pointed out a page of your code and
claimed the same work could be done in just a few lines of Groovy. Maybe you
only picked up this book because the name is catchy. Why should you learn
Groovy? What payback can you expect?

 Groovy will give you some quick wins, whether it’s by making your Java code
simpler to write, by automating recurring tasks, or by supporting ad-hoc scripting
for your daily work as a programmer. It will give you longer-term wins by making
your code simpler to read. Perhaps most important, it’s fun to use.

 Learning Groovy is a wise investment. Groovy brings the power of advanced
language features such as closures, dynamic typing, and the meta object protocol
to the Java platform. Your Java knowledge will not become obsolete by walking
the Groovy path. Groovy will build on your existing experience and familiarity
with the Java platform, allowing you to pick and choose when you use which
tool—and when to combine the two seamlessly.

 If you have ever marveled at the Ruby folks who can implement a full-blown
web application in the afternoon, the Python guys juggling collections, the Perl
hackers managing a server farm with a few keystrokes, or Lisp gurus turning their
whole codebase upside-down with a tiny change, then think about the language
features they have at their disposal. The goal of Groovy is to provide language
capabilities of comparable impact on the Java platform, while obeying the Java
object model and keeping the perspective of a Java programmer.

 This first chapter provides background information about Groovy and every-
thing you need to know to get started. It starts with the Groovy story: why Groovy
was created, what considerations drive its design, and how it positions itself in the
landscape of languages and technologies. The next section expands on Groovy’s
merits and how they can make life easier for you, whether you’re a Java pro-
grammer, a script aficionado, or an agile developer.

 We strongly believe that there is only one way to learn a programming lan-
guage: by trying it. We present a variety of scripts to demonstrate the compiler,
interpreter, and shells, before listing some plug-ins available for widely used IDEs
and where to find the latest information about Groovy.

 By the end of this chapter, you will have a basic understanding of what Groovy
is and how you can experiment with it.

 We—the authors, the reviewers, and the editing team—wish you a great time
programming Groovy and using this book for guidance and reference.

The Groovy story 3
1.1 The Groovy story

At GroovyOne 2004—a gathering of Groovy developers in London—James Stra-
chan gave a keynote address telling the story of how he arrived at the idea of
inventing Groovy.

 Some time ago, he and his wife were waiting for a late plane. While she went
shopping, he visited an Internet café and spontaneously decided to go to the
Python web site and study the language. In the course of this activity, he became
more and more intrigued. Being a seasoned Java programmer, he recognized
that his home language lacked many of the interesting and useful features Python
had invented, such as native language support for common datatypes in an
expressive syntax and, more important, dynamic behavior. The idea was born to
bring such features to Java.

 This led to the main principles that guide Groovy’s development: to be a fea-
ture rich and Java friendly language, bringing the attractive benefits of dynamic
languages to a robust and well-supported platform.

 Figure 1.1 shows how this unique combination defines Groovy’s position in the
varied world of languages for the Java platform.1 We don’t want to offend anyone
by specifying exactly where we believe
any particular other language might fit
in the figure, but we’re confident of
Groovy’s position.

 Some languages may have a few more
features than Groovy. Some languages
may claim to integrate better with Java.
None can currently touch Groovy when
you consider both aspects together:
Nothing provides a better combination
of Java friendliness and a complete range
of modern language features.

 Knowing some of the aims of
Groovy, let’s look at what it is.

1 http://www.robert-tolksdorf.de/vmlanguages.html lists close to 200 (!) languages targeting the Java
Virtual Machine.

Figure 1.1 The landscape of JVM-based
languages. Groovy is feature rich and Java
friendly—it excels at both sides instead of
sacrificing one for the sake of the other.

4 CHAPTER 1
Your way to Groovy
1.1.1 What is Groovy?

The Groovy web site (http://groovy.codehaus.org) gives one of the best definitions
of Groovy: “Groovy is an agile dynamic language for the Java Platform with many
features that are inspired by languages like Python, Ruby and Smalltalk, making
them available to Java developers using a Java-like syntax.”

 Groovy is often referred to as a scripting language—and it works very well for
scripting. It’s a mistake to label Groovy purely in those terms, though. It can be pre-
compiled into Java bytecode, be integrated into Java applications, power web appli-
cations, add an extra degree of control within build files, and be the basis of whole
applications on its own—Groovy is too flexible to be pigeon-holed.

 What we can say about Groovy is that it is closely tied to the Java platform.
This is true in terms of both implementation (many parts of Groovy are written
in Java, with the rest being written in Groovy itself) and interaction. When you
program in Groovy, in many ways you’re writing a special kind of Java. All the
power of the Java platform—including the massive set of available libraries—is
there to be harnessed.

 Does this make Groovy just a layer of syntactic sugar? Not at all. Although
everything you do in Groovy could be done in Java, it would be madness to write
the Java code required to work Groovy’s magic. Groovy performs a lot of work
behind the scenes to achieve its agility and dynamic nature. As you read this
book, try to think every so often about what would be required to mimic the
effects of Groovy using Java. Many of the Groovy features that seem extraordinary
at first—encapsulating logic in objects in a natural way, building hierarchies with
barely any code other than what is absolutely required to compute the data,
expressing database queries in the normal application language before they are
translated into SQL, manipulating the runtime behavior of individual objects
after they have been created—all of these are tasks that Java cannot perform. You
might like to think of Groovy as being a “full color” language compared with the
monochrome nature of Java—the miracle being that the color pictures are cre-
ated out of lots of carefully engineered black and white dots.

 Let’s take a closer look at what makes Groovy so appealing, starting with how
Groovy and Java work hand-in-hand.

1.1.2 Playing nicely with Java: seamless integration

Being Java friendly means two things: seamless integration with the Java Run-
time Environment and having a syntax that is aligned with Java.

The Groovy story 5
Seamless integration
Figure 1.2 shows the integration aspect
of Groovy: It runs inside the Java Virtual
Machine and makes use of Java’s librar-
ies (together called the Java Runtime
Environment or JRE). Groovy is only
a new way of creating ordinary Java
classes—from a runtime perspective,
Groovy is Java with an additional jar file
as a dependency.

 Consequently, calling Java from
Groovy is a nonissue. When developing
in Groovy, you end up doing this all the time without noticing. Every Groovy type
is a subtype of java.lang.Object. Every Groovy object is an instance of a type in
the normal way. A Groovy date is a java.util.Date, and so on.

 Integration in the opposite direction is just as easy. Suppose a Groovy class
MyGroovyClass is compiled into a *.class file and put on the classpath. You can use
this Groovy class from within a Java class by typing

new MyGroovyClass(); // create from Java

In other words, instantiating a Groovy class is identical to instantiating a Java
class. After all, a Groovy class is a Java class. You can then call methods on the
instance, pass the reference as an argument to methods, and so forth. The JVM is
blissfully unaware that the code was written in Groovy.

Syntax alignment
The second dimension of Groovy’s friendliness is its syntax alignment. Let’s com-
pare the different mechanisms to obtain today’s date in Java, Groovy, and Ruby in
order to demonstrate what alignment should mean:

import java.util.*; // Java
Date today = new Date(); // Java

today = new Date() // a Groovy Script

require 'date' # Ruby
today = Date.new # Ruby

The Groovy solution is short, precise, and more compact than normal Java.
Groovy does not need to import the java.util package or specify the Date type;
moreover, Groovy doesn’t require semicolons when it can understand the code

Figure 1.2 Groovy and Java join together in a
tongue-and-groove fashion.

6 CHAPTER 1
Your way to Groovy
without them. Despite being more compact, Groovy is fully comprehensible to a
Java programmer.

 The Ruby solution is listed to illustrate what Groovy avoids: a different pack-
aging concept (require), a different comment syntax, and a different object-
creation syntax. Although the Ruby way makes sense in itself (and may even be
more consistent than Java), it does not align as nicely with the Java syntax and
architecture as Groovy does.

 Now you have an idea what Java friendliness means in terms of integration
and syntax alignment. But how about feature richness?

1.1.3 Power in your code: a feature-rich language

Giving a list of Groovy features is a bit like giving a list of moves a dancer can per-
form. Although each feature is important in itself, it’s how well they work
together that makes Groovy shine. Groovy has three main types of features over
and above those of Java: language features, libraries specific to Groovy, and addi-
tions to the existing Java standard classes (GDK). Figure 1.3 shows some of these
features and how they fit together. The shaded circles indicate the way that the
features use each other. For instance, many of the library features rely heavily on

Figure 1.3 Many of the additional libraries and JDK enhancements in Groovy build on the new
language features. The combination of the three forms a “sweet spot” for clear and powerful code.

The Groovy story 7
language features. Idiomatic Groovy code rarely uses one feature in isolation—
instead, it usually uses several of them together, like notes in a chord.

 Unfortunately, many of the features can’t be understood in just a few words.
Closures, for example, are an invaluable language concept in Groovy, but the
word on its own doesn’t tell you anything. We won’t go into all the details now,
but here are a few examples to whet your appetite.

Listing a file: closures and I/O additions
Closures are blocks of code that can be treated as first-class objects: passed
around as references, stored, executed at arbitrary times, and so on. Java’s anon-
ymous inner classes are often used this way, particularly with adapter classes, but
the syntax of inner classes is ugly, and they’re limited in terms of the data they can
access and change.

 File handling in Groovy is made significantly easier with the addition of vari-
ous methods to classes in the java.io package. A great example is the File.
eachLine method. How often have you needed to read a file, a line at a time, and
perform the same action on each line, closing the file at the end? This is such a
common task, it shouldn’t be difficult—so in Groovy, it isn’t.

 Let’s put the two features together and create a complete program that lists a
file with line numbers:

def number=0
new File ('test.groovy').eachLine { line ->
 number++
 println "$number: $line"
}

The closure in curly braces gets executed for each line, and File’s new eachLine
method makes this happen.

Printing a list: collection literals and simplified property access
java.util.List and java.util.Map are probably the most widely used interfaces
in Java, but there is little language support for them. Groovy adds the ability to
declare list and map literals just as easily as you would a string or numeric literal,
and it adds many methods to the collection classes.

 Similarly, the JavaBean conventions for properties are almost ubiquitous in
Java, but the language makes no use of them. Groovy simplifies property access,
allowing for far more readable code.

 Here’s an example using these two features to print the package for each of a
list of classes. Note that the word package needs to be quoted because it’s a key-
word, but it can still be used for the property name. Although Java would allow a

8 CHAPTER 1
Your way to Groovy
similar first line to declare an array, we’re using a real list here—elements could
be added or removed with no extra work:

def classes = [String, List, File]
for (clazz in classes)
{
 println clazz.'package'.name
}

In Groovy, you can even avoid such commonplace for loops by applying property
access to a list—the result is a list of the properties. Using this feature, an equiva-
lent solution to the previous code is

println([String, List, File].'package'.name)

to produce the output

["java.lang", "java.util", "java.io"]

Pretty cool, eh?

XML handling the Groovy way: GPath with dynamic properties
Whether you’re reading it or writing it, working with XML in Java requires a con-
siderable amount of work. Alternatives to the W3C DOM make life easier, but Java
itself doesn’t help you in language terms—it’s unable to adapt to your needs.
Groovy allows classes to act as if they have properties at runtime even if the names
of those properties aren’t known when the class is compiled. GPath was built on
this feature, and it allows seamless XPath-like navigation of XML documents.

 Suppose you have a file called customers.xml such as this:

<?xml version="1.0" ?>
<customers>
 <corporate>
 <customer name="Bill Gates" company="Microsoft" />
 <customer name="Steve Jobs" company="Apple" />
 <customer name="Jonathan Schwartz" company="Sun" />
 </corporate>

 <consumer>
 <customer name="John Doe" />
 <customer name="Jane Doe" />
 </consumer>
</customers>

You can print out all the corporate customers with their names and companies
using just the following code. (Generating the file in the first place with Groovy
using a Builder would be considerably easier than in Java, too.)

The Groovy story 9
def customers = new XmlSlurper().parse(new File('customers.xml'))
for (customer in customers.corporate.customer)
{
 println "${customer.@name} works for ${customer.@company}"
}

Even trying to demonstrate just a few features of Groovy, you’ve seen other fea-
tures in the preceding examples—string interpolation with GString, simpler for
loops, optional typing, and optional statement terminators and parentheses, just
for starters. The features work so well with each other and become second nature
so quickly, you hardly notice you’re using them.

 Although being Java friendly and feature rich are the main driving forces for
Groovy, there are more aspects worth considering. So far, we have focused on the
hard technical facts about Groovy, but a language needs more than that to be suc-
cessful. It needs to attract people. In the world of computer languages, building a
better mousetrap doesn’t guarantee that the world will beat a path to your door. It
has to appeal to both developers and their managers, in different ways.

1.1.4 Community-driven but corporate-backed

For some people, it’s comforting to know that their investment in a language is
protected by its adoption as a standard. This is one of the distinctive promises of
Groovy. Since the passage of JSR-241, Groovy is the second standard language for
the Java platform (the first being the Java language).

 The size of the user base is a second criterion. The larger the user base, the
greater the chance of obtaining good support and sustainable development.
Groovy’s user base is reasonably sized. A good indication is the activity on the
mailing lists and the number of related projects (see http://groovy.codehaus.org/
Related+Projects).

 Attraction is more than strategic considerations, however. Beyond what you
can measure is a gut feeling that causes you to enjoy programming or not.

 The developers of Groovy are aware of this feeling, and it is carefully consid-
ered when deciding upon language features. After all, there is a reason for the
name of the language.

GROOVY “A situation or an activity that one enjoys or to which one is especially
well suited (found his groove playing bass in a trio). A very pleasurable
experience; enjoy oneself (just sitting around, grooving on the music).
To be affected with pleasurable excitement. To react or interact harmo-
niously.” [Leo]

10 CHAPTER 1
Your way to Groovy
Someone recently stated that Groovy was, “Java-stylish with a Ruby-esque feel-
ing.” We cannot think of a better description. Working with Groovy feels like a
partnership between you and the language, rather than a battle to express what is
clear in your mind in a way the computer can understand.

 Of course, while it’s nice to “feel the groove,” you still need to pay your bills. In
the next section, we’ll look at some of the practical advantages Groovy will bring
to your professional life.

1.2 What Groovy can do for you

Depending on your background and experience, you are probably interested in
different features of Groovy. It is unlikely that anyone will require every aspect of
Groovy in their day-to-day work, just as no one uses the whole of the mammoth
framework provided by the Java standard libraries.

 This section presents interesting Groovy features and areas of applicability for
Java professionals, script programmers, and pragmatic, extreme, and agile pro-
grammers. We recognize that developers rarely have just one role within their
jobs and may well have to take on each of these identities in turn. However, it is
helpful to focus on how Groovy helps in the kinds of situations typically associ-
ated with each role.

1.2.1 Groovy for Java professionals
If you consider yourself a Java professional, you probably have years of experi-
ence in Java programming. You know all the important parts of the Java Runtime
API and most likely the APIs of a lot of additional Java packages.

 But—be honest—there are times when you cannot leverage this knowledge,
such as when faced with an everyday task like recursively searching through all
files below the current directory. If you’re like us, programming such an ad-hoc
task in Java is just too much effort.

 But as you will learn in this book, with Groovy you can quickly open the con-
sole and type

groovy -e "new File('.').eachFileRecurse { println it }"

to print all filenames recursively.
 Even if Java had an eachFileRecurse method and a matching FileListener

interface, you would still need to explicitly create a class, declare a main method,
save the code as a file, and compile it, and only then could you run it. For the sake
of comparison, let’s see what the Java code would look like, assuming the exist-
ence of an appropriate eachFileRecurse method:

What Groovy can do for you 11
public class ListFiles { // JAVA !!
 public static void main(String[] args) {
 new java.io.File(".").eachFileRecurse(
 new FileListener() {
 public void onFile (File file) {
 System.out.println(file.toString());
 }
 }
);
 }
}

Notice how the intent of the code (printing each file) is obscured by the scaffold-
ing code Java requires you to write in order to end up with a complete program.

 Besides command-line availability and code beauty, Groovy allows you to bring
dynamic behavior to Java applications, such as through expressing business rules,
allowing smart configurations, or even implementing domain specific languages.

 You have the options of using static or dynamic types and working with pre-
compiled code or plain Groovy source code with on-demand compiling. As a
developer, you can decide where and when you want to put your solution “in
stone” and where it needs to be flexible. With Groovy, you have the choice.

 This should give you enough safeguards to feel comfortable incorporating
Groovy into your projects so you can benefit from its features.

1.2.2 Groovy for script programmers

As a script programmer, you may have worked in Perl, Ruby, Python, or other
dynamic (non-scripting) languages such as Smalltalk, Lisp, or Dylan.

 But the Java platform has an undeniable market share, and it’s fairly common
that folks like you work with the Java language to make a living. Corporate clients
often run a Java standard platform (e.g. J2EE), allowing nothing but Java to be
developed and deployed in production. You have no chance of getting your ultra-
slick scripting solution in there, so you bite the bullet, roll up your sleeves, and
dig through endless piles of Java code, thinking all day, “If I only had [your lan-
guage here], I could replace this whole method with a single line!” We confess to
having experienced this kind of frustration.

 Groovy can give you relief and bring back the fun of programming by provid-
ing advanced language features where you need them: in your daily work. By
allowing you to call methods on anything, pass blocks of code around for immedi-
ate or later execution, augment existing library code with your own specialized
semantics, and use a host of other powerful features, Groovy lets you express
yourself clearly and achieve miracles with little code.

Imagine Java
had this

12 CHAPTER 1
Your way to Groovy
 Just sneak the groovy-all-*.jar file into your project’s classpath, and
you’re there.

 Today, software development is seldom a solitary activity, and your teammates
(and your boss) need to know what you are doing with Groovy and what Groovy is
about. This book aims to be a device you can pass along to others so they can
learn, too. (Of course, if you can’t bear the thought of parting with it, you can tell
them to buy their own copies. We won’t mind.)

1.2.3 Groovy for pragmatic programmers, extremos, and agilists

If you fall into this category, you probably already have an overloaded bookshelf,
a board full of index cards with tasks, and an automated test suite that threatens
to turn red at a moment’s notice. The next iteration release is close, and there is
anything but time to think about Groovy. Even uttering the word makes your
pair-programming mate start questioning your state of mind.

 One thing that we’ve learned about being pragmatic, extreme, or agile is that
every now and then you have to step back, relax, and assess whether your tools
are still sharp enough to cut smoothly. Despite the ever-pressing project sched-
ules, you need to sharpen the saw regularly. In software terms, that means having
the knowledge and resources needed and using the right methodology, tools,
technologies, and languages for the task at hand.

 Groovy will be an invaluable tool in your box for all automation tasks that you
are likely to have in your projects. These range from simple build automation,
continuous integration, and reporting, up to automated documentation, ship-
ment, and installation. The Groovy automation support leverages the power of
existing solutions such as Ant and Maven, while providing a simple and concise
language means to control them. Groovy even helps with testing, both at the unit
and functional levels, helping us test-driven folks feel right at home.

 Hardly any school of programmers applies as much rigor and pays as much
attention as we do when it comes to self-describing, intention-revealing code. We
feel an almost physical need to remove duplication while striving for simpler
solutions. This is where Groovy can help tremendously.

 Before Groovy, I (Dierk) used other scripting languages (preferably Ruby) to
sketch some design ideas, do a spike—a programming experiment to assess the
feasibility of a task—and run a functional prototype. The downside was that I was
never sure if what I was writing would also work in Java. Worse, in the end I had
the work of porting it over or redoing it from scratch. With Groovy, I can do all
the exploration work directly on my target platform.

Running Groovy 13
EXAMPLE Recently, Guillaume and I did a spike on prime number disassembly.2 We
started with a small Groovy solution that did the job cleanly but not effi-
ciently. Using Groovy’s interception capabilities, we unit-tested the solu-
tion and counted the number of operations. Because the code was clean,
it was a breeze to optimize the solution and decrease the operation count.
It would have been much more difficult to recognize the optimization
potential in Java code. The final result can be used from Java as it stands,
and although we certainly still have the option of porting the optimized
solution to plain Java, which would give us another performance gain, we
can defer the decision until the need arises.

The seamless interplay of Groovy and Java opens two dimensions of optimizing
code: using Java for code that needs to be optimized for runtime performance, and
using Groovy for code that needs to be optimized for flexibility and readability.

 Along with all these tangible benefits, there is value in learning Groovy for its
own sake. It will open your mind to new solutions, helping you to perceive new
concepts when developing software, whichever language you use.

 No matter what kind of programmer you are, we hope you are now eager to
get some Groovy code under your fingers. If you cannot hold back from looking
at some real Groovy code, look at chapter 2.

1.3 Running Groovy

First, we need to introduce you to the tools you’ll be using to run and option-
ally compile Groovy code. If you want to try these out as you read, you’ll need
to have Groovy installed, of course. Appendix A provides a guide for the instal-
lation process.

 There are three commands to execute Groovy code and scripts, as shown in
table 1.1. Each of the three different mechanisms of running Groovy is demon-
strated in the following sections with examples and screenshots. Groovy can also
be “run” like any ordinary Java program, as you will see in section 1.4.2, and there
also is a special integration with Ant that is explained in section 1.4.3.

 We will explore several options of integrating Groovy in Java programs in
chapter 11.

2 Every ordinal number N can be uniquely disassembled into factors that are prime numbers: N =
p1*p2*p3. The disassembly problem is known to be “hard.” Its complexity guards cryptographic al-
gorithms like the popular Rivest-Shamir-Adleman (RSA) algorithm.

14 CHAPTER 1
Your way to Groovy
1.3.1 Using groovysh for “Hello World”

Let’s look at groovysh first because it is a handy tool for running experiments
with Groovy. It is easy to edit and run Groovy iteratively in this shell, and
doing so facilitates seeing how Groovy works without creating and editing
script files.

 To start the shell, run groovysh (UNIX) or groovysh.bat (Windows) from the
command line. You should then get a command prompt like this:

Lets get Groovy!
================
Version: 1.0-RC-01-SNAPSHOT JVM: 1.4.2_05-b04
Type 'exit' to terminate the shell
Type 'help' for command help
Type 'go' to execute the statements

groovy>

The traditional “Hello World!” program can be written in Groovy with one line
and then executed in groovysh with the go command:

groovy> "Hello, World!"
groovy> go

===> Hello, World!

The go command is one of only a few commands the shell recognizes. The rest
can be displayed by typing help on the command line:

groovy> help
Available commands (must be entered without extraneous characters):
exit/quit - terminates processing
help - displays this help text

Table 1.1 Commands to execute Groovy

Command What it does

groovysh Starts the groovysh command-line shell, which is used to execute Groovy code
interactively. By entering statements or whole scripts, line by line, into the shell and
giving the go command, code is executed “on the fly.”

groovyConsole Starts a graphical interface that is used to execute Groovy code interactively; more-
over, groovyConsole loads and runs Groovy script files.

groovy Starts the interpreter that executes Groovy scripts. Single-line Groovy scripts can be
specified as command-line arguments.

Running Groovy 15
discard - discards the current statement
display - displays the current statement
explain - explains the parsing of the current statement (currently
 disabled)
execute/go - temporary command to cause statement execution
binding - shows the binding used by this interactive shell
discardclasses - discards all former unbound class definitions
inspect - opens ObjectBrowser on expression returned from
 previous "go"

The go and execute commands are equivalent. The discard command tells
Groovy to forget the last line typed, which is useful when you’re typing in a long
script, because the command facilitates clearing out the small sections of code
rather than having to rewrite an entire script from the top. Let’s look at the
other commands.

Display command
The display command displays the last noncommand statement entered:

groovy> display
1> "Hello World!"

Binding command
The binding command displays variables utilized in a groovysh session. We
haven’t used any variables in our simple example, but, to demonstrate, we’ll alter
our “Hello World!” using the variable greeting to hold part of the message we
print out:

groovy> greeting = "Hello"
groovy> "${greeting}, World!"
groovy> go

===> Hello, World!

groovy> binding
Available variables in the current binding
greeting = Hello

The binding command is useful when you’re in the course of a longer groovysh
session and you’ve lost track of the variables in use and their current values.

 To clear the binding, exit the shell and start a new one.

Inspect command
The inspect command opens the Groovy Object Browser on the last evaluated
expression. This browser is a Swing user interface that lets you browse through an
object’s native Java API and any additional features available to it via Groovy’s

16 CHAPTER 1
Your way to Groovy
GDK. Figure 1.4 shows the Object Browser inspecting an instance of String. It
contains information about the String class in the header and two tables showing
available methods and fields.

 Look at the second and third rows. A method with the name center is available
on a String object. It takes a Number parameter (second row) and an optional
String parameter (third row). The method’s return type is a String. Groovy
defined this new public method on the String class.

 If you are anything like us, you cannot wait to try that new knowledge in the
groovysh and type

groovy> 'test'.center 20, '-'
groovy> go

===> --------test--------

That’s almost as good as IDE support!
 For easy browsing, you can sort columns by clicking the headers and reverse the

sort with a second click. You can sort by multiple criteria by clicking column head-
ers in sequence, and rearrange the columns by dragging the column headers.

 Future versions of the Groovy Object Browser may provide even more sophis-
ticated features.

Figure 1.4 The Groovy Object Browser when opened on an object of type
String, displaying the table of available methods in its bytecode and
registered Meta methods

Running Groovy 17
1.3.2 Using groovyConsole

The groovyConsole is a Swing interface that acts as a minimal Groovy interactive
interpreter. It lacks support for the command-line options supported by
groovysh; however, it has a File menu to allow Groovy scripts to be loaded, cre-
ated, and saved. Interestingly, groovyConsole is written in Groovy. Its implemen-
tation is a good demonstration of Builders, which are discussed in chapter 7.

 The groovyConsole takes no arguments and starts a two-paned Window like
the one shown in figure 1.5. The console accepts keyboard input in the upper
pane. To run a script, either key in Ctrl+R, Ctrl+Enter or use the Run command
from the Action menu to run the script. When any part of the script code is
selected, only the selected text is executed. This feature is useful for simple
debugging or single stepping by successively selecting one or multiple lines.

 The groovyConsole’s File menu has New, Open, Save, and Exit commands.
New opens a new groovyConsole window. Open can be used to browse to a
Groovy script on the file system and open it in the edit pane for editing and run-
ning. Save can be used to save the current text in the edit pane to a file. Exit
quits the groovyConsole.

 The Groovy Object Browser as shown in figure 1.4 is equally available in
groovyConsole and also operates on the last evaluated expression. To open the
browser, press Ctrl+I (for inspect) or choose Inspect from the Actions menu.

Figure 1.5
The groovyConsole with a
simple script in the edit pane that
calculates the circumference of a
circle based on its diameter. The
result is in the output pane.

18 CHAPTER 1
Your way to Groovy
That’s it for groovyConsole. Whether you prefer working in groovysh or groovy-
Console is a personal choice. Script programmers who perform their work in
command shells tend to prefer the shell.

I (Dierk) personally changed my habits to use the console more often for
the sake of less typing through cut-and-paste in the edit pane.

Unless explicitly stated otherwise, you can put any code example in this book
directly into groovysh or groovyConsole and run it there. The more often you do
that, the earlier you will get a feeling for the language.

1.3.3 Using groovy

The groovy command is used to execute Groovy programs and scripts. For exam-
ple, listing 1.1 shows the obligatory Fibonacci3 number sequence Groovy pro-
gram that prints the first 10 Fibonacci numbers. The Fibonacci number sequence
is a pattern where the first two numbers are 1 and 1, and every subsequent num-
ber is the sum of the preceding two.

 If you’d like to try this, copy the code into a file, and save it as Fibonacci.
groovy. The file extension does not matter much as far as the groovy executable is
concerned, but naming Groovy scripts with a .groovy extension is conventional.
One benefit of using an extension of .groovy is that you can omit it on the com-
mand line when specifying the name of the script—instead of groovy MyScript.
groovy, you can just run groovy MyScript.

current = 1
next = 1
10.times {
 print current + ' '
 newCurrent = next
 next = next + current
 current = newCurrent
}
println ''

AUTHOR’S
CHOICE

3 Leonardo Pisano (1170..1250), aka Fibonacci, was a mathematician from Pisa (now a town in Italy). He
introduced this number sequence to describe the growth of an isolated rabbit population. Although this
may be questionable from a biological point of view, his number sequence plays a role in many different
areas of science and art. For more information, you can subscribe to the Fibonacci Quarterly.

Listing 1.1 Fibonacci.groovy

loop
10 times

Compiling and running Groovy 19
Run this file as a Groovy program by passing the file name to the groovy com-
mand. You should see the following output:

> groovy Fibonacci
1 1 2 3 5 8 13 21 34 55

The groovy command has many additional options that are useful for command-
line scripting. For example, expressions can be executed by typing groovy –e
"println 1+1", which prints 2 to the console. Section 12.3 will lead you through
the full range of options, with numerous examples.

 In this section, we have dealt with Groovy’s support for simple ad-hoc script-
ing, but this is not the whole story. The next section expands on how Groovy fits
into a code-compile-run cycle.

1.4 Compiling and running Groovy

So far, we have used Groovy in direct mode, where our code is directly executed
without producing any executable files. In this section, you will see a second way
of using Groovy: compiling it to Java bytecode and running it as regular Java
application code within a Java Virtual Machine (JVM). This is called precompiled
mode. Both ways execute Groovy inside a JVM eventually, and both ways compile
the Groovy code to Java bytecode. The major difference is when that compilation
occurs and whether the resulting classes are used in memory or stored on disk.

1.4.1 Compiling Groovy with groovyc

Compiling Groovy is straightforward, because Groovy comes with a compiler
called groovyc. The groovyc compiler generates at least one class file for each
Groovy source file compiled. As an example, we can compile Fibonacci.groovy
from the previous section into normal Java bytecode by running groovyc on the
script file like so:

> groovyc –d classes Fibonacci.groovy

In our case, the Groovy compiler outputs two Java class files to a directory named
classes, which we told it to do with the –d flag. If the directory specified with –d
does not exist, it is created. When you’re running the compiler, the name of each
generated class file is printed to the console.

 For each script, groovyc generates a class that extends groovy.lang.Script,
which contains a main method so that java can execute it. The name of the com-
piled class matches the name of the script being compiled.

20 CHAPTER 1
Your way to Groovy
 More classes may be generated, depending on the script code; however, we
don’t really need to care about that because that is a Java platform topic. In
essence, groovyc works the same way that javac compiles nested classes.

NOTE The Fibonacci script contains the 10.times{} construct that causes
groovyc to generate a class of type closure, which implements what is
inside the curly braces. This class is nested inside the Fibonacci class. You
will learn more about closures in chapter 5. If you find this confusing, you
can safely ignore it for the time being.

The mapping of class files to implementations is shown in table 1.2, with the pur-
pose of each explained.

Now that we’ve got a compiled program, let’s see how to run it.

1.4.2 Running a compiled Groovy script with Java

Running a compiled Groovy program is identical to running a compiled Java pro-
gram, with the added requirement of having the embeddable groovy-all*.jar file in
your JVM’s classpath, which will ensure that all of Groovy’s third-party dependencies
will be resolved automatically at runtime. Make sure you add the directory in which
your compiled program resides to the classpath, too. You then run the program in
the same way you would run any other Java program, with the java command.4

> java -cp %GROOVY_HOME%/embeddable/groovy-all-1.0.jar;classes Fibonacci
1 1 2 3 5 8 13 21 34 55

Note that the .class file extension for the main class should not be specified when
running with java.

Table 1.2 Classes generated by groovyc for the Fibonacci.groovy file

Class file Is a subclass of … Purpose

Fibonacci.class groovy.lang.
Script

Contains a main method that can be run with
the java command.

Fibonacci$_run_
closure1.class

groovy.lang.
Closure

Captures what has to be done 10 times.

You can safely ignore it.

4 The command line as shown applies to Windows shells. The equivalent on Linux/Solaris/UNIX/Cygwin
would be
java -cp $GROOVY_HOME/embeddable/groovy-all-1.0.jar:classes Fibonacci

Compiling and running Groovy 21
 All this may seem like a lot of work if you’re used to building and running your
Java code with Ant at the touch of a button. We agree, which is why the developers
of Groovy have made sure you can do all of this easily in an Ant script.

1.4.3 Compiling and running with Ant
An Ant task is shipped with Groovy for running the groovyc compiler in an Ant
build script. To use it, you need to have Ant installed.5 We recommend version 1.6.2
or higher.

 Listing 1.2 shows an Ant build script, which compiles and runs the
Fibonacci.groovy script as Java bytecode.

<project name="fibonacci-build" default="run">

 <property environment="env"/>

 <path id="groovy.classpath">
 <fileset dir="${env.GROOVY_HOME}/embeddable/"/>
 </path>

 <taskdef name ="groovyc"
 classname ="org.codehaus.groovy.ant.Groovyc"
 classpathref="groovy.classpath"/>

 <target name="compile"
 description="compile groovy to bytecode">
 <mkdir dir="classes"/>
 <groovyc
 destdir="classes"
 srcdir="."
 includes="Fibonacci.groovy"
 classpathref="groovy.classpath">
 </groovyc>
 </target>

 <target name="run" depends="compile"
 description="run the compiled class">
 <java classname="Fibonacci">
 <classpath refid="groovy.classpath"/>
 <classpath location="classes"/>
 </java>
 </target>
</project>

5 Groovy ships with its own copy of the Ant jar files that could also be used for this purpose, but it is
easier to explain with a standalone installation of Ant.

Listing 1.2 build.xml for compiling and running a Groovy program as Java bytecode

Path
definition

b

taskdefc

compile
targetd

run
targete

22 CHAPTER 1
Your way to Groovy
Store this file as build.xml in your current directory, which should also contain
the Fibonacci.groovy script, and type ant at the command prompt.

 The build will start at the e run target, which depends on the d compile tar-
get and therefore calls that one first. The compile target is the one that uses the
groovyc task. In order to make this task known to Ant, the c taskdef is used.
It finds the implementation of the groovyc task by referring to the groovy.
classpath in the b path definition.

 When everything compiles successfully in the d compile target, the e run tar-
get calls the java task on the compiled classes.

 You will see output like this:

> ant
Buildfile: build.xml

compile:
 [mkdir] Created dir: …\classes
 [groovyc] Compiling 1 source file to …\classes
run:
 [java] 1 1 2 3 5 8 13 21 34 55

 BUILD SUCCESSFUL
Total time: 2 seconds

Executing ant a second time shows no compile output, because the groovyc task is
smart enough to compile only when necessary. For a clean compile, you have to
delete the destination directory before compiling.

 The groovyc Ant task has a lot of options, most of which are similar to those in
the javac Ant task. The srcdir and destdir options are mandatory.

 Using groovyc for compilation can be handy when you’re integrating Groovy
in Java projects that use Ant (or Maven) for build automation. More information
about integrating Groovy with Ant and Maven will be given in chapter 14.

1.5 Groovy IDE and editor support

If you plan to code in Groovy often, you should look for Groovy support for your
IDE or editor of choice. Some editors only support syntax highlighting for
Groovy at this stage, but even that can be useful and can make Groovy code more
convenient to work with. Some commonly used IDEs and text editors for Groovy
are listed in the following sections.

 This section is likely to be out of date as soon as it is printed. Stay tuned for
updates for your favorite IDE, because improved support for Groovy in the major
Java IDEs is expected in the near future. Sun Microsystems recently announced

Groovy IDE and editor support 23
Groovy support for its NetBeans coyote project (https://coyote.dev.java.net/), which
is particularly interesting because it is the first IDE support for Groovy that is
managed by the IDE’s own vendor itself.

1.5.1 IntelliJ IDEA plug-in

Within the Groovy community, work is ongoing to develop an open-source plug-
in called GroovyJ. With the help of this plug-in and IDEA’s built-in features, a
Groovy programmer can benefit from the following:

■ Simple syntax highlighting based on user preferences: GroovyJ currently
uses Java 5’s syntax highlighter, which covers a large proportion of the
Groovy syntax. Version 1.0 will recognize the full Groovy syntax and allow
customization of the highlighting through the Colors & Fonts panel, just as
it is possible with the Java syntax.

■ Code completion: To date, code completion is limited to word completion,
leveraging IDEA’s word completion based on an on-the-fly dictionary for
the current editor only.

■ Tight integration with IDEA’s compile, run, build, and make configuration as
well as output views.

■ Lots of advanced editor actions that can be used as in Java.
■ Efficient lookup for all related Java classes in the project or dependent

libraries.
■ Efficient navigation between files, including .groovy files.
■ A Groovy file-type icon.

GroovyJ has a promising future, which is greatly dependent on its implementa-
tion of IDEA’s Program Structure Interface (PSI) for the Groovy language. It will do
so by specializing the Groovy grammar file and generating a specialized parser
for this purpose. Because IDEA bases all its advanced features (such as refactoring
support, inspections, navigation, intentions, and so forth) on the PSI, it seems to
be only a matter of time before we will see these features for Groovy.

 GroovyJ is an interesting project, mindfully led by Franck Rasolo. This plug-in
is one of the most advanced ones available to Groovy at this point. For more infor-
mation, see http://groovy.codehaus.org/GroovyJ+Status.

24 CHAPTER 1
Your way to Groovy
1.5.2 Eclipse plug-in

The Groovy plug-in for Eclipse requires Eclipse 3.1.1 or newer. The plug-in will
also run in Eclipse 3.x-derived tools such as IBM Rational’s Rational Application
Developer and Rational Software Architect. As of this writing, the Groovy Eclipse
plug-in supports the following features:

■ Syntax highlighting for Groovy files
■ A Groovy file decorator (icon) for Groovy files in the Package Explorer and

Resources views
■ Running Groovy scripts from within the IDE

■ Auto-build of Groovy files
■ Debugger integration

The Groovy Eclipse plug-in is available for download at http://groovy.codehaus.org/
Eclipse+Plugin.

1.5.3 Groovy support in other editors

Although they don’t claim to be full-featured development environments, a lot of
all-purpose editors provide support for programming languages in general and
Groovy in particular.

 UltraEdit can easily be customized to provide syntax highlighting for Groovy
and to start or compile scripts from within the editor. Any output goes to an inte-
grated output window. A small sidebar lets you jump to class and method decla-
rations in the file. It supports smart indentation and brace matching for Groovy.
Besides the Groovy support, it is a feature-rich, quick-starting, all-purpose editor.
Find more details at http://groovy.codehaus.org/UltraEdit+Plugin.

 The JEdit plug-in for Groovy supports executing Groovy scripts and code snip-
pets from within the editor. A syntax-highlighting configuration is available sep-
arately. More details are available here: http://groovy.codehaus.org/JEdit+Plugin.

 Syntax highlighting configuration files for TextPad, Emacs, Vim, and several
other text editors can be found on the Groovy web site at http://groovy.codehaus.
org/Other+Plugins.

When programming small ad-hoc Groovy scripts, I (Dierk) personally use
UltraEdit on Windows and Vim on Linux. For any project of some size, I
use IntelliJ IDEA with the GroovyJ plug-in.

AUTHOR’S
CHOICE

Summary 25
As Groovy matures and is adopted among Java programmers, it will continue to
gain support in Java IDEs with features such as debugging, unit testing, and
dynamic code-completion.

1.6 Summary

We hope that by now we’ve convinced you that you really want Groovy in your life.
As a modern language built on the solid foundation of Java and with support
from Sun, Groovy has something to offer for everyone, in whatever way they
interact with the Java platform.

 With a clear idea of why Groovy was developed and what drives its design, you
should be able to see where features fit into the bigger picture as each is introduced
in the coming chapters. Keep in mind the principles of Java integration and fea-
ture richness, making common tasks simpler and your code more expressive.

 Once you have Groovy installed, you can run it both directly as a script and
after compilation into classes. If you have been feeling energetic, you may even
have installed a Groovy plug-in for your favorite IDE. With this preparatory work
complete, you are ready to see (and try!) more of the language itself. In the next
chapter, we will take you on a whistle-stop tour of Groovy’s features to give you a
better feeling for the shape of the language, before we examine each element in
detail for the remainder of part 1.

Part 1

The Groovy language

Learning a new programming language is comparable to learning to
speak a foreign language. You have to deal with new vocabulary, grammar,
and language idioms. This initial effort pays off multiple times, however. With
the new language, you find unique ways to express yourself, you are exposed
to new concepts and styles that add to your personal abilities, and you may
even explore new perspectives on your world. This is what Groovy did for us,
and we hope Groovy will do it for you, too.

 The first part of this book introduces you to the language basics: the
Groovy syntax, grammar, and typical idioms. We present the language by
example as opposed to using an academic style.

 You may skim this part on first read and revisit it before going into serious
development with Groovy. If you decide to skim, please make sure you visit
chapter 2 and its examples. They are cross-linked to the in-depth chapters so
you can easily look up details about any topic that interests you.

 One of the difficulties of explaining a programming language by example
is that you have to start somewhere. No matter where you start, you end up
needing to use some concept or feature that you haven’t explained yet for
your examples. Section 2.3 serves to resolve this perceived deadlock by pro-
viding a collection of self-explanatory warm-up examples.

 We explain the main portion of the language using its built-in datatypes
and introduce expressions, operators, and keywords as we go along. By start-
ing with some of the most familiar aspects of the language and building up
your knowledge in stages, we hope you’ll always feel confident when exploring
new territory.

28 PART 1
The Groovy language
 Chapter 3 introduces Groovy’s typing policy and walks through the text and
numeric datatypes that Groovy supports at the language level.

 Chapter 4 continues looking at Groovy’s rich set of built-in types, examining
those with a collection-like nature: ranges, lists, and maps.

 Chapter 5 builds on the preceding sections and provides an in-depth descrip-
tion of the closure concept.

 Chapter 6 touches on logical branching, looping, and shortcutting program
execution flow.

 Finally, chapter 7 sheds light on the way Groovy builds on Java’s object-
oriented features and takes them to a new level of dynamic execution.

 At the end of part 1, you’ll have the whole picture of the Groovy language.
This is the basis for getting the most out of part 2, which explores the Groovy
library: the classes and methods that Groovy adds to the Java platform. Part 3,
titled “Everyday Groovy,” will apply the knowledge obtained in parts 1 and 2 to
the daily tasks of your programming business.

Overture:
The Groovy basics
Do what you think is interesting, do something
that you think is fun and worthwhile, because
otherwise you won’t do it well anyway.

—Brian Kernighan
29

30 CHAPTER 2
Overture: The Groovy basics
This chapter follows the model of an overture in classical music, in which the initial
movement introduces the audience to a musical topic. Classical composers wove
euphonious patterns that, later in the performance, were revisited, extended, var-
ied, and combined. In a way, overtures are the whole symphony en miniature.

 In this chapter, we introduce you to many of the basic constructs of the Groovy
language. First, though, we cover two things you need to know about Groovy to
get started: code appearance and assertions. Throughout the chapter, we pro-
vide examples to jump-start you with the language; however, only a few
aspects of each example will be explained in detail—just enough to get you
started. If you struggle with any of the examples, revisit them after having
read the whole chapter.

 Overtures allow you to make yourself comfortable with the instruments, the
sound, the volume, and the seating. So lean back, relax, and enjoy the Groovy
symphony.

2.1 General code appearance

Computer languages tend to have an obvious lineage in terms of their look and
feel. For example, a C programmer looking at Java code might not understand a
lot of the keywords but would recognize the general layout in terms of braces,
operators, parentheses, comments, statement terminators, and the like. Groovy
allows you to start out in a way that is almost indistinguishable from Java and
transition smoothly into a more lightweight, suggestive, idiomatic style as your
knowledge of the language grows. We will look at a few of the basics—how to
comment-out code, places where Java and Groovy differ, places where they’re
similar, and how Groovy code can be briefer because it lets you leave out certain
elements of syntax.

 First, Groovy is indentation unaware, but it is good engineering practice to fol-
low the usual indentation schemes for blocks of code. Groovy is mostly unaware of
excessive whitespace, with the exception of line breaks that end the current state-
ment and single-line comments. Let’s look at a few aspects of the appearance of
Groovy code.

2.1.1 Commenting Groovy code
Single-line comments and multiline comments are exactly like those in Java, with
an additional option for the first line of a script:

#!/usr/bin/groovy

// some line comment

General code appearance 31
/*
 some multi-
 line comment
*/

Here are some guidelines for writing comments in Groovy:

■ The #! shebang comment is allowed only in the first line. The shebang allows
Unix shells to locate the Groovy bootstrap script and run code with it.

■ // denotes single-line comments that end with the current line.
■ Multiline comments are enclosed in /* … */ markers.
■ Javadoc-like comments in /** … */ markers are treated the same as other

multiline comments, but support for Groovydoc is in the works at the time
of writing. It will be the Groovy equivalent to Javadoc and will use the
same syntax.

Comments, however, are not the only Java-friendly part of the Groovy syntax.

2.1.2 Comparing Groovy and Java syntax

Some Groovy code—but not all—appears exactly like it would in Java. This often
leads to the false conclusion that Groovy’s syntax is a superset of Java’s syntax.
Despite the similarities, neither language is a superset of the other. For example,
Groovy currently doesn’t support the classic Java for(init;test;inc) loop. As you will
see in listing 2.1, even language semantics can be slightly different (for example,
with the == operator).

 Beside those subtle differences, the overwhelming majority of Java’s syntax is
part of the Groovy syntax. This applies to

■ The general packaging mechanism
■ Statements (including package and import statements)
■ Class and method definitions (except for nested classes)
■ Control structures (except the classic for(init;test;inc) loop)
■ Operators, expressions, and assignments
■ Exception handling
■ Declaration of literals (with some twists)
■ Object instantiation, referencing and dereferencing objects, and call-

ing methods

32 CHAPTER 2
Overture: The Groovy basics
The added value of Groovy’s syntax is to

■ Ease access to the Java objects through new expressions and operators
■ Allow more ways of declaring objects literally
■ Provide new control structures to allow advanced flow control
■ Introduce new datatypes together with their operators and expressions
■ Treat everything as an object

Overall, Groovy looks like Java with these additions. These additional syntax ele-
ments make the code more compact and easier to read. One interesting aspect
that Groovy adds is the ability to leave things out.

2.1.3 Beauty through brevity

Groovy allows you to leave out some elements of syntax that are always required
in Java. Omitting these elements often results in code that is shorter, less verbose,
and more expressive. For example, compare the Java and Groovy code for encod-
ing a string for use in a URL:

Java:
java.net.URLEncoder.encode("a b");

Groovy:
URLEncoder.encode 'a b'

Not only is the Groovy code shorter, but it expresses our objective in the simplest
possible way. By leaving out the package prefix, parentheses, and semicolon, the
code boils down to the bare minimum.

 The support for optional parentheses is based on the disambiguation and
precedence rules as summarized in the Groovy Language Specification (GLS).
Although these rules are unambiguous, they are not always intuitive. Omitting
parentheses can lead to misunderstandings, even though the compiler is happy
with the code. We prefer to include the parentheses for all but the most trivial
situations. The compiler does not try to judge your code for readability—you
must do this yourself.

 In chapter 7, we will also talk about optional return statements.
 Groovy automatically imports the packages groovy.lang.*, groovy.util.*,

java.lang.*, java.util.*, java.net.*, and java.io.* as well as the classes java.
math.BigInteger and BigDecimal. As a result, you can refer to the classes in these
packages without specifying the package names. We will use this feature through-
out the book, and we’ll use fully qualified class names only for disambiguation or

Probing the language with assertions 33
for pointing out their origin. Note that Java automatically imports java.lang.*
but nothing else.

 This section has given you enough background to make it easier to concen-
trate on each individual feature in turn. We’re still going through them quickly
rather than in great detail, but you should be able to recognize the general look
and feel of the code. With that under our belt, we can look at the principal tool
we’re going to use to test each new piece of the language: assertions.

2.2 Probing the language with assertions

If you have worked with Java 1.4 or later, you are probably familiar with assertions.
They test whether everything is right with the world as far as your program is con-
cerned. Usually, they live in your code to make sure you don’t have any inconsis-
tencies in your logic, performing tasks such as checking invariants at the
beginning and end of a method or ensuring that method parameters are valid. In
this book, however, we’ll use them to demonstrate the features of Groovy. Just as
in test-driven development, where the tests are regarded as the ultimate demon-
stration of what a unit of code should do, the assertions in this book demonstrate
the results of executing particular pieces of Groovy code. We use assertions to
show not only what code can be run, but the result of running the code. This sec-
tion will prepare you for reading the code examples in the rest of the book,
explaining how assertions work in Groovy and how you will use them.

 Although assertions may seem like an odd place to start learning a language,
they’re our first port of call, because you won’t understand any of the examples
until you understand assertions. Groovy provides assertions with the assert key-
word. Listing 2.1 shows what they look like.

assert(true)
assert 1 == 1
def x = 1
assert x == 1
def y = 1 ; assert y == 1

Let’s go through the lines one by one.

assert(true)

Listing 2.1 Using assertions

34 CHAPTER 2
Overture: The Groovy basics
This introduces the assert keyword and shows that you need to provide an
expression that you’re asserting will be true.1

assert 1 == 1

This demonstrates that assert can take full expressions, not just literals or simple
variables. Unsurprisingly, 1 equals 1. Exactly like Ruby and unlike Java, the ==
operator denotes equality, not identity. We left out the parentheses as well, because
they are optional for top-level statements.

def x = 1
assert x == 1

This defines the variable x, assigns it the numeric value 1, and uses it inside the
asserted expression. Note that we did not reveal anything about the type of x. The
def keyword means “dynamically typed.”

def y = 1 ; assert y == 1

This is the typical style we use when asserting the program status for the current
line. It uses two statements on the same line, separated by a semicolon. The semi-
colon is Groovy’s statement terminator. As you have seen before, it is optional
when the statement ends with the current line.

 Assertions serve multiple purposes:

■ Assertions can be used to reveal the current program state, as we are using
them in the examples of this book. The previous assertion reveals that the
variable y now has the value 1.

■ Assertions often make good replacements for line comments, because they
reveal assumptions and verify them at the same time. The previous assertion
reveals that for the remainder of the code, it is assumed that y has the
value 1. Comments may go out of date without anyone noticing—asser-
tions are always checked for correctness. They’re like tiny unit tests sitting
inside the real code.

REAL LIFE A real-life experience of the value of assertions was writing this book. This
book is constructed in a way that allows us to run the example code and
the assertions it contains. This works as follows: There is a raw version of
this book in MS-Word format that contains no code, but only placeholders

1 Groovy’s meaning of truth encompasses more than a simple boolean value, as you will see in section 6.7.

Probing the language with assertions 35
that refer to files containing the code. With the help of a little Groovy
script, all placeholders are scanned and loaded with the corresponding
file, which is evaluated and replaces the placeholder. For instance, the
assertions in listing 2.1 were evaluated and found to be correct during the
substitution process. The process stops with an error message, however, if
an assertion fails.

Because you are reading a production copy of this book, that means
the production process was not stopped and all assertions succeeded.
This should give you confidence in the correctness of all the Groovy
examples we provide. Not only does this prove the value of assertions,
but it uses Scriptom (chapter 15) to control MS-Word and AntBuilder
(chapter 8) to help with the building side—as we said before, the fea-
tures of Groovy work best when they’re used together.

Most of our examples use assertions—
one part of the expression will do some-
thing with the feature being described,
and another part will be simple enough
to understand on its own. If you have dif-
ficulty understanding an example, try
breaking it up, thinking about the lan-
guage feature being discussed and what
you would expect the result to be given
our description, and then looking at what we’ve said the result will be, as checked
at runtime by the assertion. Figure 2.1 breaks up a more complicated assertion
into the different parts.

 This is an extreme example—we often perform the steps in separate state-
ments and then make the assertion itself short. The principle is the same, how-
ever: There’s code that has functionality we’re trying to demonstrate and there’s
code that is trivial and can be easily understood without knowing the details of
the topic at hand.

 In case assertions do not convince you or you mistrust an asserted expression
in this book, you can usually replace it with output to the console. For example, an
assertion such as

assert x == 'hey, this is really the content of x'

can be replaced by

println x

Figure 2.1 A complex assertion, broken up
into its constituent parts

36 CHAPTER 2
Overture: The Groovy basics
which prints the value of x to the console. Throughout the book, we often replace
console output with assertions for the sake of having self-checking code. This is
not a common way of presenting code in books, but we feel it keeps the code and
the results closer—and it appeals to our test-driven nature.

 Assertions have a few more interesting features that can influence your pro-
gramming style. Section 6.2.4 covers assertions in depth. Now that we have
explained the tool we’ll be using to put Groovy under the microscope, you can
start seeing some of the real features.

2.3 Groovy at a glance

Like many languages, Groovy has a language specification that breaks down code
into statements, expressions, and so on. Learning a language from such a speci-
fication tends to be a dry experience and doesn’t move you far toward the goal of
writing Groovy code in the shortest possible amount of time. Instead, we will
present simple examples of typical Groovy constructs that make up most Groovy
code: classes, scripts, beans, strings, regular expressions, numbers, lists, maps,
ranges, closures, loops, and conditionals.

 Take this section as a broad but shallow overview. It won’t answer all your ques-
tions, but it will enable you to start experiencing Groovy on your own. We encour-
age you to experiment—if you wonder what would happen if you were to tweak
the code in a certain way, try it! You learn best by experience. We promise to give
detailed explanations in later in-depth chapters.

2.3.1 Declaring classes

Classes are the cornerstone of object-oriented programming, because they define
the blueprint from which objects are drawn.

 Listing 2.2 contains a simple Groovy class named Book, which has an instance
variable title, a constructor that sets the title, and a getter method for the title.
Note that everything looks much like Java, except there’s no accessibility modi-
fier: Methods are public by default.

class Book {
 private String title

 Book (String theTitle) {
 title = theTitle

Listing 2.2 A simple Book class

Groovy at a glance 37
 }
 String getTitle(){
 return title
 }
}

Please save this code in a file named Book.groovy, because we will refer to it in the
next section.

 The code is not surprising. Class declarations look much the same in most
object-oriented languages. The details and nuts and bolts of class declarations
will be explained in chapter 7.

2.3.2 Using scripts

Scripts are text files, typically with an extension of .groovy, that can be executed
from the command shell via

> groovy myfile.groovy

Note that this is very different from Java. In Groovy, we are executing the source
code! An ordinary Java class is generated for us and executed behind the
scenes. But from a user’s perspective, it looks like we are executing plain Groovy
source code.2

 Scripts contain Groovy statements without an enclosing class declaration.
Scripts can even contain method definitions outside of class definitions to better
structure the code. You will learn more about scripts in chapter 7. Until then, take
them for granted.

 Listing 2.3 shows how easy it is to use the Book class in a script. We create a new
instance and call the getter method on the object by using Java’s dot-syntax. Then
we define a method to read the title backward.

Book gina = new Book('Groovy in Action')

assert gina.getTitle() == 'Groovy in Action'
assert getTitleBackwards(gina) == 'noitcA ni yvoorG'

2 Any Groovy code can be executed this way as long as it can be run; that is, it is either a script, a class
with a main method, a Runnable, or a GroovyTestCase.

Listing 2.3 Using the Book class from a script

38 CHAPTER 2
Overture: The Groovy basics
String getTitleBackwards(book) {
 title = book.getTitle()
 return title.reverse()
}

Note how we are able to invoke the method getTitleBackwards before it is
declared. Behind this observation is a fundamental difference between Groovy
and other scripting languages such as Ruby. A Groovy script is fully constructed—
that is, parsed, compiled, and generated—before execution. Section 7.2 has more
details about this.

 Another important observation is that we can use Book objects without explic-
itly compiling the Book class! The only prerequisite for using the Book class is that
Book.groovy must reside on the classpath. The Groovy runtime system will find
the file, compile it transparently into a class, and yield a new Book object. Groovy
combines the ease of scripting with the merits of object orientation.

 This inevitably leads to how to organize larger script-based applications. In
Groovy, the preferred way is not meshing together numerous script files, but
instead grouping reusable components in classes such as Book. Remember that
such a class remains fully scriptable; you can modify Groovy code, and the
changes are instantly available without further action.

 Programming the Book class and the script that uses it was simple. It’s hard to
believe that it can be any simpler, but it can, as you will see next.

2.3.3 GroovyBeans

JavaBeans are ordinary Java classes that expose properties. What is a property?
That’s not easy to explain, because it is not a single entity on its own. It’s a con-
cept made up from a naming convention. If a class exposes methods with the
naming scheme getName() and setName(name), then the concept describes name
as a property of that class. The get- and set- methods are called accessor meth-
ods. (Some people make a distinction between accessor and mutator methods, but
we don’t.)

 A GroovyBean is a JavaBean defined in Groovy. In Groovy, working with beans
is much easier than in Java. Groovy facilitates working with beans in three ways:

■ Generating the accessor methods
■ Allowing simplified access to all JavaBeans (including GroovyBeans)
■ Simplified registration of event handlers

Groovy at a glance 39
Listing 2.4 shows how our Book class boils down to a one-liner defining the title
property. This results in the accessor methods getTitle() and setTitle(title)
being generated.

 We also demonstrate how to access the bean the standard way with accessor
methods, as well as the simplified way, where property access reads like direct
field access.

class Book {
 String title
}

def groovyBook = new Book()

groovyBook.setTitle('Groovy conquers the world')
assert groovyBook.getTitle() == 'Groovy conquers the world'

groovyBook.title = 'Groovy in Action'
assert groovyBook.title == 'Groovy in Action'

Note that listing 2.4 is a fully valid script and can be executed as is, even though it
contains a class declaration and additional code. You will learn more about this
construction in chapter 7.

 Also note that groovyBook.title is not a field access. Instead it is a shortcut for
the corresponding accessor method.

 More information about methods and beans will be given in chapter 7.

2.3.4 Handling text
Just like in Java, character data is mostly handled using the java.lang.String
class. However, Groovy provides some tweaks to make that easier, with more
options for string literals and some helpful operators.

GStrings
In Groovy, string literals can appear in single or double quotes. The double-
quoted version allows the use of placeholders, which are automatically resolved as
required. This is a GString, and that’s also the name of the class involved. The fol-
lowing code demonstrates a simple variable expansion, although that’s not all
GStrings can do:

def nick = 'Gina'
def book = 'Groovy in Action'
assert "$nick is $book" == 'Gina is Groovy in Action'

Listing 2.4 Defining the Book class as a GroovyBean

Property
declaration

Property use
with explicit
method calls

Property use with
Groovy shortcuts

40 CHAPTER 2
Overture: The Groovy basics
Chapter 3 provides more information about strings, including more options for
GStrings, how to escape special characters, how to span string declarations over
multiple lines, and available methods and operators on strings. As you’d expect,
GStrings are pretty neat.

Regular expressions
If you are familiar with the concept of regular expressions, you will be glad to hear
that Groovy supports them at the language level. If this concept is new to you, you
can safely skip this section for the moment. You will find a full introduction to the
topic in chapter 3.

 Groovy provides a means for easy
declaration of regular expression pat-
terns as well as operators for applying
them. Figure 2.2 declares a pattern
with the slashy // syntax and uses the
=~ find operator to match the pattern
against a given string. The first line
ensures that the string contains a series
of digits; the second line replaces every
digit with an x.

 Note that replaceAll is defined on
java.lang.String and takes two string
arguments. It becomes apparent that
'12345' is a java.lang.String, as is the
expression /\d/.

 Chapter 3 explains how to declare and use regular expressions and goes
through the ways to apply them.

2.3.5 Numbers are objects

Hardly any program can do without numbers, whether for calculations or, more
often, for counting and indexing. Groovy numbers have a familiar appearance, but
unlike in Java, they are first-class objects, not primitive types.

 In Java, you cannot invoke methods on primitive types. If x is of primitive type
int, you cannot write x.toString(). On the other hand, if y is an object, you can-
not use 2*y.

 In Groovy, both are possible. You can use numbers with numeric operators,
and you can also call methods on number instances.

Figure 2.2 Regular expression support in
Groovy through operators and slashy strings

Groovy at a glance 41
def x = 1
def y = 2
assert x + y == 3
assert x.plus(y) == 3
assert x instanceof Integer

The variables x and y are objects of type java.lang.Integer. Thus, we can use the
plus method. But we can just as easily use the + operator.

 This is surprising and a major lift to object orientation on the Java platform.
Whereas Java has a small but ubiquitously used part of the language that isn’t
object-oriented at all, Groovy makes a point of using objects for everything. You
will learn more about how Groovy handles numbers in chapter 3.

2.3.6 Using lists, maps, and ranges

Many languages, including Java, directly understand only a single collection
type—an array—at the syntax level and have language features that only apply
to that type. In practice, other collections are widely used, and there is no rea-
son why the language should make it harder to use those collections than to
use arrays. Groovy makes collection handling simple, with added support for
operators, literals, and extra methods beyond those provided by the Java stan-
dard libraries.

Lists
Java supports indexing arrays with a square
bracket syntax, which we will call the sub-
script operator. Groovy allows the same syn-
tax to be used with lists—instances of
java.util.List—which allows adding and
removing elements, changing the size of
the list at runtime, and storing items that
are not necessarily of a uniform type. In
addition, Groovy allows lists to be indexed
outside their current bounds, which again
can change the size of the list. Further-
more, lists can be specified as literals
directly in your code.

 The following example declares a list of
Roman numerals and initializes it with the
first seven numbers, as shown in figure 2.3.

Figure 2.3
An example list
where the content
for each index is
the Roman numeral
for that index

42 CHAPTER 2
Overture: The Groovy basics
 The list is constructed such that each index matches its representation as a
Roman numeral. Working with the list looks much like working with arrays, but in
Groovy, the manipulation is more expressive, and the restrictions that apply to
arrays are gone:

def roman = ['', 'I', 'II', 'III', 'IV', 'V', 'VI', 'VII']

assert roman[4] == 'IV'

roman[8] = 'VIII'
assert roman.size() == 9

Note that there was no list item with index 8 when we assigned a value to it. We
indexed the list outside the current bounds. Later, in section 4.2, we will discuss
more capabilities of the list datatype.

Simple maps
A map is a storage type that associates a
key with a value. Maps store and retrieve
the values by key, whereas lists retrieve
the values by numeric index.

 Unlike Java, Groovy supports maps
at the language level, allowing them to
be specified with literals and providing
suitable operators to work with them. It
does so with a clear and easy syntax. The
syntax for maps looks like an array of
key-value pairs, where a colon separates keys and values. That’s all it takes.

 The following example stores descriptions of HTTP3 return codes in a map, as
depicted in figure 2.4.

 You see the map declaration and initialization, the retrieval of values, and the
addition of a new entry. All of this is done with a single method call explicitly
appearing in the source code—and even that is only checking the new size of
the map:

def http = [
 100 : 'CONTINUE',
 200 : 'OK',
 400 : 'BAD REQUEST']

3 Hypertext Transfer Protocol, the protocol used for the World Wide Web. The server returns these
codes with every response. Your browser typically shows the mapped descriptions for codes above 400.

List of Roman
numeralsList access

List expansion

Figure 2.4 An example map where HTTP
return codes map to their respective
messages

Groovy at a glance 43
assert http[200] == 'OK'

http[500] = 'INTERNAL SERVER ERROR'
assert http.size() == 4

Note how the syntax is consistent with that used to declare, access, and modify
lists. The differences between using maps and lists are minimal, so it’s easy to
remember both. This is a good example of the Groovy language designers taking
commonly required operations and making programmers’ lives easier by provid-
ing a simple and consistent syntax. Section 4.3 gives more information about
maps and the wealth of their Groovy feature set.

Ranges
Although ranges don’t appear in the standard Java libraries, most programmers
have an intuitive idea of what a range is—effectively a start point and an end
point, with a notion of how to move from the start to the end point. Again,
Groovy provides literals to support this useful concept, along with other language
features such as the for statement, which understands ranges.

 The following code demonstrates the range literal format, along with how to
find the size of a range, determine whether it contains a particular value, find its
start and end points, and reverse it:

def x = 1..10
assert x.contains(5)
assert x.contains(15) == false
assert x.size() == 10
assert x.from == 1
assert x.to == 10
assert x.reverse() == 10..1

These examples are limited because we are only trying to show what ranges do on
their own. Ranges are usually used in conjunction with other Groovy features.
Over the course of this book, you’ll see a lot of range usages.

 So much for the usual datatypes. We will now come to closures, a concept that
doesn’t exist in Java, but which Groovy uses extensively.

2.3.7 Code as objects: closures

The concept of closures is not a new one, but it has usually been associated with
functional languages, allowing one piece of code to execute an arbitrary piece of
code that has been specified elsewhere.

 In object-oriented languages, the Method-Object pattern has often been used
to simulate the same kind of behavior by defining types whose sole purpose is to

44 CHAPTER 2
Overture: The Groovy basics
implement an appropriate single-method interface so that instances of those
types can be passed as arguments to methods, which then invoke the method on
the interface.

 A good example is the java.io.File.list(FilenameFilter) method. The
FilenameFilter interface specifies a single method, and its only purpose is
to allow the list of files returned from the list method to be filtered while it’s
being generated.

 Unfortunately, this approach leads to an unnecessary proliferation of types,
and the code involved is often widely separated from the logical point of use. Java
uses anonymous inner classes to address these issues, but the syntax is clunky, and
there are significant limitations in terms of access to local variables from the call-
ing method. Groovy allows closures to be specified inline in a concise, clean, and
powerful way, effectively promoting the Method-Object pattern to a first-class
position in the language.

 Because closures are a new concept to most Java programmers, it may take a
little time to adjust. The good news is that the initial steps of using closures are so
easy that you hardly notice what is so new about them. The aha-wow-cool effect
comes later, when you discover their real power.

 Informally, a closure can be recognized as a list of statements within curly
braces, like any other code block. It optionally has a list of identifiers in order to
name the parameters passed to it, with an -> arrow marking the end of the list.

 It’s easiest to understand closures
through examples. Figure 2.5 shows a sim-
ple closure that is passed to the List.each
method, called on a list [1, 2, 3].

 The List.each method takes a single
parameter—a closure. It then executes that
closure for each of the elements in the list,
passing in that element as the argument to
the closure. In this example, the main body
of the closure is a statement to print out
whatever is passed to the closure, namely the parameter we’ve called entry.

 Let’s consider a slightly more complicated question: If n people are at a party
and everyone clinks glasses with everybody else, how many clinks do you hear?4

4 Or, in computer terms: What is the maximum number of distinct connections in a dense network
of n components?

Figure 2.5 A simple example of a closure
that prints the numbers 1, 2 and 3

Groovy at a glance 45
Figure 2.6 sketches this question for five people,
where each line represents one clink.

 To answer this question, we can use Integer’s
upto method, which does something for every
Integer starting at the current value and going
up to a given end value. We apply this method to
the problem by imagining people arriving at the
party one by one. As people arrive, they clink
glasses with everyone who is already present.
This way, everyone clinks glasses with everyone
else exactly once.

 Listing 2.5 shows the code required to calcu-
late the number of clinks. We keep a running
total of the number of clinks, and when each
guest arrives, we add the number of people
already present (the guest number – 1). Finally,
we test the result using Gauss’s formula5 for this problem—with 100 people, there
should be 4,950 clinks.

def totalClinks = 0
def partyPeople = 100
1.upto(partyPeople) { guestNumber ->
 clinksWithGuest = guestNumber-1
 totalClinks += clinksWithGuest
}

assert totalClinks == (partyPeople*(partyPeople-1))/2

How does this code relate to Java? In Java, we would have used a loop like the fol-
lowing snippet. The class declaration and main method are omitted for the sake
of brevity:

//Java
int totalClinks = 0;
for(int guestNumber = 1;

5 Johann Carl Friedrich Gauss (1777..1855) was a German mathematician. At the age of seven, when
he was a school boy, his teacher wanted to keep the kids busy by making them sum up the numbers
from 1 to 100. Gauss discovered this formula and finished the task correctly and surprisingly quickly.
There are different reports on how the teacher reacted.

Listing 2.5 Counting all the clinks at a party using a closure

Figure 2.6 Five elements and their
distinct connections, modeling five
people (the circles) at a party clinking
glasses with each other (the lines).
Here there are 10 “clinks.”

46 CHAPTER 2
Overture: The Groovy basics
 guestNumber <= partyPeople;
 guestNumber++) {
 int clinksWithGuest = guestNumber-1;
 totalClinks += clinksWithGuest;
}

Note that guestNumber appears four times in the Java code but only two times in
the Groovy version. Don’t dismiss this as a minor thing. The code should explain
the programmer’s intention with the simplest possible means, and expressing
behavior with two words rather than four is an important simplification.

 Also note that the upto method encapsulates and hides the logic of how to
walk over a sequence of integers. That is, this logic appears only one time in the
code (in the implementation of upto). Count the equivalent for loops in any Java
project, and you’ll see the amount of structural duplication inherent in Java.

 There is much more to say about the great concept of closures, and we will do
so in chapter 5.

2.3.8 Groovy control structures

Control structures allow a programming language to control the flow of execution
through code. There are simple versions of everyday control structures like if-
else, while, switch, and try-catch-finally in Groovy, just like in Java.

 In conditionals, null is treated like false; not-null is treated like true. The for
loop has a for(i in x){body} notation, where x can be anything that Groovy
knows how to iterate through, such as an iterator, an enumeration, a collection,
a range, a map, or literally any object, as explained in chapter 6. In Groovy, the
for loop is often replaced by iteration methods that take a closure argument.
Listing 2.6 gives an overview.

if (false) assert false

if (null)
{
 assert false
}
else
{
 assert true
}

def i = 0
while (i < 10) {
 i++

Listing 2.6 Control structures

if as one-liner

Null is false

Blocks may start
on new line

Classic
while

Groovy’s place in the Java environment 47
}
assert i == 10

def clinks = 0
for (remainingGuests in 0..9) {
 clinks += remainingGuests
}
assert clinks == (10*9)/2

def list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
for (j in list) {
 assert j == list[j]
}

list.each() { item ->
 assert item == list[item]
}

switch(3) {
 case 1 : assert false; break
 case 3 : assert true; break
 default: assert false
}

The code in listing 2.6 should be self-explanatory. Groovy control structures are
reasonably close to Java’s syntax. Additionally, you will find a full introduction to
Groovy’s control structures in chapter 6.

 That’s it for the initial syntax presentation. You got your feet wet with Groovy
and should have the impression that it is a nice mix of Java-friendly syntax ele-
ments with some new interesting twists.

 Now that you know how to write your first Groovy code, it’s time to explore
how it gets executed on the Java platform.

2.4 Groovy’s place in the Java environment

Behind the fun of Groovy looms the world of Java. We will examine how Groovy
classes enter the Java environment to start with, how Groovy augments the existing
Java class library, and finally how Groovy gets its groove: a brief explanation of
the dynamic nature of Groovy classes.

2.4.1 My class is your class

“Mi casa es su casa.” My home is your home. That’s the Spanish way of expressing
hospitality. Groovy and Java are just as generous with each other’s classes.

Classic
while

for in
range

for in
list

each method
with a closure

Classic
switch

48 CHAPTER 2
Overture: The Groovy basics
 So far, when talking about Groovy and Java, we have compared the appear-
ance of the source code. But the connection to Java is much stronger. Behind the
scenes, all Groovy code runs inside the Java Virtual Machine (JVM) and is therefore
bound to Java’s object model. Regardless of whether you write Groovy classes or
scripts, they run as Java classes inside the JVM.

 You can run Groovy classes inside the JVM two ways:

■ You can use groovyc to compile *.groovy files to Java *.class files, put
them on Java’s classpath, and retrieve objects from those classes via the
Java classloader.

■ You can work with *.groovy files directly and retrieve objects from those
classes via the Groovy classloader. In this case, no *.class files are gener-
ated, but rather class objects—that is, instances of java.lang.Class. In other
words, when your Groovy code contains the expression new MyClass(), and
there is a MyClass.groovy file, it will be parsed, a class of type MyClass will
be generated and added to the classloader, and your code will get a new
MyClass object as if it had been loaded from a *.class file.6

These two methods of converting *.groovy files into Java classes are illustrated in
figure 2.7. Either way, the resulting classes have the same format as classic Java
classes. Groovy enhances Java at the source code level but stays identical at the byte-
code level.

6 We hope the Groovy programmers will forgive this oversimplification.

Figure 2.7
Groovy code can be compiled
using groovyc and then
loaded with the normal Java
classloader, or loaded directly
with the Groovy classloader

Groovy’s place in the Java environment 49
2.4.2 GDK: the Groovy library

Groovy’s strong connection to Java makes using Java classes from Groovy and
vice versa exceptionally easy. Because they are both the same thing, there is no
gap to bridge. In our code examples, every Groovy object is instantly a Java
object. Even the term Groovy object is questionable. Both are identical objects, liv-
ing in the Java runtime.

 This has an enormous benefit for Java programmers, who can fully leverage
their knowledge of the Java libraries. Consider a sample string in Groovy:

'Hello World!'

Because this is a java.lang.String, Java programmers knows that they can use
JDK’s String.startsWith method on it:

if ('Hello World!'.startsWith('Hello')) {
 // Code to execute if the string starts with 'Hello'
}

The library that comes with Groovy is an extension of the JDK library. It provides
some new classes (for example, for easy database access and XML processing), but
it also adds functionality to existing JDK classes. This additional functionality is
referred to as the GDK,7 and it provides significant benefits in consistency, power,
and expressiveness.

NOTE Going back to plain Java and the JDK after writing Groovy with the GDK
can often be an unpleasant experience! It’s all too easy to become accus-
tomed not only to the features of Groovy as a language, but also to the
benefits it provides in making common tasks simpler within the stan-
dard library.

One example is the size method as used in the GDK. It is available on everything
that is of some size: strings, arrays, lists, maps, and other collections. Behind the
scenes, they are all JDK classes. This is an improvement over the JDK, where you
determine an object’s size in a number of different ways, as listed in table 2.1.

 We think you would agree that the GDK solution is more consistent and easier
to remember.

7 This is a bit of a misnomer because DK stands for development kit, which is more than just the library;
it should also include supportive tools. We will use this acronym anyway, because it is conventional in
the Groovy community.

50 CHAPTER 2
Overture: The Groovy basics
Groovy can play this trick by funneling all method calls through a device called
MetaClass. This allows a dynamic approach to object orientation, only part of
which involves adding methods to existing classes. You’ll learn more about Meta-
Class in the next section.

 When describing the built-in datatypes later in the book, we also mention
their most prominent GDK properties. Appendix C contains the complete list.

 In order to help you understand how Groovy objects can leverage the power of
the GDK, we will next sketch how Groovy objects come into being.

2.4.3 The Groovy lifecycle

Although the Java runtime understands compiled Groovy classes without any
problem, it doesn’t understand .groovy source files. More work has to happen
behind the scenes if you want to load .groovy files dynamically at runtime. Let’s
dive under the hood to see what’s happening.

 Some relatively advanced Java knowledge is required to fully appreciate this
section. If you don’t already know a bit about classloaders, you may want to skip to
the chapter summary and assume that magic pixies transform Groovy source
code into Java bytecode at the right time. You won’t have as full an understanding
of what’s going on, but you can keep learning Groovy without losing sleep. Alter-
natively, you can keep reading and not worry when things get tricky.

 Groovy syntax is line oriented, but the execution of Groovy code is not. Unlike
other scripting languages, Groovy code is not processed line-by-line in the sense
that each line is interpreted separately.

Table 2.1 Various ways of determining sizes in the JDK

Type Determine the size in JDK via… Groovy

Array length field size() method

Array java.lang.reflect.Array.getLength(array) size() method

String length() method size() method

StringBuffer length() method size() method

Collection size() method size() method

Map size() method size() method

File length() method size() method

Matcher groupCount() method size() method

Groovy’s place in the Java environment 51
 Instead, Groovy code is fully parsed, and a class is generated from the infor-
mation that the parser has built. The generated class is the binding device
between Groovy and Java, and Groovy classes are generated such that their for-
mat is identical to Java bytecode.

 Inside the Java runtime, classes are managed by a classloader. When a Java
classloader is asked for a certain class, it loads the class from the *.class file, stores
it in a cache, and returns it. Because a Groovy-generated class is identical to a
Java class, it can also be managed by a classloader with the same behavior. The
difference is that the Groovy classloader can also load classes from *.groovy files
(and do parsing and class generation before putting it in the cache).

 Groovy can at runtime read *.groovy files as if they were *.class files. The class
generation can also be done before runtime with the groovyc compiler. The com-
piler simply takes *.groovy files and transforms them into *.class files using the
same parsing and class-generation mechanics.

Groovy class generation at work
Suppose we have a Groovy script stored in a file named MyScript.groovy, and we
run it via groovy MyScript.groovy. The following are the class-generation steps, as
shown previously in figure 2.7:

1 The file MyScript.groovy is fed into the Groovy parser.

2 The parser generates an Abstract Syntax Tree (AST) that fully represents
all the code in the file.

3 The Groovy class generator takes the AST and generates Java bytecode
from it. Depending on the file content, this can result in multiple classes.
Classes are now available through the Groovy classloader.

4 The Java runtime is invoked in a manner equivalent to running java
MyScript.

Figure 2.8 shows a second variant, when groovyc is used instead of groovy. This
time, the classes are written into *.class files. Both variants use the same class-
generation mechanism.

 All this is handled behind the scenes and makes working with Groovy feel like
it’s an interpreted language, which it isn’t. Classes are always fully constructed
before runtime and do not change while running.8

8 This doesn’t exclude replacing a class at runtime, when the .groovy file changes.

52 CHAPTER 2
Overture: The Groovy basics
Given this description, you can legitimately ask how Groovy can be called a
dynamic language if all Groovy code lives in the static Java class format. Groovy
performs class construction and method invocation in a particularly clever way, as
you shall see.

Groovy is dynamic
What makes dynamic languages so powerful is the ability to seemingly modify
classes at runtime—for example to add new methods. But as you just learned,
Groovy generates classes once and cannot change the bytecode after it has been
loaded. How can you add a method without changing the class? The answer is
simple but delicate.

 The bytecode that the Groovy class generator produces is necessarily different
from what the Java compiler would generate—not in format but in content. Sup-
pose a Groovy file contains a statement like foo. Groovy doesn’t generate byte-
code that reflects this method call directly, but does something like9

getMetaClass().invokeMethod(this, "foo", EMPTY_PARAMS_ARRAY)

9 The actual implementation involves a few more redirections.

Figure 2.8
Flow chart of the Groovy bytecode
generation process when executed in
the runtime environment or compiled
into class files. Different options for
executing Groovy code involve different
targets for the bytecode produced, but
the parser and class generator are the
same in each case.

Summary 53
That way, method calls are redirected through the object’s MetaClass. This
MetaClass can now do tricks with method invocations such as intercepting, redi-
recting, adding/removing methods at runtime, and so on. This principle applies
to all calls from Groovy code, regardless of whether the methods are in other
Groovy objects or are in Java objects. Remember: There is no difference.

TIP The technically inclined may have fun running groovyc on some
Groovy code and feeding the resulting class files into a decompiler such
as Jad. Doing so gives you the Java code equivalent of the bytecode that
Groovy generated.

A second option of dynamic code is putting the code in a string and having
Groovy evaluate it. You will see how this works in chapter 11. Such a string can be
constructed literally or through any kind of logic. But beware: You can easily get
overwhelmed by the complexity of dynamic code generation.

 Here is an example of concatenating two strings and evaluating the result:

def code = '1 + '
code += System.getProperty('os.version')
println code
println evaluate(code)

Note that code is an ordinary string! It happens to contain '1 + 5.1', which is a
valid Groovy expression (a script, actually). Instead of having a programmer write
this expression (say, println 1 + 5.1), the program puts it together at runtime!
The evaluate method finally executes it.

 Wait—didn’t we claim that line-by-line execution isn’t possible, and code has
to be fully constructed as a class? How can code then be executed? The answer is
simple. Remember the left-hand path in figure 2.7? Class generation can trans-
parently happen at runtime. The only news is that the class-generation input can
also be a string like code rather than a *.groovy file.

 The capability to evaluate an arbitrary string of code is the distinctive feature
of scripting languages. That means Groovy can operate as a scripting language
although it is a general-purpose programming language in itself.

2.5 Summary

That’s it for our initial overview. Don’t worry if you don’t feel you’ve mastered
everything we’ve covered—we’ll go over it all in detail in the upcoming chapters.

 We started by looking at how this book demonstrates Groovy code using asser-
tions. This allows us to keep the features we’re trying to demonstrate and the

Prints “1 + 5.1”

Prints “6.1”

54 CHAPTER 2
Overture: The Groovy basics
results of using those features close together within the code. It also lets us auto-
matically verify that our listings are correct.

 You got a first impression of Groovy’s code notation and found it both similar
to and distinct from Java at the same time. Groovy is similar with respect to defin-
ing classes, objects, and methods. It uses keywords, braces, brackets, and paren-
theses in a very similar fashion; however, Groovy’s notation appears more
lightweight. It needs less scaffolding code, fewer declarations, and fewer lines of
code to make the compiler happy. This may mean that you need to change the
pace at which you read code: Groovy code says more in fewer lines, so you typi-
cally have to read more slowly, at least to start with.

 Groovy is bytecode compatible with Java and obeys Java’s protocol of full class
construction before execution. But Groovy is still fully dynamic, generating
classes transparently at runtime when needed. Despite the fixed set of methods
in the bytecode of a class, Groovy can modify the set of available methods as visi-
ble from a Groovy caller’s perspective by routing method calls through the
MetaClass, which we will cover in depth in chapter 7. Groovy uses this mechanism
to enhance existing JDK classes with new capabilities, together named GDK.

 You now have the means to write your first Groovy scripts. Do it! Grab the
Groovy shell (groovysh) or the console (groovyConsole), and write your own code.
As a side effect, you have also acquired the knowledge to get the most out of the
examples that follow in the upcoming in-depth chapters.

 For the remainder of part 1, we will leave the surface and dive into the deep
sea of Groovy. This may be unfamiliar, but don’t worry. We’ll return to the sea
level often enough to take some deep breaths of Groovy code in action.

The simple
Groovy datatypes
Do not worry about your difficulties in Mathe-
matics. I can assure you mine are still greater.

 —Albert Einstein
55

56 CHAPTER 3
The simple Groovy datatypes
Groovy supports a limited set of datatypes at the language level; that is, it offers
means for literal declaration and specialized operators. This set contains the simple
datatypes for strings, regular expressions, and numbers, as well as the collective
datatypes for ranges, lists, and maps. This chapter covers the simple datatypes; the
next chapter introduces the collective datatypes.

 Before we go into details, you’ll learn about Groovy’s general approach to typ-
ing. With this in mind, you can appreciate Groovy’s approach of treating every-
thing as an object and all operators as method calls. You will see how this improves
the level of object orientation in the language compared to Java’s division
between primitive types and reference types.

 We then describe the natively supported datatypes individually. By the end of
this chapter, you will be able to confidently work with Groovy’s simple datatypes
and have a whole new understanding of what happens when you write 1+1.

3.1 Objects, objects everywhere

In Groovy, everything is an object. It is, after all, an object-oriented language.
Groovy doesn’t have the slight “fudge factor” of Java, which is object-oriented
apart from some built-in types. In order to explain the choices made by Groovy’s
designers, we’ll first go over some basics of Java’s type system. We will then
explain how Groovy addresses the difficulties presented, and finally examine how
Groovy and Java can still interoperate with ease due to automatic boxing and
unboxing where necessary.

3.1.1 Java’s type system—primitives and references

Java distinguishes between primitive types (such as int, double, char, and byte)
and reference types (such as Object and String). There is a fixed set of primitive
types, and these are the only types that have value semantics—where the value of a
variable of that type is the actual number (or character, or true/false value). You
cannot create your own value types in Java.

 Reference types (everything apart from primitives) have reference semantics—the
value of a variable of that type is only a reference to an object. Readers with a C/C++
background may wish to think of a reference as a pointer—it’s a similar concept. If
you change the value of a reference type variable, that has no effect on the object
it was previously referring to—you’re just making the variable refer to a different
object, or to no object at all.

 You cannot call methods on values of primitive types, and you cannot use
them where Java expects objects of type java.lang.Object. This is particularly

http://www.nvcc.edu/home/drodgers/ceu/resources/test_regexp.asp

Objects, objects everywhere 57
painful when working with collections that cannot handle primitive types, such as
java.util.ArrayList. To get around this, Java has a wrapper type for each primi-
tive type—a reference type that stores a value of the primitive type in an object.
For example, the wrapper for int is java.lang.Integer.

 On the other hand, operators such as * in 3*2 or a*b are not supported for
arbitrary reference types, but only for primitive types (with the exception of +,
which is also supported for strings). As an example of why this causes pain, let’s
consider a situation where you have two lists of integers, and you want to come up
with a third list where the first element is the sum of the first elements of the
other two lists, and so on. The Java code would be something like this:

// Java code!
ArrayList results = new ArrayList();
for (int i=0; i < listOne.size(); i++)
{
 Integer first = (Integer)listOne.get(i);
 Integer second = (Integer)listTwo.get(i);

 int sum = first.intValue()+second.intValue();
 results.add (new Integer(sum));
}

New features in Java 5 would make this simpler, but there would still be two types
(int and Integer) involved, which adds conceptual complexity. There are good
reasons for Java to follow this route: the heritage of C and performance optimi-
zation concerns. The Groovy answer puts more burden on the computer and less
on the programmer.

3.1.2 Groovy’s answer—everything’s an object

Groovy makes the previous scenario easier in so many ways they’re almost hard
to count. However, for the moment we’ll only look at why making everything an
object helps to keep the code compact and readable. Looking at the code block
in the previous section, you can see that the problem is in the last two lines of
the loop. To add the numbers, you must convert them from Integers into ints.
In order to then store the result in another list, you have to create a new
Integer. Groovy adds the plus method to java.lang.Integer, letting you write
this instead:

results.add (first.plus(second))

So far, there’s nothing that couldn’t have been done in Java if the library design-
ers had thought to include a plus method. However, Groovy allows operators to
work on objects, enabling the replacement of the last section of the loop body

58 CHAPTER 3
The simple Groovy datatypes
// Java
int sum = first.intValue()+second.intValue();
results.add (new Integer(sum));

with the more readable Groovy solution1

results.add (first + second)

You’ll learn more about what operators are available and how you can specify
your own implementations in section 3.3.

 In order to make Groovy fully object-oriented, and because at the JVM level
Java does not support object-oriented operations such as method calls on primi-
tive types, the Groovy designers decided to do away with primitive types. When
Groovy needs to store values that would have used Java’s primitive types, Groovy
uses the wrapper classes already provided by the Java platform. Table 3.1 pro-
vides a complete list of these wrappers.

Any time you see what looks like a primitive literal value (for example, the num-
ber 5, or the Boolean value true) in Groovy source code, that is a reference to an
instance of the appropriate wrapper class. For the sake of brevity and familiarity,
Groovy allows you to declare variables as if they were primitive type variables.

1 In fact, there is an idiomatic Groovy solution that replaces the full Java example with a two-liner. How-
ever, you need to learn a bit more before you can value such a solution.

Table 3.1 Java’s primitive datatypes and their wrappers

Primitive type Wrapper type Description

byte java.lang.Byte 8-bit signed integer

short java.lang.Short 16-bit signed integer

int java.lang.Integer 32-bit signed integer

long java.lang.Long 64-bit signed integer

float java.lang.Float Single-precision (32-bit) floating-point value

double java.lang.Double Double-precision (64-bit) floating-point value

char java.lang.Character 16-bit Unicode character

boolean java.lang.Boolean Boolean value (true or false)

Objects, objects everywhere 59
Don’t be fooled—the type used is really the wrapper type. Strings and arrays are
not listed in table 3.1 because they are already reference types, not primitive
types—no wrapper is needed.

 While we have the Java primitives under the microscope, so to speak, it’s worth
examining the numeric literal formats that Java and Groovy each use. They are
slightly different because Groovy allows instances of java.math.BigDecimal and
java.math.BigInteger to be specified using literals in addition to the usual binary
floating-point types. Table 3.2 gives examples of each of the literal formats avail-
able for numeric types in Groovy.

Notice how Groovy decides whether to use a BigInteger or a BigDecimal to hold a
literal with a “G” suffix depending on the presence or absence of a decimal point.
Furthermore, notice how BigDecimal is the default type of non-integer literals—
BigDecimal will be used unless you specify a suffix to force the literal to be a Float
or a Double.

3.1.3 Interoperating with Java—automatic boxing and unboxing

Converting a primitive value into an instance of a wrapper type is called boxing in
Java and other languages that support the same notion. The reverse action—tak-
ing an instance of a wrapper and retrieving the primitive value—is called unbox-
ing. Groovy performs these operations automatically for you where necessary.
This is primarily the case when you call a Java method from Groovy. This auto-
matic boxing and unboxing is known as autoboxing.

Table 3.2 Numeric literals in Groovy

Type Example literals

java.lang.Integer 15, 0x1234ffff

java.lang.Long 100L, 200la

java.lang.Float 1.23f, 4.56F

java.lang.Double 1.23d, 4.56D

java.math.BigInteger 123g, 456G

java.math.BigDecimal 1.23, 4.56, 1.4E4, 2.8e4, 1.23g, 1.23G

a. The use of the lowercase l as a suffix indicating Long is discouraged, as it can look like a 1 (number one). There is no
difference between the uppercase and lowercase versions of any of the suffixes.

60 CHAPTER 3
The simple Groovy datatypes
 You’ve already seen that Groovy is designed to work well with Java, so what
happens when a Java method takes primitive parameters or returns a primitive
return type? How can you call that method from Groovy? Consider the existing
method in the java.lang.String class: int indexOf (int ch).

 You can call this method from Groovy like this:

assert 'ABCDE'.indexOf(67) == 2

From Groovy’s point of view, we’re passing an Integer containing the value 67
(the Unicode value for the letter C), even though the method expects a parameter
of primitive type int. Groovy takes care of the unboxing. The method returns a
primitive type int that is boxed into an Integer as soon as it enters the world
of Groovy. That way, we can compare it to the Integer with value 2 back in the
Groovy script. Figure 3.1 shows the process of going from the Groovy world to
the Java world and back.

All of this is transparent—you don’t need to do anything in the Groovy code to
enable it. Now that you understand autoboxing, the question of how to apply oper-
ators to objects becomes interesting. We’ll explore this question next.

3.1.4 No intermediate unboxing

If in 1+1 both numbers are objects of type Integer, are those Integers unboxed to
execute the plus operation on primitive types?

 No. Groovy is more object-oriented than Java. It executes this expression as
1.plus(1), calling the plus() method of the first Integer object, and passing2 the

Figure 3.1
Autoboxing in action: An Integer
parameter is unboxed to an int for
the Java method call, and an int return
value is boxed into an Integer for use
in Groovy.

2 The phrase “passing an object” is short for “passing a reference of an object.” In Groovy and Java
alike, objects are passed as references when they are arguments of a method call.

The concept of optional typing 61
second Integer object as an argument. The method call returns a new Integer
object of value 2.

 This is a powerful model. Calling methods on objects is what object-oriented
languages should do. It opens the door for applying the full range of object-
oriented capabilities to those operators.

 Let’s summarize. No matter how literals (numbers, strings, and so forth)
appear in Groovy code, they are always objects. Only at the border to Java are
they boxed and unboxed. Operators are a shorthand for method calls. Now that
you have seen how Groovy handles types when you tell it what to expect, let’s
examine what it does when you don’t give it any type information.

3.2 The concept of optional typing

So far, we haven’t used any typing in our sample Groovy scripts—or have we?
Well, we haven’t used any explicit static typing in the way that you’re familiar with
in Java. We assigned strings and numbers to variables and didn’t care about the
type. Behind the scenes, Groovy implicitly assumes these variables to be of static
type java.lang.Object. This section discusses what happens when a type is spec-
ified, and the pros and cons of static and dynamic typing.

3.2.1 Assigning types

Groovy offers the choice of assigning types explicitly just as you do in Java.
Table 3.3 gives examples of optional static type declarations and the dynamic
type used at runtime. The def keyword is used to indicate that no particular
type is demanded.

Table 3.3 Example Groovy statements and the resulting runtime type

Statement Type of value Comment

def a = 1 java.lang.Integer
Implicit typing

def b = 1.0f java.lang.Float

int c = 1 java.lang.Integer Explicit typing using the Java primitive
type namesfloat d = 1 java.lang.Float

Integer e = 1 java.lang.Integer
Explicit typing using reference type names

String f = '1' java.lang.String

62 CHAPTER 3
The simple Groovy datatypes
As we stated earlier, it doesn’t matter whether you declare or cast a variable to be
of type int or Integer. Groovy uses the reference type (Integer) either way. If you
prefer to be concise, and you believe your code’s readers understand Groovy well
enough, use int. If you want to be explicit, or you wish to highlight to Groovy
newcomers that you really are using objects, use Integer.

 It is important to understand that regardless of whether a variable’s type is
explicitly declared, the system is type safe. Unlike untyped languages, Groovy
doesn’t allow you to treat an object of one type as an instance of a different type
without a well-defined conversion being available. For instance, you could never
treat a java.lang.String with value “1” as if it were a java.lang.Number, in the
hope that you’d end up with an object that you could use for calculation. That
sort of behavior would be dangerous—which is why Groovy doesn’t allow it any
more than Java does.

3.2.2 Static versus dynamic typing

The choice between static and dynamic typing is one of the key benefits of
Groovy. The Web is full of heated discussions of whether static or dynamic typing
is “better.” In other words, there are good arguments for either position.

 Static typing provides more information for optimization, more sanity checks
at compile-time, and better IDE support; it also reveals additional information
about the meaning of variables or method parameters and allows method over-
loading. Static typing is also a prerequisite for getting meaningful information
from reflection.

 Dynamic typing, on the other hand, is not only convenient for the lazy pro-
grammer who does some ad-hoc scripting, but also useful for relaying and duck
typing. Suppose you get an object as the result of a method call, and you have to
relay it as an argument to some other method call without doing anything with
that object yourself:

def node = document.findMyNode()
log.info node
db.store node

In this case, you’re not interested in finding out what the heck the actual type and
package name of that node are. You are spared the work of looking them up,
declaring the type, and importing the package. You also communicate: “That’s
just something.”

 The second usage of dynamic typing is calling methods on objects that have
no guaranteed type. This is often called duck typing, and we will explain it in more

Overriding operators 63
detail in section 7.3.2. This allows the implementation of generic functionality
with a high potential of reuse.

 For programmers with a strong Java background, it is not uncommon to start
programming Groovy almost entirely using static types, and gradually shift into a
more dynamic mode over time. This is legitimate because it allows everybody to
use what they are confident with.

NOTE Experienced Groovy programmers tend to follow this rule of thumb: As
soon as you think about the static type of a reference, declare it; when
thinking “just an object,” use dynamic typing.

Whether you specify your types statically or dynamically, you’ll find that Groovy
lets you do a lot more than you may expect. Let’s start by looking at the ability to
override operators.

3.3 Overriding operators

Overriding refers to the object-oriented concept of having types that specify
behavior and subtypes that override this behavior to make it more specific. When
a language bases its operators on method calls and allows these methods to be
overridden, the approach is called operator overriding.

 It’s more conventional to use the term operator overloading, which means
almost the same thing. The difference is that overloading suggests that you have
multiple implementations of a method (and thus the associated operator) that
differ only in their parameter types.

 We will show you which operators can be overridden, show a full example of
how overriding works in practice, and give some guidance on the decisions you
need to make when operators work with multiple types.

3.3.1 Overview of overridable operators

As you saw in section 3.1.2, 1+1 is just a convenient way of writing 1.plus(1). This
is achieved by class Integer having an implementation of the plus method.

 This convenient feature is also available for other operators. Table 3.4 shows
an overview.

 You can easily use any of these operators with your own classes. Just imple-
ment the respective method. Unlike in Java, there is no need to implement a spe-
cific interface.

64 CHAPTER 3
The simple Groovy datatypes
Table 3.4 Method-based operators

Operator Name Method Works with

a + b Plus a.plus(b) Number, string, collection

a – b Minus a.minus(b) Number, string, collection

a * b Star a.multiply(b) Number, string, collection

a / b Divide a.div(b) Number

a % b Modulo a.mod(b) Integral number

a++
++a

Post increment
Pre increment

a.next() Number, string, range

a--
--a

Post decrement
Pre decrement

a.previous() Number, string, range

a**b Power a.power(b) Number

a | b Numerical or a.or(b) Integral number

a & b Numerical and a.and(b) Integral number

a ^ b Numerical xor a.xor(b) Integral number

~a Bitwise complement a.negate() Integral number, string (the
latter returning a regular
expression pattern)

a[b] Subscript a.getAt(b) Object, list, map, String,
Array

a[b] = c Subscript
assignment

a.putAt(b, c) Object, list, map,
StringBuffer, Array

a << b Left shift a.leftShift(b) Integral number, also used like
“append” to
StringBuffers,
Writers, Files,
Sockets, Lists

a >> b Right shift a.rightShift(b) Integral number

a >>> b Right shift unsigned a.rightShiftUnsigned(b) Integral number

switch(a){
 case b:
}

Classification b.isCase(a) Object, range, list,
collection, pattern, closure;
also used with collection c in
c.grep(b), which returns
all items of c where
b.isCase(item)

continued on next page

Overriding operators 65
NOTE Strictly speaking, Groovy has even more operators in addition to those in
table 3.4, such as the dot operator for referencing fields and methods.
Their behavior can also be overridden. They come into play in chapter 7.

This is all good in theory, but let’s see how they work in practice.

3.3.2 Overridden operators in action

Listing 3.1 demonstrates an implementation of the equals == and plus + operators
for a Money class. It is a low-level implementation of the Value Object pattern.3 We
allow money of the same form of currency to be added up but do not support
multicurrency addition.

 We implement equals such that it copes with null comparison. This is Groovy
style. The default implementation of the equals operator doesn’t throw any
NullPointerExceptions either. Remember that == (or equals) denotes object
equality (equal values), not identity (same object instances).

a == b Equals a.equals(b) Object; consider
hashCode()a

a != b Not equal ! a.equals(b) Object

a <=> b Spaceship a.compareTo(b) java.lang.Comparable

a > b Greater than a.compareTo(b) > 0

a >= b Greater than or
equal to

a.compareTo(b) >= 0

a < b Less than a.compareTo(b) < 0

a <= b Less than or
equal to

a.compareTo(b) <= 0

a as type Enforced coercion a.asType(typeClass) Any type

a. When overriding the equals method, Java strongly encourages the developer to also override the hashCode() method
such that equal objects have the same hashcode (whereas objects with the same hashcode are not necessarily equal).
See the API documentation of java.lang.Object#equals.

Table 3.4 Method-based operators (continued)

Operator Name Method Works with

3 See http://c2.com/cgi/wiki?ValueObject.

66 CHAPTER 3
The simple Groovy datatypes
class Money {
 private int amount
 private String currency
 Money (amountValue, currencyValue) {
 amount = amountValue
 currency = currencyValue
 }
 boolean equals (Object other) {
 if (null == other) return false
 if (! (other instanceof Money)) return false
 if (currency != other.currency) return false
 if (amount != other.amount) return false
 return true
 }
 int hashCode() {
 amount.hashCode() + currency.hashCode()
 }
 Money plus (Money other) {
 if (null == other) return null
 if (other.currency != currency) {
 throw new IllegalArgumentException(
 "cannot add $other.currency to $currency")
 }
 return new Money(amount + other.amount, currency)
 }
}

def buck = new Money(1, 'USD')
assert buck
assert buck == new Money(1, 'USD')
assert buck + buck == new Money(2, 'USD')

Overriding equals is straightforward, as we show at b. We also provide a
hashCode method to make sure equal Money objects have the same hashcode.
This is required by Java’s contract for java.lang.Object. The use of this opera-
tor is shown at d, where one dollar becomes equal to any other dollar.

 At c, the plus operator is not overridden in the strict sense of the word,
because there is no such operator in Money’s superclass (Object). In this case,
operator implementing is the best wording. This is used at e, where we add two
Money objects.

 To explain the difference between overriding and overloading, here is a possible
overload for Money’s plus operator. In listing 3.1, Money can only be added to
other Money objects. In case, we would like to add Money as

assert buck + 1 == new Money(2, 'USD')

Listing 3.1 Operator override

Override ==
operator

b

Implement
+ operator

c

Use overridden ==d

Use overridden +e

Overriding operators 67
We can provide the additional method

Money plus (Integer more) {
 return new Money(amount + more, currency)
}

that overloads the plus method with a second implementation that takes an
Integer parameter. The Groovy method dispatch finds the right implementation
at runtime.

NOTE Our plus operation on the Money class returns Money objects in both
cases. We describe this by saying that Money’s plus operation is closed
under its type. Whatever operation you perform on an instance of Money,
you end up with another instance of Money.

This example leads to the general issue of how to deal with different parameter
types when implementing an operator method. We will go through some aspects
of this issue in the next section.

3.3.3 Making coercion work for you

Implementing operators is straightforward when both operands are of the same
type. Things get more complex with a mixture of types, say

1 + 1.0

This adds an Integer and a BigDecimal. What is the return type? Section 3.6
answers this question for the special case of numbers, but the issue is more gen-
eral. One of the two arguments needs to be promoted to the more general type.
This is called coercion.

 When implementing operators, there are three main issues to consider as part
of coercion.

Supported argument types
You need to decide which argument types and values will be allowed. If an opera-
tor must take a potentially inappropriate type, throw an IllegalArgumentException
where necessary. For instance, in our Money example, even though it makes sense
to use Money as the parameter for the plus operator, we don’t allow different cur-
rencies to be added together.

Promoting more specific arguments
If the argument type is a more specific one than your own type, promote it to your
type and return an object of your type. To see what this means, consider how you

68 CHAPTER 3
The simple Groovy datatypes
might implement the plus operator if you were designing the BigDecimal class,
and what you’d do for an Integer argument.

 Integer is more specific than BigDecimal: Every Integer value can be
expressed as a BigDecimal, but the reverse isn’t true. So for the BigDecimal.
plus(Integer) operator, we would consider promoting the Integer to BigDecimal,
performing the addition, and then returning another BigDecimal—even if the
result could accurately be expressed as an Integer.

Handling more general arguments with double dispatch
If the argument type is more general, call its operator method with yourself
(“this,” the current object) as an argument. Let it promote you. This is also called
double dispatch,4 and it helps to avoid duplicated, asymmetric, possibly incon-
sistent code. Let’s reverse our previous example and consider Integer.plus
(BigDecimal operand).

 We would consider returning the result of the expression operand.plus(this),
delegating the work to BigDecimal’s plus(Integer) method. The result would
be a BigDecimal, which is reasonable—it would be odd for 1+1.5 to return an
Integer but 1.5+1 to return a BigDecimal.

 Of course, this is only applicable for commutative5 operators. Test rigorously,
and beware of endless cycles.

Groovy’s conventional behavior
Groovy’s general strategy of coercion is to return the most general type. Other
languages such as Ruby try to be smarter and return the least general type that
can be used without losing information from range or precision. The Ruby way
saves memory at the expense of processing time. It also requires that the lan-
guage promote a type to a more general one when the operation would generate
an overflow of that type’s range. Otherwise, intermediary results in a complex cal-
culation could truncate the result.

 Now that you know how Groovy handles types in general, we can delve deeper
into what it provides for each of the datatypes it supports at the language level.
We begin with the type that is probably used more than any other non-numeric
type: the humble string.

4 Double dispatch is usually used with overloaded methods: a.method(b) calls b.method(a) where
method is overloaded with method(TypeA) and method(TypeB).

5 Commutative means that the sequence of operators can be exchanged without changing the result of the
operation. For example, plus is usually required to be commutative (a+b==b+a) but minus is not (a-b!=b-a).

Working with strings 69
3.4 Working with strings

Considering how widely used strings are, many languages—including Java—pro-
vide few language features to make them easier to use. Scripting languages tend
to fare better in this regard than mainstream application languages, so Groovy
takes on board some of those extra features. This section examines what’s avail-
able in Groovy and how to make the most of the extra abilities.

 Groovy strings come in two flavors: plain strings and GStrings. Plain strings are
instances of java.lang.String, and GStrings are instances of groovy.lang.
GString. GStrings allow placeholder expressions to be resolved and evaluated at
runtime. Many scripting languages have a similar feature, usually called string
interpolation, but it’s more primitive than the GString feature of Groovy. Let’s start
by looking at each flavor of string and how they appear in code.

3.4.1 Varieties of string literals

Java allows only one way of specifying string literals: placing text in quotes “like
this.” If you want to embed dynamic values within the string, you have to either
call a formatting method (made easier but still far from simple in Java 1.5) or
concatenate each constituent part. If you specify a string with a lot of backslashes
in it (such as a Windows file name or a regular expression), your code becomes
hard to read, because you have to double the backslashes. If you want a lot of text
spanning several lines in the source code, you have to make each line contain a
complete string (or several complete strings).

 Groovy recognizes that not every use of string literals is the same, so it offers a
variety of options. These are summarized in table 3.5.

Table 3.5 Summary of the string literal styles available in Groovy

Start/end characters Example GString aware? Backslash escapes?

Single quote 'hello Dierk' No Yes

Double quote "hello $name" Yes Yes

Triple single quote (''') '''------------
Total: $0.02
------------'''

No Yes

continued on next page

70 CHAPTER 3
The simple Groovy datatypes
The aim of each form is to specify the text data you want with the minimum of
fuss. Each of the forms has a single feature that distinguishes it from the others:

■ The single-quoted form is never treated as a GString, whatever its con-
tents. This is closely equivalent to Java string literals.

■ The double-quoted form is the equivalent of the single-quoted form,
except that if the text contains unescaped dollar signs, it is treated as a
GString instead of a plain string. GStrings are covered in more detail in the
next section.

■ The triple-quoted form (or multiline string literal) allows the literal to span
several lines. New lines are always treated as \n regardless of the platform,
but all other whitespace is preserved as it appears in the text file. Multiline
string literals may also be GStrings, depending on whether single quotes or
double quotes are used. Multiline string literals act similar to HERE-docu-
ments in Ruby or Perl.

■ The slashy form of string literal allows strings with backslashes to be speci-
fied simply without having to escape all the backslashes. This is particu-
larly useful with regular expressions, as you’ll see later. Only when a
backslash is followed by a u does it need to be escaped6—at which point
life is slightly harder, because specifying \u involves using a GString or
specifying the Unicode escape sequence for a backslash.

Triple double quote (""") """first line
second line
third line"""

Yes Yes

Forward slash /x(\d*)y/ Yes Occasionallya

a. The main point of this type of literal is to avoid escaping, so the language avoids it where possible. There are remaining
cases with \u for unicode support and \$ unless $ denotes the end of the pattern. See the Groovy Language Specification
for the exact rules.

6 This is slightly tricky in a slashy string and involves either using a GString such as /${‘\\’}/ or using
the Unicode escape sequence. A similar issue occurs if you want to use a dollar sign. This is a small
(and rare) price to pay for the benefits available, however.

Table 3.5 Summary of the string literal styles available in Groovy (continued)

Start/end characters Example GString aware? Backslash escapes?

Working with strings 71
As we hinted earlier, Groovy uses a similar mechanism for specifying special char-
acters, such as linefeeds and tabs. In addition to the Java escapes, dollar signs can
be escaped in Groovy to allow them to be easily specified without the compiler
treating the literal as a GString. The full set of escaped characters is specified in
table 3.6.

Note that in a double-quoted string, single quotes don’t need to be escaped, and
vice versa. In other words, 'I said, "Hi."' and "don't" both do what you hope
they will. For the sake of consistency, both still can be escaped in each case. Like-
wise, dollar signs can be escaped in single-quoted strings, even though they don’t
need to be. This makes it easier to switch between the forms.

 Note that Java uses single quotes for character literals, but as you have seen,
Groovy cannot do so because single quotes are already used to specify strings. How-
ever, you can achieve the same as in Java when providing the type explicitly:

char a = 'x'

Table 3.6 Escaped characters as known to Groovy

Escaped special character Meaning

\b Backspace

\t Tab

\r Carriage return

\n Line feed

\f Form feed

\\ Backslash

\$ Dollar sign

\uabcd Unicode character U+abcd (where a, b, c and d are hex digits)

\abca Unicode character U+abc (where a, b, and c are octal digits, and b and c
are optional)

\' Single quote

\" Double quote

a. Octal escapes are error-prone and should rarely be used. They are provided for the sake of compatibility. Problems occur
when a string with an octal escape is changed. If the person changing the string doesn’t notice the octal escape, a change
that looks harmless can have unexpected consequences. For instance, consider “My age is\12Twenty” changing to “My
age is \1220” via a search and replace of “Twenty” for “20”. It sounds like a harmless thing to do, but the consequence
is dramatic.

72 CHAPTER 3
The simple Groovy datatypes
or

Character b = 'x'

The java.lang.String 'x' is coerced into a java.lang.Character. If you want to
coerce a string into a character at other times, you can do so in either of the fol-
lowing ways:

'x' as char

or

'x'.toCharacter()

As a GDK goody, there are more to* methods to convert a string, such as toInteger,
toLong, toFloat, and toDouble.

 Whichever literal form is used, unless the compiler decides it is a GString, it
ends up as an instance of java.lang.String, just like Java string literals. So far, we
have only teased you with allusions to what GStrings are capable of. Now it’s time
to spill the beans.

3.4.2 Working with GStrings

GStrings are like strings with additional capabilities.7 They are literally declared
in double quotes. What makes a double-quoted string literal a GString is the
appearance of placeholders. Placeholders may appear in a full ${expression}
syntax or an abbreviated $reference syntax. See the examples in listing 3.2.

me = 'Tarzan'
you = 'Jane'
line = "me $me - you $you"
assert line == 'me Tarzan - you Jane'

date = new Date(0)
out = "Year $date.year Month $date.month Day $date.date"
assert out == 'Year 70 Month 0 Day 1'

out = "Date is ${date.toGMTString()} !"
assert out == 'Date is 1 Jan 1970 00:00:00 GMT !'

7 groovy.lang.GString isn’t actually a subclass of java.lang.String, and couldn’t be, because
String is final. However, GStrings can usually be used as if they are strings—Groovy coerces them into
strings when it needs to.

Listing 3.2 Working with GStrings

Abbreviated
dollar syntax

b

Extended
abbreviation

c

Full syntax with
curly braces

d

Working with strings 73
sql = """
SELECT FROM MyTable
 WHERE Year = $date.year
"""
assert sql == """
SELECT FROM MyTable
 WHERE Year = 70
"""

out = "my 0.02\$"
assert out == 'my 0.02$'

Within a GString, simple references to variables can be dereferenced with the dol-
lar sign. This simplest form is shown at b, whereas c shows this being extended
to use property accessors with the dot syntax. You will learn more about accessing
properties in chapter 7.

 The full syntax uses dollar signs and curly braces, as shown at d. It allows
arbitrary Groovy expressions within the curly braces. The curly braces denote
a closure.

 In real life, GStrings are handy in templating scenarios. A GString is used in e
to create the string for an SQL query. Groovy provides even more sophisticated
templating support, as shown in chapter 8. If you need a dollar character within
a template (or any other GString usage), you must escape it with a backslash as
shown in f.

 Although GStrings behave like java.lang.String objects for all operations
that a programmer is usually concerned with, they are implemented differently to
capture the fixed and the dynamic parts (the so-called values) separately. This is
revealed by the following code:

me = 'Tarzan'
you = 'Jane'
line = "me $me - you $you"
assert line == 'me Tarzan - you Jane'
assert line instanceof GString
assert line.strings[0] == 'me '
assert line.strings[1] == ' - you '
assert line.values[0] == 'Tarzan'
assert line.values[1] == 'Jane'

Each value of a GString is bound at declaration time. By the time the
GString is converted into a java.lang.String (its toString method is

In multiline
GStrings

e

Literal dollar signf

FOR THE
GEEKS

74 CHAPTER 3
The simple Groovy datatypes
called explicitly or implicitly8), each value gets written9 to the string.
Because the logic of how to write a value can be elaborate for certain value
types, this behavior can be used in advanced ways. See chapter 13.

You have seen the Groovy language support for declaring strings. What follows is
an introduction to the use of strings in the Groovy library. This will also give you a
first impression of the seamless interplay of Java and Groovy. We start in typical
Java style and gradually slip into Groovy mode, carefully watching each step.

3.4.3 From Java to Groovy

Now that you have your strings easily declared, you can have some fun with them.
Because they are objects of type java.lang.String, you can call String’s methods
on them or pass them as parameters wherever a string is expected, such as for
easy console output:

System.out.print("Hello Groovy!");

This line is equally valid Java and Groovy. You can also pass a literal Groovy string
in single quotes:

System.out.print('Hello Groovy!');

Because this is such a common task, the GDK provides a shortened syntax:

print('Hello Groovy!');

You can drop parentheses and semicolons, because they are optional and do not
help readability in this case. The resulting Groovy style boils down to

print 'Hello Groovy!'

Looking at this last line only, you cannot tell whether this is Groovy, Ruby, Perl, or
one of several other line-oriented scripting languages. It may not look sophisti-
cated, but in a way it is. It shows expressiveness—the art of revealing intent in the
simplest possible way.

 Listing 3.3 presents more of the mix-and-match between core Java and addi-
tional GDK capabilities. How would you judge the expressiveness of each line?

8 Implicit calls happen when a GString needs to be coerced into a java.lang.String.
9 See Writer.write(Object) in section 8.2.4.

Working with strings 75
greeting = 'Hello Groovy!'

assert greeting.startsWith('Hello')

assert greeting.getAt(0) == 'H'
assert greeting[0] == 'H'

assert greeting.indexOf('Groovy') >= 0
assert greeting.contains('Groovy')

assert greeting[6..11] == 'Groovy'

assert 'Hi' + greeting - 'Hello' == 'Hi Groovy!'

assert greeting.count('o') == 3

assert 'x'.padLeft(3) == ' x'
assert 'x'.padRight(3,'_') == 'x__'
assert 'x'.center(3) == ' x '
assert 'x' * 3 == 'xxx'

These self-explanatory examples give an impression of what is possible with
strings in Groovy. If you have ever worked with other scripting languages, you
may notice that a useful piece of functionality is missing from listing 3.3: chang-
ing a string in place. Groovy cannot do so because it works on instances of
java.lang.String and obeys Java’s invariant of strings being immutable.

 Before you say “What a lame excuse!” here is Groovy’s answer to changing
strings: Although you cannot work on String, you can still work on String-
Buffer!10 On a StringBuffer, you can work with the << left shift operator for
appending and the subscript operator for in-place assignments. Using the left
shift operator on String returns a StringBuffer. Here is the StringBuffer equiva-
lent to listing 3.3:

greeting = 'Hello'

greeting <<= ' Groovy'

Listing 3.3 What to do with strings

10 Future versions may use a StringBuilder instead. StringBuilder was introduced in Java 1.5 to re-
duce the synchronization overhead of StringBuffers. Typically, StringBuffers are used only in a
single thread and then discarded—but StringBuffer itself is thread-safe, at the expense of synchro-
nizing each method call.

Leftshift and assign at onceb

76 CHAPTER 3
The simple Groovy datatypes
assert greeting instanceof java.lang.StringBuffer

greeting << '!'

assert greeting.toString() == 'Hello Groovy!'

greeting[1..4] = 'i'

assert greeting.toString() == 'Hi Groovy!'

NOTE Although the expression stringRef << string returns a StringBuffer,
that StringBuffer is not automatically assigned to the stringRef (see
b). When used on a String, it needs explicit assignment; on String-
Buffer it doesn’t. With a StringBuffer, the data in the existing object
changed (see c)—with a String we can’t change the existing data, so we
have to return a new object instead.

Throughout the next sections, you will gradually add to what you have learned
about strings as you discover more language features. String has gained several
new methods in the GDK. You’ve already seen a few of these, but you’ll see more
as we talk about working with regular expressions and lists. The complete list of
GDK methods on strings is listed in appendix C.

 Working with strings is one of the most common tasks in programming, and for
script programming in particular: reading text, writing text, cutting words, replac-
ing phrases, analyzing content, search and replace—the list is amazingly long.
Think about your own programming work. How much of it deals with strings?

 Groovy supports you in these tasks with comprehensive string support. But
this is not the whole story. The next section introduces regular expressions, which
cut through text like a chainsaw: difficult to operate but extremely powerful.

3.5 Working with regular expressions

Once a programmer had a problem. He thought he could solve it with a regular expres-
sion. Now he had two problems.

 —from a fortune cookie

Suppose you had to prepare a table of contents for this book. You would need to
collect all headings like “3.5 Working with regular expressions”—paragraphs that
start with a number or with a number, a dot, and another number. The rest of the
paragraph would be the heading. This would be cumbersome to code naïvely:

Leftshift on StringBufferc

Substring ‘ello’ becomes ‘i’

Working with regular expressions 77
iterate over each character; check whether it is a line start; if so, check whether it
is a digit; if so, check whether a dot and a digit follow. Puh—lots of rope, and we
haven’t even covered numbers that have more than one digit.

 Regular expressions come to the rescue. They allow you to declare such a pat-
tern rather than programming it. Once you have the pattern, Groovy lets you
work with it in numerous ways.

 Regular expressions are prominent in scripting languages and have also been
available in the Java library since JDK 1.4. Groovy relies on Java’s regex (regular
expression) support and adds three operators for convenience:

■ The regex find operator =~
■ The regex match operator ==~
■ The regex pattern operator ~String

An in-depth discussion about regular expressions is beyond the scope of this
book. Our focus is on Groovy, not on regexes. We give the shortest possible intro-
duction to make the examples comprehensible and provide you with a jump-start.

 Regular expressions are defined by patterns. A pattern can be anything from a
simple character, a fixed string, or something like a date format made up of digits
and delimiters, up to descriptions of balanced parentheses in programming lan-
guages. Patterns are declared by a sequence of symbols. In fact, the pattern
description is a language of its own. Some examples are shown in table 3.7. Note
that these are the raw patterns, not how they would appear in string literals. In
other words, if you stored the pattern in a variable and printed it out, this is what
you’d want to see. It’s important to make the distinction between the pattern itself
and how it’s represented in code as a literal.

Table 3.7 Simple regular expression pattern examples

Pattern Meaning

some text Exactly “some text”.

some\s+text The word “some” followed by one or more whitespace characters followed by
the word “text”.

^\d+(\.\d+)? (.*) Our introductory example: headings of level one or two. ̂ denotes a line start, \d
a digit, \d+ one or more digits. Parentheses are used for grouping. The question
mark makes the first group optional. The second group contains the title, made
of a dot for any character and a star for any number of such characters.

\d\d/\d\d/\d\d\d\d A date formatted as exactly two digits followed by slash, two more digits
followed by a slash, followed by exactly four digits.

78 CHAPTER 3
The simple Groovy datatypes
A pattern like one of the examples in table 3.7 allows you to declare what you are
looking for, rather than having to program how to find something. Next, you will
see how patterns appear as literals in code and what can be done with them. We
will then revisit our initial example with a full solution, before examining some
performance aspects of regular expressions and finally showing how they can be
used for classification in switch statements and for collection filtering with the
grep method.

3.5.1 Specifying patterns in string literals

How do you put the sequence of symbols that declares a pattern inside a string?
 In Java, this causes confusion. Patterns use lots of backslashes, and to get a

backslash in a Java string literal, you need to double it. This makes for difficulty
reading patterns in Java strings. It gets even worse if you need to match an actual
backslash in your pattern—the pattern language escapes that with a backslash
too, so the Java string literal needed to match the pattern a\b is "a\\\\b".

 Groovy does much better. As you saw earlier, there is the slashy form of string
literal, which doesn’t require you to escape the backslash character and still works
like a normal GString. Listing 3.4 shows how to declare patterns conveniently.

assert "abc" == /abc/
assert "\\d" == /\d/

def reference = "hello"
assert reference == /$reference/

assert "\$" == /$/

The slashy syntax doesn’t require the dollar sign to be escaped. Note that you
have the choice to declare patterns in either kind of string.

TIP Sometimes the slashy syntax interferes with other valid Groovy expres-
sions such as line comments or numerical expressions with multiple
slashes for division. When in doubt, put parentheses around your pattern
like (/pattern/). Parentheses force the parser to interpret the content
as an expression.

Listing 3.4 Regular expression GStrings

Working with regular expressions 79
Symbols
The key to using regular expressions is knowing the pattern symbols. For conve-
nience, table 3.8 provides a short list of the most common ones. Put an earmark
on this page so you can easily look up the table. You will use it a lot.

TIP Symbols tend to have the same first letter as what they represent: for
example, digit, space, word, and boundary. Uppercase symbols define
the complement; think of them as a warning sign for no.

Table 3.8 Regular expression symbols (excerpt)

Symbol Meaning

. Any character

^ Start of line (or start of document, when in single-line mode)

$ End of line (or end of document, when in single-line mode)

\d Digit character

\D Any character except digits

\s Whitespace character

\S Any character except whitespace

\w Word character

\W Any character except word characters

\b Word boundary

() Grouping

(x|y) x or y, as in (Groovy|Java|Ruby)

\1 Backmatch to group one: for example, find doubled characters with (.)\1

x* Zero or more occurrences of x

x+ One or more occurrences of x

x? Zero or one occurrence of x

x{m,n} At least m and at most n occurrences of x

x{m} Exactly m occurrences of x

continued on next page

80 CHAPTER 3
The simple Groovy datatypes
More to consider:

■ Use grouping properly. The expanding operators such as star and plus bind
closely; ab+ matches abbbb. Use (ab)+ to match ababab.

■ In normal mode, the expanding operators are greedy, meaning they try to
match the longest substring that matches the pattern. Add an additional
question mark after the operator to put them into restrictive mode. You
may be tempted to extract the href from an HTML anchor element with this
regex: href="(.*)". But href="(.*?)" is probably better. The first version
matches until the last double quote in your text; the latter matches until
the next double quote.11

We have provided only a brief description of the regex pattern format, but a com-
plete specification comes with your JDK. It is located in the Javadoc of class
java.util.regex.Pattern and may change marginally between JDK versions. For
JDK 1.4.2, it can be found online at http://java.sun.com/j2se/1.4.2/docs/api/java/
util/regex/Pattern.html.

 See the Javadoc to learn more about different evaluation modes, positive and
negative lookahead, backmatches, and posix characters.

 It always helps to test your expressions before putting them into code. There
are online applications that allow interactive testing of regular expressions: for
example, http://www.nvcc.edu/home/drodgers/ceu/resources/test_regexp.asp. You
should be aware that not all regular expression pattern languages are exactly the
same. You may get unexpected results if you take a regular expression designed
for use in .NET and apply it in a Java or Groovy program. Although there aren’t
many differences, the differences that do exist can be hard to spot. Even if you

[a-f] Character class containing the characters a, b, c, d, e, f

[^a] Character class containing any character except a

(?is:x) Switches mode when evaluating x; i turns on ignoreCase, s means single-line mode

11 This is only to explain the greedy behavior of regular expression, not to explain how HTML is parsed
correctly, which would involve a lot of other topics such as ordering of attributes, spelling variants, and
so forth.

Table 3.8 Regular expression symbols (excerpt) (continued)

Symbol Meaning

Working with regular expressions 81
take a regular expression from a book or a web site, you should still test that it
works in your code.

 Now that you have the pattern declared, you need to tell Groovy how to apply
it. We will explore a whole variety of usages.

3.5.2 Applying patterns

Applied to a given string, Groovy supports the following tasks for regular
expressions:

■ Tell whether the pattern fully matches the whole string.
■ Tell whether there is an occurrence of the pattern in the string.
■ Count the occurrences.
■ Do something with each occurrence.
■ Replace all occurrences with some text.
■ Split the string into multiple strings by cutting at each occurrence.

Listing 3.5 shows how Groovy sets patterns into action. Unlike most other exam-
ples, this listing contains some comments. This reflects real life and is not for
illustrative purposes. The use of regexes is best accompanied by this kind of com-
ment for all but the simplest patterns.

twister = 'she sells sea shells at the sea shore of seychelles'

// twister must contain a substring of size 3
// that starts with s and ends with a
assert twister =~ /s.a/

finder = (twister =~ /s.a/)
assert finder instanceof java.util.regex.Matcher

// twister must contain only words delimited by single spaces
assert twister ==~ /(\w+ \w+)*/

WORD = /\w+/
matches = (twister ==~ /($WORD $WORD)*/)
assert matches instanceof java.lang.Boolean

assert (twister ==~ /s.e/) == false

wordsByX = twister.replaceAll(WORD, 'x')
assert wordsByX == 'x x x x x x x x x x'

Listing 3.5 Regular expressions

Regex find operator
as usable in ifb Find expression

evaluates to a
matcher object

c

Regex match
operator

Match expression
evaluates to a Boolean

Match is full, not
partial like find

82 CHAPTER 3
The simple Groovy datatypes
words = twister.split(/ /)
assert words.size() == 10
assert words[0] == 'she'

b and c have an interesting twist. Although the regex find operator evaluates to
a Matcher object, it can also be used as a Boolean conditional. We will explore how
this is possible when examining the “Groovy Truth” in chapter 6.

TIP To remember the difference between the =~ find operator and the ==~
match operator, recall that match is more restrictive, because the pattern
needs to cover the whole string. The demanded coverage is “longer” just
like the appearance of its operator.

See your Javadoc for more information about the java.util.regex.Matcher object:
how to walk through all matches and how to work with groupings at each match.

Common regex pitfalls
You do not need to fall into the regex trapdoors yourself. We have already done
this for you. We have learned the following:

■ When things get complex (note, this is when, not if), comment verbosely.
■ Use the slashy syntax instead of the regular string syntax, or you will get

lost in a forest of backslashes.
■ Don’t let your pattern look like a toothpick puzzle. Build your pattern

from subexpressions like WORD in listing 3.5.
■ Put your assumptions to the test. Write some assertions or unit tests to test

your regex against static strings. Please don’t send us any more flowers
for this advice; an email with the subject “assertion saved my life today”
will suffice.

3.5.3 Patterns in action

You’re now ready to do everything you wanted to do with regular expressions,
except we haven’t covered “do something with each occurrence.” Something and
each sounds like a cue for a closure to appear, and that’s the case here. String has
a method called eachMatch that takes a regex as a parameter along with a closure
that defines what to do on each match.

Split returns a
list of words

Working with regular expressions 83
BY THE WAY The match is not a simple string but a list of strings, containing the whole
match at position 0. If the pattern contains groupings, they are available
as match[n] where n is group number n. Groups are numbered by the
sequence of their opening parentheses.

The match gets passed into the closure for further analysis. In our musical exam-
ple in listing 3.6, we append each match to a result string.

myFairStringy = 'The rain in Spain stays mainly in the plain!'

// words that end with 'ain': \b\w*ain\b
BOUNDS = /\b/
rhyme = /$BOUNDS\w*ain$BOUNDS/
found = ''
myFairStringy.eachMatch(rhyme) { match ->
 found += match[0] + ' '
}
assert found == 'rain Spain plain '

found = ''
(myFairStringy =~ rhyme).each { match ->
 found += match + ' '
}
assert found == 'rain Spain plain '

cloze = myFairStringy.replaceAll(rhyme){ it-'ain'+'___' }
assert cloze == 'The r___ in Sp___ stays mainly in the pl___!'

There are two different ways to iterate through matches with identical behavior:
use b String.eachMatch(Pattern), or use c Matcher.each(), where the Matcher
is the result of applying the regex find operator to a string and a pattern.
d shows a special case for replacing each match with some dynamically derived
content from the given closure. The variable it refers to the matching sub-
string. The result is to replace “ain” with underscores, but only where it forms
part of a rhyme.

 In order to fully understand how the Groovy regular expression support
works, we need to look at the java.util.regex.Matcher class. It is a JDK class that
encapsulates knowledge about

■ How often and at what position a pattern matches
■ The groupings for each match

Listing 3.6 Working on each match of a pattern

string.eachMatch
(pattern_string)b

matcher.each
(closure)

c

string.replaceAll
(pattern_string, closure)

d

84 CHAPTER 3
The simple Groovy datatypes
The GDK enhances the Matcher class with simplified array-like access to this infor-
mation. This is what happens in the following (already familiar) example that
matches all non-whitespace characters:

matcher = 'a b c' =~ /\S/

assert matcher[0] == 'a'
assert matcher[1..2] == 'bc'
assert matcher.count == 3

The interesting part comes with groupings in the match. If the pattern contains
parentheses to define groups, the matcher returns not a single string for each
match but an array, where the full match is at index 0 and each extracted group
follows. Consider this example, where each match finds pairs of strings that are
separated by a colon. For later processing, the match is split into two groups, for
the left and the right string:

matcher = 'a:1 b:2 c:3' =~ /(\S+):(\S+)/

assert matcher.hasGroup()
assert matcher[0] == ['a:1', 'a', '1']

In other words, what matcher[0] returns depends on whether the pattern con-
tains groupings.

 This also applies to the matcher’s each method, which comes with a conve-
nient notation for groupings. When the processing closure defines multiple
parameters, the list of groups is distributed over them:

('xy' =~ /(.)(.)/).each { all, x, y ->
 assert all == 'xy'
 assert x == 'x'
 assert y == 'y'
}

This matcher matches only one time but contains two groups with one charac-
ter each.

NOTE Groovy internally stores the most recently used matcher (per thread). It
can be retrieved with the static method Matcher.getLastMatcher. You
can also set the index property of a matcher to make it look at the respec-
tive match with matcher.index = x. Both can be useful in some exotic
corner cases. See Matcher’s API documentation for details.

Working with regular expressions 85
Matcher and Pattern work in combination and are the key abstractions for
regexes in Java and Groovy. You have seen Matcher, and we’ll have a closer look at
the Pattern abstraction next.

3.5.4 Patterns and performance

Finally, let’s look at performance and the pattern operator ~String.
 The pattern operator transforms a string into an object of type java.

util.regex.Pattern. For a given string, this pattern object can be asked for a
matcher object.

 The rationale behind this construction is that patterns are internally backed by
a so-called finite state machine that does all the high-performance magic. This
machine is compiled when the pattern object is created. The more complicated
the pattern, the longer the creation takes. In contrast, the matching process as per-
formed by the machine is extremely fast.

 The pattern operator allows you to split pattern-creation time from pattern-
matching time, increasing performance by reusing the finite state machine. List-
ing 3.7 shows a poor-man’s performance comparison of the two approaches. The
precompiled pattern version is at least 20% faster (although these kinds of mea-
surements can differ wildly).

twister = 'she sells sea shells at the sea shore of seychelles'
// some more complicated regex:
// word that starts and ends with same letter
regex = /\b(\w)\w*\1\b/

start = System.currentTimeMillis()
100000.times{
 twister =~ regex
}
first = System.currentTimeMillis() - start

start = System.currentTimeMillis()
pattern = ~regex
100000.times{
 pattern.matcher(twister)
}
second = System.currentTimeMillis() - start

assert first > second * 1.20

Listing 3.7 Increase performance with pattern reuse.

Find operator with implicit
pattern construction

Explicit pattern
construction

b

Apply the pattern on a String

86 CHAPTER 3
The simple Groovy datatypes
To find words that start and end with the same character, we used the \1 back-
match to refer to that character. We prepared its usage by putting the word’s first
character into a group, which happens to be group 1.

 Note the difference in spelling in b. This is not a =~ b but a = ~b. Tricky.

BY THE WAY The observant reader may spot a language issue: What happens if you
write a=~b without any whitespace? Is that the =~ find operator, or is it an
assignment of the ~b pattern to a? For the human reader, it is ambiguous.
Not so for the Groovy parser. It is greedy and will parse this as the
find operator.

It goes without saying that being explicit with whitespace is good pro-
gramming style, even when the meaning is unambiguous for the parser.
Do it for the next human reader, which will likely be you.

Don’t forget that performance should usually come second to readability—at
least to start with. If reusing a pattern means bending your code out of shape,
you should ask yourself how critical the performance of that particular area is
before making the change. Measure the performance in different situations with
each version of the code, and balance ease of maintenance with speed and mem-
ory requirements.

3.5.5 Patterns for classification
Listing 3.8 completes our journey through the domain of patterns. The Pattern
object, as returned from the pattern operator, implements an isCase(String)
method that is equivalent to a full match of that pattern with the string. This clas-
sification method is a prerequisite for using patterns conveniently with the grep
method and in switch cases.

 The example classifies words that consist of exactly four characters. The pat-
tern therefore consists of four dots. This is not an ellipsis!

assert (~/..../).isCase('bear')

switch('bear'){
 case ~/..../ : assert true; break
 default : assert false
}

beasts = ['bear','wolf','tiger','regex']

assert beasts.grep(~/..../) == ['bear','wolf']

Listing 3.8 Patterns in grep() and switch()

Working with numbers 87
TIP Classifications read nicely in switch and grep. The direct use of
classifier.isCase(candidate) happens rarely, but when it does, it is
best read from right to left: “candidate is a case of classifier”.

Regular expressions are difficult beasts to tame, but mastering them adds a new
quality to all text-manipulation tasks. Once you have a grip on them, you’ll hardly
be able to imagine having programmed (some would say lived) without them.
Groovy makes regular expressions easily accessible and straightforward to use.

 This concludes our coverage of text-based types, but of course computers have
always dealt with numbers as well as text. Working with numbers is easy in most
programming languages, but that doesn’t mean there’s no room for improve-
ment. Let’s see how Groovy goes the extra mile when it comes to numeric types.

3.6 Working with numbers

The available numeric types and their declarations in Groovy were introduced in
section 3.1.

 You have seen that for decimal numbers, the default type is java.math.
BigDecimal. This is a feature to get around the most common misconceptions
about floating-point arithmetic. We’re going to look at which type is used where
and what extra abilities have been provided for numbers in the GDK.

3.6.1 Coercion with numeric operators

It is always important to understand what happens when you use one of the
numeric operators.

 Most of the rules for the addition, multiplication, and subtraction operators
are the same as in Java, but there are some changes regarding floating-point
behavior, and BigInteger and BigDecimal also need to be included. The rules are
straightforward. The first rule to match the situation is used.

 For the operations +, -, and *:

■ If either operand is a Float or a Double, the result is a Double. (In Java,
when only Float operands are involved, the result is a Float too.)

■ Otherwise, if either operand is a BigDecimal, the result is a BigDecimal.
■ Otherwise, if either operand is a BigInteger, the result is a BigInteger.
■ Otherwise, if either operand is a Long, the result is a Long.
■ Otherwise, the result is an Integer.

88 CHAPTER 3
The simple Groovy datatypes
Table 3.9 depicts the scheme for quick lookup. Types are abbreviated by upper-
case letters.

Other aspects of coercion behavior:

■ Like Java but unlike Ruby, no coercion takes place when the result of an
operation exceeds the current range, except for the power operator.

■ For division, if any of the arguments is of type Float or Double, the result is
of type Double; otherwise the result is of type BigDecimal with the maxi-
mum precision of both arguments, rounded half up. The result is normal-
ized—that is, without trailing zeros.

■ Integer division (keeping the result as an integer) is achievable through
explicit casting or by using the intdiv() method.

■ The shifting operators are only defined for types Integer and Long. They
do not coerce to other types.

■ The power operator coerces to the next best type that can take the result in
terms of range and precision, in the sequence Integer, Long, Double.

■ The equals operator coerces to the more general type before comparing.

Rules can be daunting without examples, so this behavior is demonstrated in
table 3.10.

Table 3.9 Numerical coercion

+ - * B S I C L BI BD F D

Byte I I I I L BI BD D D

Short I I I I L BI BD D D

Integer I I I I L BI BD D D

Character I I I I L BI BD D D

Long L L L L L BI BD D D

BigInteger BI BI BI BI BI BI BD D D

BigDecimal BD BD BD BD BD BD BD D D

Float D D D D D D D D D

Double D D D D D D D D D

Working with numbers 89
The only surprise is that there is no surprise. In Java, results like in the fourth row
are often surprising—for example, (1/2) is always zero because when both oper-
ands of division are integers, only integer division is performed. To get 0.5 in
Java, you need to write (1f/2).

 This behavior is especially important when using Groovy to enhance your
application with user-defined input. Suppose you allow super-users of your appli-
cation to specify a formula that calculates an employee’s bonus, and it gets speci-
fied as businessDone * (1/3). With Java semantics, this will be a bad year for the
poor employees.

Table 3.10 Numerical expression examples

Expression Result type Comments

1f*2f Double In Java, this would be Float.

(Byte)1+(Byte)2 Integer As in Java, integer arithmetic is always performed
in at least 32 bits.

1*2L Long

1/2 BigDecimal (0.5) In Java, the result would be the integer 0.

(int)(1/2) Integer (0) This is normal coercion of BigDecimal to
Integer.

1.intdiv(2) Integer (0) This is the equivalent of the Java 1/2.

Integer.MAX_VALUE+1 Integer Non-power operators wrap without promoting the
result type.

2**31 Integer

The power operator promotes where necessary.2**33 Long

2**3.5 Double

2G+1G BigInteger

2.5G+1G BigDecimal

1.5G==1.5F Boolean (true) The Float is promoted to a BigDecimal before
comparison.

1.1G==1.1F Boolean (false) 1.1 can’t be exactly represented as a Float (or
indeed a Double), so when it is promoted to
BigDecimal, it isn’t equal to the exact
BigDecimal 1.1G but rather
1.100000023841858G.

90 CHAPTER 3
The simple Groovy datatypes
3.6.2 GDK methods for numbers

The GDK defines all applicable methods from table 3.4 to implement overridable
operators for numbers such as plus, minus, power, and so forth. They all work
without surprises. In addition, the abs, toInteger, and round methods do what
you’d expect.

 More interestingly, the GDK also defines the methods times, upto, downto, and
step. They all take a closure argument. Listing 3.9 shows these methods in action:
times is just for repetition, upto is for walking a sequence of increasing numbers,
downto is for decreasing numbers, and step is the general version that walks until
the end value by successively adding a step width.

def store = ''
10.times{
 store += 'x'
}
assert store == 'xxxxxxxxxx'

store = ''
1.upto(5) { number ->
 store += number
}
assert store == '12345'

store = ''
2.downto(-2) { number ->
 store += number + ' '
}
assert store == '2 1 0 -1 -2 '

store = ''
0.step(0.5, 0.1){ number ->
 store += number + ' '
}
assert store == '0 0.1 0.2 0.3 0.4 '

Calling methods on numbers can feel unfamiliar at first when you come from Java.
Just remember that numbers are objects and you can treat them as such.

 You have seen that in Groovy, numbers work the natural way and even guard
you against the most common errors with floating-point arithmetic. In most
cases, there is no need to remember all details of coercion. When the need arises,
this section may serve as a reference.

Listing 3.9 GDK methods on numbers

Repetition

Walking up with
loop variable

Walking
down

Walking with
step width

Summary 91
 The strategy of making objects available in unexpected places starts to become
an ongoing theme. You have seen it with numbers, and section 4.1 shows the
same principle applied to ranges.

3.7 Summary

The simple datatypes form a big portion of your everyday programming work
with Groovy. After all, working with strings and numbers is the bread and butter
of software development.

 Making common activities more convenient is one of Groovy’s main promises.
Consequently, Groovy promotes even the simple datatypes to first-class objects
and implements operators as method calls to make the benefits of object orienta-
tion ubiquitously available.

 Developer convenience is further enhanced by allowing a variety of means for
string literal declarations, whether through flexible GString declarations or with
the slashy syntax for situations where extra escaping is undesirable, such as regu-
lar expression patterns. GStrings contribute to another of Groovy’s central pillars:
concise and expressive code. This allows the reader a clearer insight into the run-
time string value, without having to wade through reams of string concatenation
or switch between format strings and the values replaced in them.

 Regular expressions are well represented in Groovy, again confirming its com-
fortable place among other scripting languages. Leveraging regular expressions
is common in the scripting world, and a language that treated them as second-
class citizens would be severely hampered. Groovy effortlessly combines Java’s
libraries with language support, retaining the regular expression dialect familiar
to Java programmers with the ease of use found in scripting.

 The Groovy way of treating numbers with respect to type conversion and pre-
cision handling leads to intuitive usage, even for non-programmers. This
becomes particularly important when Groovy scripts are used for smart configu-
rations of larger systems where business users may provide formulas—for exam-
ple, to define share-valuation details.

 Strings, regular expressions, and numbers alike profit from numerous meth-
ods that the GDK introduces on top of the JDK. The pattern is clear by now—
Groovy is a language designed for the ease of those developing in it, concentrat-
ing on making repetitive tasks as simple as they can be without sacrificing the
power of the Java platform.

 You shall soon see that this focus on ease of use extends far beyond the simple
types Java developers are used to having built-in language support for. The

92 CHAPTER 3
The simple Groovy datatypes
Groovy designers are well aware of other concepts that are rarely far from a pro-
grammer’s mind. The next chapter shows how intuitive operators, enhanced lit-
erals, and extra GDK methods are also available with Groovy’s collective data
types: ranges, lists, and maps.

The collective
Groovy datatypes
The intuitive mind is a sacred gift and the
rational mind is a faithful servant. We have
created a society that honors the servant and
has forgotten the gift.

—Albert Einstein
93

94 CHAPTER 4
The collective Groovy datatypes
The nice thing about computers is that they never get tired of repeatedly doing the
same task. This is probably the single most important quality that justifies letting
them take part in our life. Searching through countless files or web pages, down-
loading emails every 10 minutes, looking up all values of a stock symbol for the last
quarter to paint a nice graph—these are only a few examples where the computer
needs to repeatedly process an item of a data collection. It is no wonder that a great
deal of programming work is about collections.

 Because collections are so prominent in programming, Groovy alleviates the
tedium of using them by directly supporting datatypes of a collective nature: ranges,
lists, and maps. In accordance with what you have seen of the simple datatypes,
Groovy’s support for collective datatypes encompasses new lightweight means for
literal declaration, specialized operators, and numerous GDK enhancements.

 The notation that Groovy uses to set its collective datatypes into action will be
new to Java programmers, but as you will see, it is easy to understand and remem-
ber. You will pick it up so quickly that you will hardly be able to imagine there was
a time when you were new to the concept.

 Despite the new notation possibilities, lists and maps have the exact same
semantics as in Java. This situation is slightly different for ranges, because they
don’t have a direct equivalent in Java. So let’s start our tour with that topic.

4.1 Working with ranges

Think about how often you’ve written a loop like this:

for (int i=0; i<upperBound; i++){
 // do something with i
}

Most of us have done this thousands of times. It is so common that we hardly ever
think about it. Take the opportunity to do it now. Does the code tell you what it
does or how it does it?

 After careful inspection of the variable, the conditional, and the incrementa-
tion, we see that it’s an iteration starting at zero and not reaching the upper
bound, assuming there are no side effects on i in the loop body. We have to go
through the description of how the code works to find out what it does.

 Next, consider how often you’ve written a conditional such as this:

if (x >= 0 && x <= upperBound) {
 // do something with x
}

Working with ranges 95
The same thing applies here: We have to inspect how the code works in order to
understand what it does. Variable x must be between zero and an upper bound for
further processing. It’s easy to overlook that the upper bound is now inclusive.

 Now, we’re not saying that we make mistakes using this syntax on a regular
basis. We’re not saying that we can’t get used to (or indeed haven’t gotten used to)
the C-style for loop, as countless programmers have over the years. What we’re
saying is that it’s harder than it needs to be; and, more important, it’s less expres-
sive than it could be. Can you understand it? Absolutely. Then again, you could
understand this chapter if it were written entirely in capital letters—that doesn’t
make it a good idea, though.

 Groovy allows you to reveal the meaning of such code pieces by providing the
concept of a range. A range has a left bound and a right bound. You can do some-
thing for each element of a range, effectively iterating through it. You can deter-
mine whether a candidate element falls inside a range. In other words, a range is
an interval plus a strategy for how to move through it.

 By introducing the new concept of ranges, Groovy extends your means of
expressing your intentions in the code.

 We will show how to specify ranges, how the fact that they are objects makes
them ubiquitously applicable, how to use custom objects as bounds, and how
they’re typically used in the GDK.

4.1.1 Specifying ranges

Ranges are specified using the double dot .. range operator between the left and
the right bound. This operator has a low precedence, so you often need to
enclose the declaration in parentheses. Ranges can also be declared using their
respective constructors.

 The ..< range operator specifies a half-exclusive range—that is, the value on
the right is not part of the range:

left..right
(left..right)
(left..<right)

Ranges usually have a lower left bound and a higher right bound. When this is
switched, we call it a reverse range. Ranges can also be any combination of the
types we’ve described. Listing 4.1 shows these combinations and how ranges can
have bounds other than integers, such as dates and strings. Groovy supports
ranges at the language level with the special for-in-range loop.

96 CHAPTER 4
The collective Groovy datatypes
assert (0..10).contains(0)
assert (0..10).contains(5)
assert (0..10).contains(10)

assert (0..10).contains(-1) == false
assert (0..10).contains(11) == false

assert (0..<10).contains(9)
assert (0..<10).contains(10) == false

def a = 0..10
assert a instanceof Range
assert a.contains(5)

a = new IntRange(0,10)
assert a.contains(5)

assert (0.0..1.0).contains(0.5)

def today = new Date()
def yesterday = today-1
assert (yesterday..today).size() == 2

assert ('a'..'c').contains('b')

def log = ''
for (element in 5..9){
 log += element
}
assert log == '56789'

log = ''
for (element in 9..5){
 log += element
}
assert log == '98765'

log = ''
(9..<5).each { element ->
 log += element
}
assert log == '9876'

Note that we assign a range to a variable in b. In other words, the variable holds
a reference to an object of type groovy.lang.Range. We will examine this feature
further and see what consequences it implies.

Listing 4.1 Range declarations

Inclusive
ranges

Half-exclusive
ranges

References
to ranges

b

Explicit
construction

Date
ranges

c

String rangesd

for-in-range
loop

Loop with
reverse range

Half-exclusive, reverse,
each with closure

e

Working with ranges 97
 Date objects can be used in ranges, as in c, because the GDK adds the previ-
ous and next methods to date, which increase or decrease the date by one day.

BY THE WAY The GDK also adds minus and plus operators to java.util.Date, which
increase or decrease the date by so many days.

The String methods previous and next are added by the GDK to make strings
usable for ranges, as in d. The last character in the string is incremented/decre-
mented, and over-/underflow is handled by appending a new character or delet-
ing the last character.

 We can walk through a range with the each method, which presents the
current value to the given closure with each step, as shown in e. If the range is
reversed, we will walk through the range backward. If the range is half-exclusive,
the walking stops before reaching the right bound.

4.1.2 Ranges are objects

Because every range is an object, you can pass a range around and call its meth-
ods. The most prominent methods are each, which executes a specified closure
for each element in the range, and contains, which specifies whether a value is
within a range or not.

 Being first-class objects, ranges can also participate in the game of operator
overriding (see section 3.3) by providing an implementation of the isCase
method, with the same meaning as contains. That way, you can use ranges as
grep filters and as switch cases. This is shown in listing 4.2.

result = ''
(5..9).each{ element ->
 result += element
}
assert result == '56789'

assert (0..10).isCase(5)

age = 36
switch(age){
 case 16..20 : insuranceRate = 0.05 ; break
 case 21..50 : insuranceRate = 0.06 ; break
 case 51..65 : insuranceRate = 0.07 ; break
 default: throw new IllegalArgumentException()
}
assert insuranceRate == 0.06

Listing 4.2 Ranges are objects

Iterating
through
ranges

Ranges for
classification

b

98 CHAPTER 4
The collective Groovy datatypes
ages = [20,36,42,56]
midage = 21..50
assert ages.grep(midage) == [36,42]

The use with the grep method c is a good example for passing around range
objects: The midage range gets passed as a parameter to the grep method.

 Classification through ranges as shown at b is what we often find in the busi-
ness world: interest rates for different ranges of allocated assets, transaction fees
based on volume ranges, and salary bonuses based on ranges of business done.
Although technical people prefer using functions, business people tend to use
ranges. When you’re modeling the business world in software, classification
by ranges can be very handy.

4.1.3 Ranges in action
Listing 4.1 made use of date and string ranges. In fact, any datatype can be used
with ranges, provided that both of the following are true:

■ The type implements next and previous; that is, it overrides the ++ and
-- operators.

■ The type implements java.lang.Comparable; that is, it implements
compareTo, effectively overriding the <=> spaceship operator.

As an example, we implement a class Weekday in listing 4.3 that represents a day
of the week. From the perspective of the code that uses our class, a Weekday has a
value 'Sun' through 'Sat'. Internally, it’s just an index between 0 and 6. A little
list maps indexes to weekday name abbreviations.

 We implement next and previous to return the respective new Weekday object.
compareTo simply compares the indexes.

 With this preparation, we can construct a range of working days and work our
way through it, reporting the work done until we finally reach the well-deserved
weekend. Oh, and our boss wants to assess the weekly work report. A final asser-
tion does this on his behalf.

class Weekday implements Comparable {
 static final DAYS = [
 'Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat'
]
 private int index = 0
 Weekday(String day){

Filtering with
ranges

c

Listing 4.3 Custom ranges: weekdays

Construct by name
and normalize index

Working with ranges 99
 index = DAYS.indexOf(day)
 }
 Weekday next(){
 return new Weekday(DAYS[(index+1) % DAYS.size()])
 }
 Weekday previous(){
 return new Weekday(DAYS[index-1])
 }
 int compareTo(Object other){
 return this.index <=> other.index
 }
 String toString(){
 return DAYS[index]
 }
}

def mon = new Weekday('Mon')
def fri = new Weekday('Fri')

def worklog = ''
for (day in mon..fri){
 worklog += day.toString() + ' '
}
assert worklog == 'Mon Tue Wed Thu Fri '

This code can be placed inside one script file, even though it contains both a class
declaration and script code. The Weekday class is like an inner class to the script.

 The implementation of previous at b is a bit unconventional. Although next
uses the modulo operator in a conventional way to jump from Saturday (index 6)
to Sunday (index 0), the opposite direction simply decreases the index. The index
–1 is used for looking up the previous weekday name, and DAYS[-1] references the
last entry of the days list, as you will see in the next section. We construct a new
Weekday('Sat'), and the constructor normalizes the index to 6.

 Compared to the Java alternatives, ranges have proven to be a flexible solu-
tion. For loops and conditionals are not objects, cannot be reused, and cannot be
passed around, but ranges can. Ranges let you focus on what the code does, rather
than how it does it. This is a pure declaration of your intent, as opposed to fid-
dling with indexes and boundary conditions.

 Using custom ranges is the next step forward. Look actively through your code
for possible applications. Ranges slumber everywhere, and bringing them to life
can significantly improve the expressiveness of your code. With a bit of practice,
you may find ranges where you never thought possible. This is a sure sign that
new language concepts can change your perception of the world.

Automatic
underflowb

Use the range
for iteration

100 CHAPTER 4
The collective Groovy datatypes
 You will shortly refer to your newly acquired knowledge about ranges when
exploring the subscript operator on lists, the built-in datatype that we are going
to cover next.

4.2 Working with lists

In a recent Java project, we had to write a method that takes a Java array and adds
an element to it. This seemed like a trivial task, but we forgot how awkward Java
programming could be. (We’re spoiled from too much Groovy programming.)
Java arrays cannot be changed in length, so you cannot add elements easily. One
way is to convert the array to a java.util.List, add the element, and convert back.
A second way is to construct a new array of size+1, copy the old values over, and set
the new element to the last index position. Either takes some lines of code.

 But Java arrays also have their benefits in terms of language support. They
work with the subscript operator to easily retrieve elements of an array by index
like myarray[index], or to store elements at an index position with myarray
[index] = newElement.

 We will demonstrate how Groovy lists give you the best of both approaches,
extending the features for smart operator implementations, method overload-
ing, and using lists as Booleans. With Groovy lists, you will also discover new ways
of leveraging the power of the Java Collections API.

4.2.1 Specifying lists
Listing 4.4 shows various ways of specifying lists. The primary way is with square
brackets around a sequence of items, delimited with commas:

[item, item, item]

The sequence can be empty to declare an empty list. Lists are by default of type
java.util.ArrayList and can also be declared explicitly by calling the respective
constructor. The resulting list can still be used with the subscript operator. In fact,
this works with any type of list, as we show here with type java.util.LinkedList.

 Lists can be created and initialized at the same time by calling toList
on ranges.

myList = [1,2,3]

assert myList.size() == 3
assert myList[0] == 1
assert myList instanceof ArrayList

Listing 4.4 Specifying lists

Working with lists 101
emptyList = []
assert emptyList.size() == 0

longList = (0..1000).toList()
assert longList[555] == 555

explicitList = new ArrayList()
explicitList.addAll(myList)
assert explicitList.size() == 3
explicitList[0] = 10
assert explicitList[0] == 10

explicitList = new LinkedList(myList)
assert explicitList.size() == 3
explicitList[0] = 10
assert explicitList[0] == 10

We use the addAll(Collection) method from java.util.List at b to easily fill
the lists. As an alternative, the collection to fill from can be passed right into the
constructor, as we have done with LinkedList.

 For the sake of completeness, we need to add that lists can also be constructed
by passing a Java array to Groovy. Such an array is subject to autoboxing—a list
will be automatically generated from the array with its elements being autoboxed.

 The GDK extends all arrays, collection objects, and strings with a toList
method that returns a newly generated list of the contained elements. Strings are
handled like lists of characters.

4.2.2 Using list operators

Lists implement some of the operators that you saw in section 3.3. Listing 4.4 con-
tained two of them: the getAt and putAt methods to implement the subscript
operator. But this was a simple use that works with a mere index argument.
There’s much more to the list operators than that.

The subscript operator
The GDK overloads the getAt method with range and collection arguments to
access a range or a collection of indexes. This is demonstrated in Listing 4.5.

 The same strategy is applied to putAt, which is overloaded with a Range argu-
ment, assigning a list of values to a whole sublist.

Fill from
myList

b

102 CHAPTER 4
The collective Groovy datatypes
myList = ['a','b','c','d','e','f']

assert myList[0..2] == ['a','b','c']
assert myList[0,2,4] == ['a','c','e']

myList[0..2] = ['x','y','z']
assert myList == ['x','y','z','d','e','f']

myList[3..5] = []
assert myList == ['x','y','z']

myList[1..1] = ['y','1','2']
assert myList == ['x','y','1','2','z']

Subscript assignments with ranges do not need to be of identical size. When the
assigned list of values is smaller than the range or even empty, the list shrinks, as
shown at b. When the assigned list of values is bigger, the list grows, as in c.

 Ranges as used within subscript assignments are a convenience feature to
access Java’s excellent sublist support for lists. See also the Javadoc for java.
util.List#sublist.

 In addition to positive index values, lists can also be subscripted with negative
indexes that count from the end of the list backward. Figure 4.1 show how positive
and negative indexes map to an example list [0,1,2,3,4].

 Consequently, you get the last entry of a non-empty list with list[-1] and the
next-to-last with list[-2]. Negative indexes can also be used in ranges, so
list[-3..-1] gives you the last three entries. When using a reversed range, the
resulting list is reversed as well, so list[4..0] is [4,3,2,1,0]. In this case,
the result is a new list object rather than a sublist in the sense of the JDK. Even
mixtures of positive and negative indexes are possible, such as list[1..-2] to
cut away the first entry and the last entry.

Listing 4.5 Accessing parts of a list with the overloaded subscript operator

getAt(Range)

getAt(collection of indexes)

putAt(Range)

Removing
elements

b

Adding elementsc

Figure 4.1
Positive and negative indexes of a
list of length five, with “in bounds”
and “out of bounds” classification
for indexes

Working with lists 103
TIP Ranges in List’s subscript operator are IntRanges. Exclusive IntRanges
are mapped to inclusive ones at construction time, before the subscript
operator comes into play and can map negative indexes to positive ones.
This can lead to surprises when mixing positive left and negative right
bounds with exclusiveness; for example, IntRange (0..<-2) gets mapped
to (0..-1), such that list[0..<-2] is effectively list[0..-1].

Although this is stable and works predictably, it may be confusing for
the readers of your code, who may expect it to work like list[0..-3].
For this reason, this situation should be avoided for the sake of clarity.

Adding and removing items
Although the subscript operator can be used to change any individual element of a
list, there are also operators available to change the contents of the list in a more
drastic way. They are plus(Object), plus(Collection), leftShift(Object), minus
(Collection), and multiply. Listing 4.6 shows them in action. The plus method
is overloaded to distinguish between adding an element and adding all elements
of a collection. The minus method only works with collection parameters.

myList = []

myList += 'a'
assert myList == ['a']

myList += ['b','c']
assert myList == ['a','b','c']

myList = []
myList << 'a' << 'b'
assert myList == ['a','b']

assert myList - ['b'] == ['a']

assert myList * 2 == ['a','b','a','b']

While we’re talking about operators, it’s worth noting that we have used the ==
operator on lists, happily assuming that it does what we expect. Now we see how it
works: The equals method on lists tests that two collections have equal elements.
See the Javadoc of java.util.List#equals for details.

Listing 4.6 List operators involved in adding and removing items

plus(Object)

plus(Collection)

leftShift is like
append

minus(Collection)

Multiply

104 CHAPTER 4
The collective Groovy datatypes
Control structures
Groovy lists are more than flexible storage places. They also play a major role in
organizing the execution flow of Groovy programs. Listing 4.7 shows the use of
lists in Groovy’s if, switch, and for control structures.

myList = ['a', 'b', 'c']

assert myList.isCase('a')
candidate = 'a'
switch(candidate){
 case myList : assert true; break
 default : assert false
}

assert ['x','a','z'].grep(myList) == ['a']

myList = []
if (myList) assert false

// Lists can be iterated with a 'for' loop
log = ''
for (i in [1,'x',5]){
 log += i
}
assert log == '1x5'

In b and c, you see the trick that you already know from patterns and ranges:
implementing isCase and getting a grep filter and a switch classification for free.

 d is a little surprising. Inside a Boolean test, empty lists evaluate to false.
 e shows looping over lists or other collections and also demonstrates that lists

can contain mixtures of types.

4.2.3 Using list methods

There are so many useful methods on the List type that we cannot provide an
example for all of them in the language description. The large number of meth-
ods comes from the fact that the Java interface java.util.List is already fairly
wide (25 methods in JDK 1.4).

 Furthermore, the GDK adds methods to the List interface, to the Collection
interface, and to Object. Therefore, many methods are available on the List type,
including all methods of Collection and Object.

Listing 4.7 Lists taking part in control structures

Classify by
containment

b

Intersection
filter

c

Empty lists
are false

d

for in Collectione

Working with lists 105
 Appendix C has the complete overview of all methods added to List by the
GDK. The Javadoc of java.util.List has the complete list of its JDK methods.

 While working with lists in Groovy, there is no need to be aware of whether a
method stems from the JDK or the GDK, or whether it is defined in the List or
Collection interface. However, for the purpose of describing the Groovy List
datatype, we fully cover the GDK methods on lists and collections, but not all com-
binations from overloaded methods and not what is already covered in the previ-
ous examples. We provide only partial examples of the JDK methods that we
consider important.

Manipulating list content
A first set of methods is presented in Listing 4.8. It deals with changing the con-
tent of the list by adding and removing elements; combining lists in various
ways; sorting, reversing, and flattening nested lists; and creating new lists from
existing ones.

assert [1,[2,3]].flatten() == [1,2,3]

assert [1,2,3].intersect([4,3,1])== [3,1]
assert [1,2,3].disjoint([4,5,6])

list = [1,2,3]
popped = list.pop()
assert popped == 3
assert list == [1,2]

assert [1,2].reverse() == [2,1]

assert [3,1,2].sort() == [1,2,3]

def list = [[1,0], [0,1,2]]
list = list.sort { a,b -> a[0] <=> b[0] }
assert list == [[0,1,2], [1,0]]

list = list.sort { item -> item.size() }
assert list == [[1,0], [0,1,2]]

list = ['a','b','c']
list.remove(2)
assert list == ['a','b']
list.remove('b')
assert list == ['a']

Listing 4.8 Methods to manipulate list content

Treating a list
like a stack

b

Comparing lists
by first element

c

Comparing
lists by size

d

Removing
by index

e

Removing
by valuef

106 CHAPTER 4
The collective Groovy datatypes
list = ['a','b','b','c']
list.removeAll(['b','c'])
assert list == ['a']

def doubled = [1,2,3].collect{ item ->
 item*2
}
assert doubled == [2,4,6]

def odd = [1,2,3].findAll{ item ->
 item % 2 == 1
}
assert odd == [1,3]

List elements can be of arbitrary type, including other nested lists. This can be
used to implement lists of lists, the Groovy equivalent of multidimensional
arrays in Java. For nested lists, the flatten method provides a flat view of
all elements.

 An intersection of lists contains all elements that appear in both lists. Collec-
tions can also be checked for being disjoint—that is, whether their intersection
is empty.

 Lists can be used like stacks, with usual stack behavior on push and pop, as in b.
The push operation is relayed to the list’s << left-shift operator.

 When list elements are Comparable, there is a natural sort. Alternatively, the
comparison logic of the sort can be specified as a closure, as in c and d. In the
first example, we sort lists of lists by comparing their entry at index zero. The sec-
ond example shows that a single argument can be used inside the closure for
comparison. In this case, the comparison is made between the results that the clo-
sure returns when fed each of the candidate elements.

 Elements can be removed by index, as in e, or by value, as in f. We can also
remove all the elements that appear as values in the second list. These removal
methods are the only ones in the listing that are available in the JDK.

 The collect method, seen in g, returns a new list that is constructed from
what a closure returns when successively applied to all elements of the original
list. In the example, we use it to retrieve a new list where each entry of the origi-
nal list is multiplied by two. With findAll, as in h, we retrieve a list of all items
for which the closure evaluates to true. In the example, we use the modulo oper-
ator to find all odd numbers.

Transforming one
list into anotherg

Finding every element
matching the closureh

Working with lists 107
 Two issues related to changing an existing list are removing duplicates and
removing null values. One way to remove duplicate entries is to convert the list to
a datatype that is free of duplicates: a Set. This can be achieved by calling a Set’s
constructor with that list as an argument.

def x = [1,1,1]
assert [1] == new HashSet(x).toList()
assert [1] == x.unique()

If you don’t want to create a new collection but do want to keep working on your
cleaned list, you can use the unique method, which ensures that the sequence of
entries is not changed by this operation.

 Removing null from a list can be done by keeping all non-nulls—for example,
with the findAll methods that you have seen previously:

def x = [1,null,1]
assert [1,1] == x.findAll{it != null}
assert [1,1] == x.grep{it}

You can see there’s an even shorter version with grep, but in order to understand
its mechanics, you need more knowledge about closures (chapter 5) and “The
Groovy truth” (chapter 6). Just take it for granted until then.

Accessing list content

Lists have methods to query their elements for certain properties, iterate through
them, and retrieve accumulated results.

 Query methods include a count of given elements in the list, min and max, a
find method that finds the first element that satisfies a closure, and methods
to determine whether every or any element in the list satisfies a closure.

 Iteration can be achieved as usual, forward with each or backward with
eachReverse.

 Cumulative methods come in simple and sophisticated versions. The join
method is simple: It returns all elements as a string, concatenated with a given
string. The inject method is inspired by Smalltalk. It uses a closure to inject
new functionality. That functionality operates on an intermediary result and the
current element of the iteration. The first parameter of the inject method is
the initial value of the intermediary result. In listing 4.9, we use this method to
sum up all elements and then use it a second time to multiply them.

108 CHAPTER 4
The collective Groovy datatypes
def list = [1,2,3]

assert list.count(2) == 1
assert list.max() == 3
assert list.min() == 1

def even = list.find { item ->
 item % 2 == 0
}
assert even == 2

assert list.every { item -> item < 5}
assert list.any { item -> item < 2}

def store = ''
list.each { item ->
 store += item
}
assert store == '123'

store = ''
list.reverseEach{ item ->
 store += item
}
assert store == '321'

assert list.join('-') == '1-2-3'

result = list.inject(0){ clinks, guests ->
 clinks += guests
}
assert result == 0 + 1+2+3
assert list.sum() == 6

factorial = list.inject(1){ fac, item ->
 fac *= item
}
assert factorial == 1 * 1*2*3

Understanding and using the inject method can be a bit challenging if you’re
new to the concept. Note that it is exactly parallel to the iteration examples, with
store playing the role of the intermediary result. The benefit is that you do not
need to introduce that extra variable to the outer scope of your accumulation,
and your closure has no side effects on that scope.

Listing 4.9 List query, iteration, and accumulation

Querying

Iteration

Accumulation

Working with lists 109
 The GDK introduces two more convenience methods for lists: asImmutable
and asSynchronized. These methods use Collections.unmodifiableList and
Collections.synchronizedList to protect the list from unintended content
changes and concurrent access. See these methods’ Javadocs for more details on
the topic.

4.2.4 Lists in action

After all the artificial examples, you deserve to see a real one. Here it is: We will
implement Tony Hoare’s Quicksort1 algorithm in listing 4.10. To make things
more interesting, we will do so in a generic way; we will not demand any particu-
lar datatype for sorting. We rely on duck typing—as long as something walks like a
duck and talks like a duck, we happily treat it as a duck. For our use, this means
that as long as we can use the <, =, and > operators with our list items, we treat
them as if they were comparable.

 The goal of Quicksort is to be sparse with comparisons. The strategy relies on
finding a good pivot element in the list that serves to split the list into two sublists:
one with all elements smaller than the pivot, the second with all elements bigger
than the pivot. Quicksort is then called recursively on the sublists. The rationale
behind this is that you never need to compare elements from one list with ele-
ments from the other list. If you always find the perfect pivot, which exactly splits
your list in half, the algorithm runs with a complexity of n*log(n). In the worst
case, you choose a border element every time, and you end up with a complexity
of n2. In listing 4.10, we choose the middle element of the list, which is a good
choice for the frequent case of preordered sublists.

def quickSort(list) {
 if (list.size() < 2) return list
 def pivot = list[list.size().intdiv(2)]
 def left = list.findAll {item -> item < pivot }
 def middle = list.findAll {item -> item == pivot }
 def right = list.findAll {item -> item > pivot }
 return (quickSort(left) + middle + quickSort(right))
}

assert quickSort([]) == []
assert quickSort([1]) == [1]
assert quickSort([1,2]) == [1,2]

1 See http://en.wikipedia.org/wiki/Quicksort.

Listing 4.10 Quicksort with lists

Classify
by pivot

b

Recursive
calls

110 CHAPTER 4
The collective Groovy datatypes
assert quickSort([2,1]) == [1,2]
assert quickSort([3,1,2]) == [1,2,3]
assert quickSort([3,1,2,2]) == [1,2,2,3]
assert quickSort([1.0f,'a',10,null])== [null, 1.0f, 10, 'a']
assert quickSort('Karin and Dierk') ==
' DKaadeiiknnrr'.toList()

In contrast to what we said earlier, we actually use not two but three lists in b. Use
this implementation when you don’t want to lose items that appear multiple times.

 Our duck-typing approach is powerful when it comes to sorting different types.
We can sort a list of mixed content types, as at c, or even sort a string, as at d. This
is possible because we did not demand any specific type to hold our items. As long
as that type implements size, getAt(index), and findAll, we are happy to treat it as
a sortable. Actually, we used duck typing twice: for the items and for the structure.

BY THE WAY The sort method that comes with Groovy uses Java’s sorting implemen-
tation that beats our example in terms of worst-case performance. It guar-
antees a complexity of n*log(n). However, we win on a different front.

Of course, our implementation could be optimized in multiple dimensions. Our
goal was to be tidy and flexible, not to be the fastest on the block.

 If we had to explain the Quicksort algorithm without the help of Groovy, we
would sketch it in pseudocode that looks exactly like listing 4.10. In other words,
the Groovy code itself is the best description of what it does. Imagine what this
can mean to your codebase, when all your code reads like it was a formal docu-
mentation of its purpose!

 You have seen lists to be one of Groovy’s strongest workhorses. They are always
at hand; they are easy to specify in-line, and using them is easy due to the opera-
tors supported. The plethora of available methods may be intimidating at first,
but that is also the source of lists’ power.

 You are now able to add them to your carriage and let them pull the weight of
your code.

 The next section about maps will follow the same principles that you have
seen for lists: extending the Java collection’s capabilities while providing effi-
cient shortcuts.

Duck-
typed
items

c

Duck-typed
structured

Working with maps 111
4.3 Working with maps

Suppose you were about to learn the vocabulary of a new language, and you set
out to find the most efficient way of doing so. It would surely be beneficial to focus
on those words that appear most often in your texts. So, you would take a collec-
tion of your texts and analyze the word frequencies in that text corpus.2

 What Groovy means do you have to do this? For the time being, assume that
you can work on a large string. You have numerous ways of splitting this string
into words. But how do you count and store the word frequencies? You cannot
have a distinct variable for each possible word you encounter. Finding a way of
storing frequencies in a list is possible but inconvenient—more suitable for a
brain teaser than for good code. Maps come to the rescue.

 Some pseudocode to solve the problem could look like this:

for each word {
 if (frequency of word is not known)
 frequency[word] = 0
 frequency[word] += 1
}

This looks like the list syntax, but with strings as indexes rather than integers.
In fact, Groovy maps appear like lists, allowing any arbitrary object to be used
for indexing.

 In order to describe the map datatype, we show how maps can be specified,
what operations and methods are available for maps, some surprisingly conve-
nient features of maps, and, of course, a map-based solution for the word-
frequency exercise.

4.3.1 Specifying maps

The specification of maps is analogous to the list specification that you saw in
the previous section. Just like lists, maps make use of the subscript operator to
retrieve and assign values. The difference is that maps can use any arbitrary type
as an argument to the subscript operator, where lists are bound to integer
indexes. Whereas lists are aware of the sequence of their entries, maps are gen-
erally not. Specialized maps like java.util.TreeMap may have a sequence to
their keys, though.

2 Analyzing word frequencies in a text corpus is a common task in computer linguistics and is used
for optimizing computer-based learning, search engines, voice recognition, and machine transla-
tion programs.

112 CHAPTER 4
The collective Groovy datatypes
 Simple maps are specified with square brackets around a sequence of items,
delimited with commas. The key feature of maps is that the items are key-value
pairs that are delimited by colons:

[key:value, key:value, key:value]

In principle, any arbitrary type can be used for keys or values. When using exotic3

types for keys, you need to obey the rules as outlined in the Javadoc for
java.util.Map.

 The character sequence [:] declares an empty map. Maps are by default of
type java.util.HashMap and can also be declared explicitly by calling the respec-
tive constructor. The resulting map can still be used with the subscript operator.
In fact, this works with any type of map, as you see in listing 4.11 with type
java.util.TreeMap.

def myMap = [a:1, b:2, c:3]

assert myMap instanceof HashMap
assert myMap.size() == 3
assert myMap['a'] == 1

def emptyMap = [:]
assert emptyMap.size() == 0

def explicitMap = new TreeMap()
explicitMap.putAll(myMap)
assert explicitMap['a'] == 1

In listing 4.11, we use the putAll(Map) method from java.util.Map to easily fill
the example map. An alternative would have been to pass myMap as an argument
to TreeMap’s constructor.

 For the common case of having keys of type String, you can leave out the
string markers (single or double quotes) in a map declaration:

assert ['a':1] == [a:1]

Such a convenience declaration is allowed only if the key contains no special char-
acters (it needs to follow the rules for valid identifiers) and is not a Groovy keyword.

3 Exotic in this sense refers to types whose instances change their hashCode during their lifetime. There
is also a corner case with GStrings if their values write themselves lazily.

Listing 4.11 Specifying maps

Working with maps 113
 This notation can also get in the way when, for example, the content of a local
variable is used as a key. Suppose you have local variable x with content 'a'.
Because [x:1] is equal to ['x':1], how can you make it equal to ['a':1]? The
trick is that you can force Groovy to recognize a symbol as an expression by put-
ting it inside parentheses:

def x = 'a'
assert ['x':1] == [x:1]
assert ['a':1] == [(x):1]

It’s rare to require this functionality, but when you need keys that are derived
from local symbols (local variables, fields, properties), forgetting the parentheses
is a likely source of errors.

4.3.2 Using map operators
The simplest operations with maps are storing objects in the map with a key and
retrieving them back using that key. Listing 4.12 demonstrates how to do that. One
option for retrieving is using the subscript operator. As you have probably guessed,
this is implemented with map’s getAt method. A second option is to use the key
like a property with a simple dot-syntax. You will learn more about properties in
chapter 7. A third option is the get method, which additionally allows you to pass
a default value to be returned if the key is not yet in the map. If no default is given,
null will be used as the default. If on a get(key,default) call the key is not found
and the default is returned, the key:default pair is added to the map.

def myMap = [a:1, b:2, c:3]

assert myMap['a'] == 1
assert myMap.a == 1
assert myMap.get('a') == 1
assert myMap.get('a',0) == 1

assert myMap['d'] == null
assert myMap.d == null
assert myMap.get('d') == null

assert myMap.get('d',0) == 0
assert myMap.d == 0

myMap['d'] = 1
assert myMap.d == 1
myMap.d = 2
assert myMap.d == 2

Listing 4.12 Accessing maps (GDK map methods)

Retrieve
existing
elements

Attempt to retrieve
missing elements

Supply a
default value

Simple
assignments
in the map

114 CHAPTER 4
The collective Groovy datatypes
Assignments to maps can be done using the subscript operator or via the dot-key
syntax. If the key in the dot-key syntax contains special characters, it can be put
into string markers, like so:

myMap = ['a.b':1]
assert myMap.'a.b' == 1

Just writing myMap.a.b would not work here—that would be the equivalent of call-
ing myMap.getA().getB().

 Listing 4.13 shows how information can easily be gleaned from maps, largely
using core JDK methods from java.util.Map. Using equals, size, containsKey,
and containsValue as in listing 4.13 is straightforward. The method keySet
returns a set of keys, a collection that is flat like a list but has no duplicate entries
and no inherent ordering. See the Javadoc of java.util.Set for details. In order
to compare the keySet against our list of known keys, we need to convert this list
to a set. This is done with a small service method toSet.

 The value method returns the list of values. Because maps have no idea how
their keys are ordered, there is no foreseeable ordering in the list of values. To
make it comparable with our known list of values, we convert both to a set.

 Maps can be converted into a collection by calling the entrySet method,
which returns a set of entries where each entry can be asked for its key and
value property.

def myMap = [a:1, b:2, c:3]
def other = [b:2, c:3, a:1]

assert myMap == other

assert myMap.isEmpty() == false
assert myMap.size() == 3
assert myMap.containsKey('a')
assert myMap.containsValue(1)
assert myMap.keySet() == toSet(['a','b','c'])
assert toSet(myMap.values()) == toSet([1,2,3])
assert myMap.entrySet() instanceof Collection

assert myMap.any {entry -> entry.value > 2 }
assert myMap.every {entry -> entry.key < 'd'}

def toSet(list){
 new java.util.HashSet(list)
}

Listing 4.13 Query methods on maps

Call to equals

Normal JDK
methods

Methods
added by GDK

b

Utility method used
for assertions

Working with maps 115
The GDK adds two more informational methods to the JDK map type: any and
every, as in b. They work analogously to the identically named methods for lists:
They return a Boolean value to tell whether any or every entry in the map satisfies
a given closure.

 With the information about the map, we can iterate over it in a number of ways:
over the entries, or over keys and values separately. Because the sets that are
returned from keySet and entrySet are collections, we can use them with the for-in-
collection type loops. Listing 4.14 goes through some of the possible combinations.

def myMap = [a:1, b:2, c:3]

def store = ''
myMap.each {entry ->
 store += entry.key
 store += entry.value
}
assert store.contains('a1')
assert store.contains('b2')
assert store.contains('c3')

store = ''
myMap.each {key, value ->
 store += key
 store += value
}
assert store.contains('a1')
assert store.contains('b2')
assert store.contains('c3')

store = ''
for (key in myMap.keySet()) {
 store += key
}
assert store.contains('a')
assert store.contains('b')
assert store.contains('c')

store = ''
for (value in myMap.values()) {
 store += value
}
assert store.contains('1')
assert store.contains('2')
assert store.contains('3')

Listing 4.14 Iterating over maps (GDK)

Iterate over
entries

Iterate over
keys/values

Iterate over
just the keys

Iterate over
just the values

116 CHAPTER 4
The collective Groovy datatypes
Map’s each method uses closures in two ways: Passing one parameter into the clo-
sure means that it is an entry; passing two parameters means it is a key and a value.
The latter is more convenient to work with for common cases.

NOTE Listing 4.14 uses three assertions on the store string instead of a single
one. This is because the sequence of entries is not guaranteed.

Finally, map content can be changed in various ways, as shown in listing 4.15.
Removing elements works with the original JDK methods. New capabilities that
the GDK introduces are as follows:

■ Creating a subMap of all entries with keys from a given collection
■ findAll entries in a map that satisfy a given closure
■ find one entry that satisfies a given closure, where unlike lists there is no

notion of a first entry, because there is no ordering in maps
■ collect in a list whatever a closure returns for each entry, optionally add-

ing to a given collection

def myMap = [a:1, b:2, c:3]
myMap.clear()
assert myMap.isEmpty()

myMap = [a:1, b:2, c:3]
myMap.remove('a')
assert myMap.size() == 2

myMap = [a:1, b:2, c:3]
def abMap = myMap.subMap(['a','b'])
assert abMap.size() == 2

abMap = myMap.findAll { entry -> entry.value < 3}
assert abMap.size() == 2
assert abMap.a == 1

def found = myMap.find { entry -> entry.value < 2}
assert found.key == 'a'
assert found.value == 1

def doubled = myMap.collect { entry -> entry.value *= 2}
assert doubled instanceof List
assert doubled.every {item -> item %2 == 0}

Listing 4.15 Changing map content and building new objects from it

Create a view onto
the original map

b

Working with maps 117
def addTo = []
myMap.collect(addTo) { entry -> entry.value *= 2}
assert doubled instanceof List
assert addTo.every {item -> item %2 == 0}

The first two examples (clear and remove) are from the core JDK; the rest are all
GDK methods. Only the subMap method, at b, is particularly new here; collect,
find, and findAll act as they would with lists, operating on map entries instead of
list elements. The subMap method is analogous to subList, but it specifies a collec-
tion of keys as a filter for the view onto the original map.

 In order to assert that the collect method works as expected, we recall a trick
that we learned about lists: We use the every method on the list to make sure that
every entry is even. The collect method comes with a second version that takes
an addition collection parameter. It adds all closure results directly to this collec-
tion, avoiding the need to create temporary lists.

 From the list of available methods that you have seen for other datatypes, you
may miss our dearly beloved isCase for use with grep and switch. Don’t we want
to classify with maps? Well, we need to be more specific: Do we want to classify by
the keys or by the values? Either way, an appropriate isCase is available when
working on the map’s keySet or values.

 The GDK introduces two more methods for the map datatype: asImmutable
and asSynchronized. These methods use Collections.unmodifiableMap and
Collections.synchronizedMap to protect the map from unintended content
changes and concurrent access. See these methods’ Javadocs for more details on
the topic.

4.3.3 Maps in action

In listing 4.16, we revisit our initial example of counting word frequencies in a
text corpus. The strategy is to use a map with each distinct word serving as a key.
The mapped value of that word is its frequency in the text corpus. We go through
all words in the text and increase the frequency value of that respective word in
the map. We need to make sure that we can increase the value when a word is hit
the first time and there is no entry yet in the map. Luckily, the get(key,default)
method does the job.

 We then take all keys, put them in a list, and sort it such that it reflects the
order of frequency. Finally, we play with the capabilities of lists, ranges, and
strings to print a nice statistic.

118 CHAPTER 4
The collective Groovy datatypes
 The text corpus under analysis is Baloo the Bear’s anthem on his attitude
toward life.

def textCorpus =
"""
Look for the bare necessities
The simple bare necessities
Forget about your worries and your strife
I mean the bare necessities
Old Mother Nature's recipes
That bring the bare necessities of life
"""

def words = textCorpus.tokenize()
def wordFrequency = [:]
words.each { word ->
 wordFrequency[word] = wordFrequency.get(word,0) + 1
}
def wordList = wordFrequency.keySet().toList()
wordList.sort { wordFrequency[it] }

def statistic = "\n"
wordList[-1..-6].each { word ->
 statistic += word.padLeft(12) + ': '
 statistic += wordFrequency[word] + "\n"
}
assert statistic ==
"""
 bare: 4
 necessities: 4
 the: 3
 your: 2
 for: 1
 recipes: 1
"""

The example nicely combines our knowledge of Groovy’s datatypes. Counting
the word frequency is essentially a one-liner. It’s even shorter than the pseudo-
code that we used to start this section.
Having the sort method on the wordList accept a closure turns out to be very
beneficial, because it is able to implement its comparing logic on the word-
Frequency map—on an object totally different from the wordList. Just as an
exercise, try to do that in Java, count the lines, and judge the expressiveness of
either solution.

Listing 4.16 Counting word frequency with maps

b

c

 b

 c

Notes on Groovy collections 119
Lists and maps make a powerful duo. There are whole languages that build on
just these two datatypes (such as Perl, with list and hash) and implement all other
datatypes and even objects upon them.

 Their power comes from the complete and mindfully engineered Java Collec-
tions Framework. Thanks to Groovy, this power is now right at our fingertips.

 Until now, we carelessly switched back and forth between Groovy and Java col-
lection datatypes. We will throw more light on this interplay in the next section.

4.4 Notes on Groovy collections

The Java Collections API is the basis for all the nice support that Groovy gives you
through lists and maps. In fact, Groovy not only uses the same abstractions, it
even works on the very same classes that make up the Java Collections API.

 This is exceptionally convenient for those who come from Java and already
have a good understanding of it. If you haven’t, and you are interested in
more background information, have a look at your Javadoc starting at java.
util.Collection.

 Your JDK also ships with a guide and a tutorial about Java collections. It is
located in your JDK’s doc folder under guide/collections.

 One of the typical peculiarities of the Java collections is that you shouldn’t try
to structurally change one while iterating through it. A structural change is one that
adds an entry, removes an entry, or changes the sequence of entries when the col-
lection is sequence-aware. This applies even when iterating through a view onto
the collection, such as using list[range].

4.4.1 Understanding concurrent modification

If you fail to meet this constraint, you will see a ConcurrentModification-
Exception. For example, you cannot remove all elements from a list by iterating
through it and removing the first element at each step:

def list = [1, 2, 3, 4]
list.each{ list.remove(0) }
// throws ConcurrentModificationException !!

NOTE Concurrent in this sense does not necessarily mean that a second thread
changed the underlying collection. As shown in the example, even a sin-
gle thread of control can break the “structural stability” constraint.

120 CHAPTER 4
The collective Groovy datatypes
In this case, the correct solution is to use the clear method. The Collections API
has lots of such specialized methods. When searching for alternatives, consider
collect, addAll, removeAll, findAll, and grep.

 This leads to a second issue: Some methods work on a copy of the collection
and return it when finished; other methods work directly on the collection object
they were called on (we call this the receiver4 object).

4.4.2 Distinguishing between copy and modify semantics

Generally, there is no easy way to anticipate whether a method modifies the
receiver or returns a copy. Some languages have naming conventions for this, but
Groovy couldn’t do so because all Java methods are directly visible in Groovy and
Java’s method names could not be made compliant to such a convention. But
Groovy tries to adapt to Java and follow the heuristics that you can spot when
looking through the Collections API:

■ Methods that modify the receiver typically don’t return a collection. Exam-
ples: add, addAll, remove, removeAll, and retainAll. Counter-example: sort.

■ Methods that return a collection typically don’t modify the receiver. Exam-
ples: grep, findAll, collect. Counter-example: sort. Yes, sort is a counter-
example for both, because it returns a collection and modifies the receiver.

■ Methods that modify the receiver have imperative names. They sound like
there could be an exclamation mark behind them. (Indeed, this is Ruby’s
naming convention for such methods.) Examples: add, addAll, remove,
removeAll, retainAll, sort. Counter-examples: collect, grep, findAll, which
are imperative but do not modify the receiver and return a modified copy.

■ The preceding rules can be mapped to operators, by applying them to the
names of their method counterparts: << leftShift is imperative and mod-
ifies the receiver (on lists, unfortunately not on strings—doing so would
break Java’s invariant of strings being immutable); + plus is not imperative
and returns a copy.

These are not clear rules but only heuristics to give you some guidance. When-
ever you’re in doubt and object identity is important, have a look at the documen-
tation or write a few assertions.

4 From the Smalltalk notion of describing method calls on an object as sending a message to the receiver.

Summary 121
4.5 Summary

This has been a long trip through the valley of Groovy’s datatypes. There were
lots of different paths to explore that led to new interesting places.

 We introduced ranges as objects that—as opposed to control structures—have
their own time and place of creation, can be passed to methods as parameters,
and can be returned from method calls. This makes them very flexible, and once
the concept of a range is available, many uses beyond simple control structures
suggest themselves. The most natural example you have seen is extracting a sec-
tion of a list using a range as the operand to the list’s subscript operator.

 Lists and maps are more familiar to Java programmers than ranges but have
suffered from a lack of language support in Java itself. Groovy recognizes just how
often these datatypes are used, gives them special treatment in terms of literal
declarations, and of course provides operators and extra methods to make life
even easier. The lists and maps used in Groovy are the same ones encountered in
Java and come with the same rules and restrictions, although these become less
onerous due to some of the additional methods available on the collections.

 Throughout our coverage of Groovy’s datatypes, you have seen closures used
ubiquitously for making functionality available in a simple and unobtrusive
manner. In the next chapter, we will demystify the concept, explain the usual
and the not-so-usual applications, and show how you can spice up your own
code with closures.

Working with closures
I wouldn’t like to build a tool that could only
do what I had been able to imagine for it.

 —Bjarne Stroustrup
122

A gentle introduction to closures 123
Closures are important. Very important. They’re arguably one of the most useful
features of Groovy—but at the same time they can be a strange concept until you
fully understand them. In order to get the best out of Groovy, or to understand any-
one else’s Groovy code, you’re going to have to be comfortable with them. Not just
“met them once at a wedding” comfortable, but “invite them over for a barbecue on
the weekend” comfortable.

 Now, we don’t want to scare you away. Closures aren’t hard—they’re just differ-
ent than anything you might be used to. In a way, this is strange, because one of
the chief tenets of object-orientation is that objects have behavior as well as data.
Closures are objects whose main purpose in life is their behavior—that’s almost
all there is to them.

 In the past few chapters, you’ve seen a few uses of closures, so you might
already have a good idea of what they’re about. Please forgive us if we seem to be
going over the same ground again—it’s so important, we’d rather repeat our-
selves than leave you without a good grasp of the basic principles.

 In this chapter, we will introduce the fundamental concept of closures (again),
explain their benefits, and then show how they can be declared and called. After
this basic treatment, we will look in a bit more depth at other methods available
on closures and the scope of a closure—that is, the data and members that can be
accessed within it—as well as consider what it means to return from a closure. We
end the chapter with a discussion of how closures can be used to implement many
common design patterns and how they alleviate the need for some others by
solving the problem in a different manner.

 So, without further ado, let’s take a look at what closures really are in the
first place.

5.1 A gentle introduction to closures

Let’s start with a simple definition of closures, and then we’ll expand on it with an
example. A closure is a piece of code wrapped up as an object. It acts like a method
in that it can take parameters and it can return a value. It’s a normal object in that
you can pass a reference to it around just as you can a reference to any other
object. Don’t forget that the JVM has no idea you’re running Groovy code, so
there’s nothing particularly odd that you could be doing with a closure object. It’s
just an object. Groovy provides a very easy way of creating closure objects and
enables some very smart behavior.

 If it helps you to think in terms of real-world analogies, consider an envelope
with a piece of paper in it. For other objects, the paper might have the values of

124 CHAPTER 5
Working with closures
variables on it: “x=5, y=10” and so on. For a closure, the paper would have a list
of instructions. You can give that envelope to someone, and that person might
decide to follow the instructions on the piece of paper, or they might give the
envelope to someone else. They might decide to follow the instructions lots of
times, with a different context each time. For instance, the piece of paper might
say, “Send a letter to the person you’re thinking of,” and the person might flip
through the pages of their address book thinking of every person listed in it, fol-
lowing the instructions over and over again, once for each contact in that
address book.

 The Groovy equivalent of that example would be something like this:

Closure envelope = { person -> new Letter(person).send() }
addressBook.each (envelope)

That’s a fairly long-winded way of going about it, and not idiomatic Groovy, but it
shows the distinction between the closure itself (in this case, the value of the
envelope variable) and its use (as a parameter to the each method). Part of what
makes closures hard to understand when coming to them for the first time is that
they’re usually used in an abbreviated form. Groovy makes them very concise
because they’re so frequently used—but that brevity can be detrimental to the
learning process. Just for the comparison, here’s the previous code written using
the shorthand Groovy provides. When you see this shorthand, it’s often worth
mentally separating it out into the longer form:

addressBook.each { new Letter(it).send() }

It’s still a method call passing a closure as the single parameter, but that’s all hid-
den—passing a closure to a method is sufficiently common in Groovy that there
are special rules for it. Similarly, if the closure needs to take only a single param-
eter to work on, Groovy provides a default name—it—so that you don’t need to
declare it specifically. That’s how our example ends up so short when we use all
the Groovy shortcuts.

 Now, we’re in danger of getting ahead of ourselves here, so we’ll pause and
think about why we would want to have closures in the first place. Just keep
remembering: They’re objects that are associated with some code, and Groovy
provides neat syntax for them.

The case for closures 125
5.2 The case for closures

Java as a platform is great: portable, stable, scalable, and reasonably well-
performing. Java as a language has a lot of advantages but unfortunately also
some shortcomings.

 Some of those deficiencies can be addressed in Groovy through the use of
closures. We’ll look at two particular areas that benefit from closures: perform-
ing everyday tasks with collections, and using resources in a safe manner. In
these two common situations, you need to be able to perform some logic that is
the same for every case and execute arbitrary code to do the actual work. In the
case of collections, that code is the body of the iterator; in the case of resource
handling, it’s the use of the resource after it’s been acquired and before it’s been
released. In general terms, such a mechanism uses a callback to execute the
work. Closures are Groovy’s way of providing transparent callback targets as
first-class citizens.

5.2.1 Using iterators

A typical construction in Java code is traversing a collection with an iterator:

// Java
for (Iterator iter = collection.iterator(); iter.hasNext();){
 ItemType item = (ItemType) iter.next();
 // do something with item
}

With a specific implementation of Collection, or an interface such as List, there
may be options such as the following:

// Java
for (int i=0; i < list.size(); i++){
 ItemType item = (ItemType) list.get(i);
 // do something with item
}

Java 5 improves the situation with two new features: generics and the enhanced
for statement. Generics allow both to be written without casts; indeed, straight-
forward iteration can be written in a form that is very similar to the Groovy for
loop, using : instead of in:

// Java 5
for (ItemType item : list) {
 // do something with item
}

126 CHAPTER 5
Working with closures
The syntax may not be ideal1—the Java 5 designers were constrained in terms of
adding keywords—but it gets the job done, right? Well, nearly. For one thing, it’s
limited to Java 5—many developers still work with Java 1.4 or earlier and are
forced to write a relatively large amount of code for what is such a common oper-
ation. It’s relatively simple to get this code right—but familiarity breeds con-
tempt, and it’s all too easy to miss errors within loop constructs because you’re so
used to seeing them in method after method.

 A second issue with the enhanced for statement brings us closer to closures,
however. Clearly it’s useful to have a for loop that iterates through every item in a
collection—otherwise Groovy wouldn’t have it, for starters. (Groovy’s for state-
ment is somewhat broader in scope than Java 5’s—see chapter 6 for more details.)
It’s useful, but it’s not everything we could wish for. There are common patterns
for why we want to iterate through a collection, such as finding whether a partic-
ular condition is met by any element, finding all the elements met by a condition,
or transforming each element into another, thereby creating a new collection.

 It would be madness to have a specialized syntax for all of those patterns.
Making a language too smart in a non-extensible way ends up like a road through
the jungle—it’s fine when you’re doing something anticipated by the designers,
but as soon as you stray off the path, life is tough. So, without direct language sup-
port for all those patterns, what’s left? Each of the patterns relies on executing a
particular piece of code again and again, once for each element of the collection.
Java has no concept of “a particular piece of code” unless it’s buried in a method.
That method can be part of an interface implementation, but at that point each
piece of code needs its own (possibly anonymous) class, and life gets very messy.

 Groovy uses closures to specify the code to be executed each time and adds
the extra methods (each, find, findAll, collect, and so forth) to the collection
classes to make them readily available. Those methods aren’t magic, though—
they’re simple Groovy, because closures allow the controlling logic (the iteration)
to be separated from the code to execute for every element. If you find your-
self wanting a similar construct that isn’t already covered by Groovy, you can
add it easily.

1 The Groovy designers considered making the Groovy for loop appear exactly as it does in Java 5, but
they found that the colon was an unfortunate choice because you cannot read the expression fluently
without replacing the colon with an English word. Using the in keyword better reveals the meaning
of the expression and the role of the operands in use.

The case for closures 127
 Separating iteration logic from what to do on each iteration is not the only
reason for introducing the closure concept. A second reason that may be even
more important is the use of closures when handling resources.

5.2.2 Handling resources

How many times have you seen code that opens a stream but calls close at the
end of the method, overlooking the fact that the close statement may never be
reached when an exception occurs while processing? So, it needs to be protected
with a try-catch block. No—wait—that should be try-finally, or should it? And
inside the finally block, close can throw another exception that needs to be han-
dled. There are too many details to remember, and so resource handling is often
implemented incorrectly. With Groovy’s closure support, you can put that logic in
one place and use it like this:

new File('myfile.txt').eachLine { println it }

The eachLine method of File now takes care of opening and closing the file input
stream properly. This guards you from accidentally producing a resource leak of
file handles.

 Streams are just the most obvious tip of the resource-handling iceberg. Data-
base connections, native handles such as graphic resources, network connec-
tions—even your GUI is a resource that needs to be managed (that is, repainted
correctly at the right time), and observers and event listeners need to be removed
when the time comes, or you end up with a memory leak.

 Forgetting to clean up correctly in all situations ought to be a problem that only
affects neophyte Java programmers, but because the language provides little help
beyond try-catch-finally, even experienced developers end up making mis-
takes. It is possible to code around this in an orderly manner, but Java leads inex-
perienced programmers away from centralized resource handling. Code structures
are duplicated, and the probability of not-so-perfect implementations rises with
the number of duplicates.

 Resource-handling code is often tested poorly. Projects that measure their test
coverage typically struggle to fully cover this area. That is because duplicated,
widespread resource handling is difficult to test and eats up precious develop-
ment time. Testing centralized handlers is easy and requires only a single test.

 Let’s see what resource handling solutions Java provides and why they are not
used often, and then we’ll show the corresponding Groovy solutions.

128 CHAPTER 5
Working with closures
A common Java approach: use inner classes
In order to do centralized resource handling, you need to pass resource-using
code to the handler. This should sound familiar by now—it’s essentially the same
problem we encountered when considering collections: The handler needs to
know how to call that code, and therefore it must implement some known inter-
face. In Java, this is frequently implemented by an inner class for two reasons:
First, it allows the resource-using code to be close to the calling code (which is
often useful for readability); and second, it allows the resource-using code to
interact with the context of the calling code, using local variables, calling meth-
ods on the relevant object, and so on.

BY THE WAY JUnit, one of the most prominent Java packages outside the JDK, follows
this strategy by using the Runnable interface with its runProtected
method.

Anonymous inner classes are almost solely used for this kind of pattern—if Java
had closures, it’s possible that anonymous inner classes might never have been
invented. The rules and restrictions that come with them (and with plain inner
classes) make it obvious what a wart the whole “feature” really is on the skin of
what is otherwise an elegant and simple language. As soon as you have to start
typing code like MyClass.this.doSomething, you know something is wrong—and
that’s aside from the amount of distracting clutter required around your code just
to create it in the first place. The interaction with the context of the calling code is
limited, with rules such as local variables having to be final in order to be used
making life awkward.

 In some ways, it’s the right approach, but it looks ugly, especially when used
often. Java’s limitations get in the way too much to make it an elegant solution.
The following example uses a Resource that it gets from a ResourceHandler, which
is responsible for its proper construction and destruction. Only the boldface code
is really needed for doing the job:

// Java
interface ResourceUser {
 void use(Resource resource)
}

resourceHandler.handle(new ResourceUser(){
 public void use (Resource resource) {
 resource.doSomething()
 }
});

The case for closures 129
The Groovy equivalent of this code reveals all necessary information without
any waste:

resourceHandler.handle { resource -> resource.doSomething() }

Groovy’s scoping is also significantly more flexible and powerful, while removing
the “code mess” that inner classes introduce.

An alternative Java approach: the Template Method pattern
Another strategy to centralize resource handling in Java is to do it in a superclass
and let the resource-using code live in a subclass. This is the typical implementa-
tion of the Template Method [GOF] pattern.

 The downside here is that you either end up with a proliferation of sub-
classes or use (maybe anonymous) inner subclasses, which brings us back to the
drawbacks discussed earlier. It also introduces penalties in terms of code clarity
and freedom of implementation, both of which tend to suffer when inherit-
ance is involved. This leads us to take a close look at the dangers of abstrac-
tion proliferation.

 If there were only one interface that could be used for the purpose of passing
logic around, like our imaginary ResourceUser interface from the previous exam-
ple, then things would not be too bad. But in Java there is no such beast—no sin-
gle ResourceUser interface that serves all purposes. The signature of the callback
method use needs to adapt to the purpose: the number and type of parameters,
the number and type of declared exceptions, and the return type.

 Therefore a variety of interfaces has evolved over time: Runnables, Observers,
Listeners, Visitors, Comparators, Strategies, Commands, Controllers, and so on.
This makes their use more complicated, because with every new interface, there
also is a new abstraction or concept that needs to be understood.

 In comparison, Groovy closures can handle any method signature, and the
behavior of the controlling logic may even change depending on the signature of
the closure provided to it, as you’ll see later.

 These two examples of pain-points in Java that can be addressed with closures
are just that—examples. If they were the only problems made easier by closures,
closures would still be worth having, but reality is much richer. It turns out that
closures enable many patterns of programming that would be unthinkable with-
out them.

 Before you can live your dreams, however, you need to learn more about the
basics of closures. Let’s start with how we declare them in the first place.

130 CHAPTER 5
Working with closures
5.3 Declaring closures

So far, we have used the simple abbreviated syntax of closures: After a method
call, put your code in curly braces with parameters delimited from the closure
body by an arrow.

 Let’s start by adding to your knowledge about the simple abbreviated syntax,
and then we’ll look at two more ways to declare a closure: by using them in assign-
ments and by referring to a method.

5.3.1 The simple declaration

Listing 5.1 shows the simple closure syntax plus a new convenience feature. When
there is only one parameter passed into the closure, its declaration is optional.
The magic variable it can be used instead. See the two equivalent closure decla-
rations in listing 5.1.

log = ''
(1..10).each{ counter -> log += counter }
assert log == '12345678910'

log = ''
(1..10).each{ log += it }
assert log == '12345678910'

Note that unlike counter, the magic variable it needs no declaration.
 This syntax is an abbreviation because the closure object as declared by the

curly braces is the last parameter of the method and would normally appear
within the method’s parentheses. As you will see, it is equally valid to put it
inside parentheses like any other parameter, although it is hardly ever used
this way:

log = ''
(1..10).each({ log += it })
assert log == '12345678910'

This syntax is simple because it uses only one parameter, the implicit parameter
it. Multiple parameters can be declared in sequence, delimited by commas. A
default value can optionally be assigned to parameters, in case no value is passed
from the method to the closure. We will show examples in section 5.4.

Listing 5.1 Simple abbreviated closure declaration

Declaring closures 131
TIP Think of the arrow as an indication that parameters are passed from the
method on the left into the closure body on the right.

5.3.2 Using assignments for declaration

A second way of declaring a closure is to directly assign it to a variable:

def printer = { line -> println line }

The closure is declared inside the curly braces and assigned to the printer
variable.

TIP Whenever you see the curly braces of a closure, think: new Closure(){}.

There is also a special kind of assignment, to the return value of a method:

def Closure getPrinter() {
 return { line -> println line }
}

Again, the curly braces denote the construction of a new closure object. This
object is returned from the method call.

TIP Curly braces can denote the construction of a new closure object or a
Groovy block. Blocks can be class, interface, static or object initializers, or
method bodies; or can appear with the Groovy keywords if, else,
synchronized, for, while, switch, try, catch, and finally. All other
occurrences are closures.

As you see, closures are objects. They can be stored in variables, they can be
passed around, and, as you probably guessed, you can call methods on them.
Being objects, closures can also be returned from a method.

5.3.3 Referring to methods as closures

The third way of declaring a closure is to reuse something that is already
declared: a method. Methods have a body, optionally return values, can take
parameters, and can be called. The similarities with closures are obvious, so
Groovy lets you reuse the code you already have in methods, but as a closure. Ref-
erencing a method as a closure is performed using the reference.& operator. The
reference is used to specify which instance should be used when the closure is
called, just like a normal method call to reference.someMethod(). Figure 5.1

132 CHAPTER 5
Working with closures
shows an assignment using a method closure, breaking the statement up into its
constituent parts.

 Listing 5.2 demonstrates method closures in action, showing two different
instances being used to give two different closures, even though the same method
is invoked in both cases.

class MethodClosureSample {
 int limit

 MethodClosureSample (int limit) {
 this.limit = limit
 }

 boolean validate (String value) {
 return value.length() <= limit
 }
}

MethodClosureSample first = new MethodClosureSample (6)
MethodClosureSample second = new MethodClosureSample (5)

Closure firstClosure = first.&validate

def words = ['long string', 'medium', 'short', 'tiny']

assert 'medium' == words.find (firstClosure)
assert 'short' == words.find (second.&validate)

Each instance (created at b) has a separate idea of how long a string it will deem
to be valid in the validate method. We create a reference to that method with
first.&validate at c and second.&validate, showing that the reference can be
assigned to a variable which is then passed (at d) or passed as a parameter to the
find method at e. We use a sample list of words to check that the closures are
doing what we expect them to.

Listing 5.2 Simple method closures in action

Figure 5.1
The anatomy of a simple method
closure assignment statement

Normal
constructor
calls

b

Method closure assignmentc

Calling the
closure

d
Passing
a method
closure
directly

e

Declaring closures 133
 Method closures are limited to instance methods, but they do have another
interesting feature—runtime overload resolution, also known as multimethods. You
will find out more about multimethods in chapter 7, but listing 5.3 gives a taste.

class MultiMethodSample {

 int mysteryMethod (String value) {
 return value.length()
 }

 int mysteryMethod (List list) {
 return list.size()
 }

 int mysteryMethod (int x, int y) {
 return x+y
 }
}

MultiMethodSample instance = new MultiMethodSample()
Closure multi = instance.&mysteryMethod

assert 10 == multi ('string arg')
assert 3 == multi (['list', 'of', 'values'])
assert 14 == multi (6, 8)

Here a single instance is used, and indeed a single closure (at b)—but each time
it’s called, a different method implementation is invoked, at c. We don’t want to
rush ahead of ourselves, but you’ll see a lot more of this kind of dynamic behavior
in chapter 7.

 Now that you’ve seen all the ways of declaring a closure, it’s worth pausing for
a moment and seeing them all together, performing the same function, just with
different declaration styles.

5.3.4 Comparing the available options

Listing 5.4 shows all of these ways of creating and using closures: through simple
declaration, assignment to variables, and method closures. In each case, we call
the each method on a simple map, providing a closure that doubles a single value.
By the time we’ve finished, we’ve doubled each value three times.

Listing 5.3 Multimethod closures—the same method name called with different
parameters is used to call different implementations

Only a single
closure is
created

b

Different implementations
are called based on
argument types

c

134 CHAPTER 5
Working with closures
map = ['a':1, 'b':2]
map.each{ key, value -> map[key] = value * 2 }
assert map == ['a':2, 'b':4]

doubler = {key, value -> map[key] = value * 2 }
map.each(doubler)
assert map == ['a':4, 'b':8]

def doubleMethod (entry){
 map[entry.key] = entry.value * 2
}
doubler = this.&doubleMethod
map.each(doubler)
assert map == ['a':8, 'b':16]

In b, we pass the closure as the parameter directly. This is the form you’ve seen
most commonly so far.

 The declaration of the closure in c is disconnected from its immediate use.
The curly braces are Groovy’s way to declare a closure, so we assign a closure
object to the variable doubler. Some people incorrectly interpret this line as
assigning the result of a closure call to a variable. Don’t fall into that trap! The
closure is not yet called, only declared, until we reach it. There you see that pass-
ing the closure as an argument to the each method via a reference is exactly the
same as declaring the closure in-place, the style that we followed in all the previ-
ous examples.

 The method declared in d is a perfectly ordinary method. There is no trace of
our intention to use it as a closure.

 In e, the reference.& operator is used for referencing a method name as a
closure. Again, the method is not immediately called; the execution of the
method occurs as part of the next line. This is just like c. The closure is passed to
the each method, which calls it back for each entry in the map.

 Typing2 is optional in Groovy, and consequently it is optional for closure
parameters. A special thing about closure parameters with explicit types is that
this type is not checked at compile-time but at runtime.

Listing 5.4 Full closure declaration examples

2 The word typing has two meanings: declaring object types and typing keystrokes. Although Groovy
provides optional typing, you still have to key in your program code.

Parameter sequence
with commas

b

Assign and then call
a closure reference

c

A usual method
declaration

d

Reference and call a
method as a closure

e

Using closures 135
 In order to fully understand how closures work and how to use them within
your code, you need to find out how to invoke them. That is the topic of the
next section.

5.4 Using closures

So far, you have seen how to declare a closure for the purpose of passing it for
execution, to the each method for example. But what happens inside the each
method? How does it call your closure? If you knew this, you could come up with
equally smart implementations. We’ll first look at how simple calling a closure is
and then move on to explore some advanced methods that the Closure type has
to offer.

5.4.1 Calling a closure

Suppose we have a reference x pointing to a closure; we can call it with x.call()
or simply x(). You have probably guessed that any arguments to the closure call
go between the parentheses.

 We start with a simple example. Listing 5.5 shows the same closure being
called both ways.

def adder = { x, y -> return x+y }

assert adder(4, 3) == 7
assert adder.call(2, 6) == 8

We start off by declaring pretty much the simplest possible closure—a piece of
code that returns the sum of the two parameters it is passed. Then we call the clo-
sure both directly and using the call method. Both ways of calling the closure
achieve exactly the same effect.

 Now let’s try something more involved. In listing 5.6, we demonstrate calling a
closure from within a method body and how the closure gets passed into that
method in the first place. The example measures the execution time of the closure.

def benchmark(repeat, Closure worker){
 start = System.currentTimeMillis()

Listing 5.5 Calling closures

Listing 5.6 Calling closures

Put closures lastb

Some pre-workc

136 CHAPTER 5
Working with closures
 repeat.times{worker(it)}
 stop = System.currentTimeMillis()
 return stop - start
}
slow = benchmark(10000) { (int) it / 2 }
fast = benchmark(10000) { it.intdiv(2) }
assert fast * 15 < slow

Do you remember our performance investigation for regular expression patterns
in listing 3.7? We needed to duplicate the benchmarking logic because we had no
means to declare how to benchmark something. Now you know how. You can pass a
closure into the benchmark method, where some pre- and post-work takes control
of proper timing.

 We put the closure parameter at the end of the parameter list in b to allow the
simple abbreviated syntax when calling the method. In the example, we declare
the type of the closure. This is only to make things more obvious. The Closure
type is optional.

 We effectively start timing the benchmark at c. From a general point of view,
this is arbitrary pre-work like opening a file or connecting to a database. It just so
happens that our resource is time.

 At d, we call the given closure as many times as our repeat parameter
demands. We pass the current count to the closure to make things more interest-
ing. From a general point of view, a resource is passed to the closure.

 We stop timing at e and calculate the time taken by the closure. Here is the
place for the post-work: closing files, flushing buffers, returning connections to
the pool, and so on.

 The payoff comes at f. We can now pass logic to the benchmark method. Note
that we use the simple abbreviated syntax and use the magic it to refer to the cur-
rent count. As a side effect, we learn that the general number division takes more
than 15 times longer than the optimized intdiv method.

BY THE WAY This kind of benchmarking should not be taken too seriously. There are
all kinds of effects that can heavily influence such wall-clock based mea-
surements: machine characteristics, operating system, current machine
load, JDK version, Just-In-time compiler and Hotspot settings, and so on.

Figure 5.2 shows the UML sequence diagram for the general calling scheme of the
declaring object that creates the closure, the method invocation on the caller, and
the caller’s callback to the given closure.

Call closure the
given number
of timesd

Some
post-worke

Pass different
closures for
analysis

f

Using closures 137
When calling a closure, you need to pass exactly as many arguments to the closure
as it expects to receive, unless the closure defines default values for its parame-
ters. This default value is used when you omit the corresponding argument. The
following is a variant of the addition closure as used in listing 5.5, with a default
value for the second parameter and two calls—one that passes two arguments,
and one that relies on the default:

def adder = { x, y=5 -> return x+y }

assert adder(4, 3) == 7
assert adder.call(7) == 12

For the use of default parameters in closures, the same rules apply as for default
parameters for methods. Also, closures can be used with a parameter list of vari-
able length in the same way that methods can. We will cover this in section 7.1.2.

 At this point, you should be comfortable with passing closures to methods and
have a solid understanding of how the callback is executed—see also the UML
diagram in figure 5.2. Whenever you pass a closure to a method, you can be sure
that a callback will be executed one way or the other (maybe only conditionally),
depending on that method’s logic. Closures are capable of more than just being
called, though. In the next section, you see what else they have to offer.

5.4.2 More closure methods

The class groovy.lang.Closure is an ordinary class, albeit one with extraordinary
power and extra language support. It has various methods available beyond call.
We will present the most the important ones—even though you will usually just
declare and call closures, it’s nice to know there’s some extra power available
when you need it.

Figure 5.2
UML sequence diagram of the typical
sequence of method calls when a declarer
creates a closure and attaches it to a
method call on the caller, which in turn
calls that closure’s call method

138 CHAPTER 5
Working with closures
Reacting on the parameter count
A simple example of how useful it is to react on the parameter count of a closure
is map’s each method, which we discussed in section 4.3.2. It passes either a
Map.Entry object or key and value separately into the given closure, depending on
whether the closure takes one or two arguments. You can retrieve the information
about expected parameter count (and types, if declared) by calling closure’s
getParameterTypes method:

def caller (Closure closure){
 closure.getParameterTypes().size()
}

assert caller { one -> } == 1
assert caller { one, two -> } == 2

As in the Map.each example, this allows for the luxury of supporting closures with
different parameter styles, adapted to the caller’s needs.

How to curry favor with a closure
Currying is a technique invented by Moses Schönfinkel and Gottlob Frege, and
named after the logician Haskell Brooks Curry (1900..1982), a pioneer in func-
tional programming. (Unsurprisingly, the functional language Haskell is also
named after Curry.) The basic idea is to take a function with multiple parameters
and transform it into a function with fewer parameters by fixing some of the val-
ues. A classic example is to choose some arbitrary value n and transform a func-
tion that sums two parameters into a function that takes a single parameter and
adds n to it.

 In Groovy, Closure’s curry method returns a clone of the current closure, hav-
ing bound one or more parameters to a given value. Parameters are bound to
curry’s arguments from left to right. Listing 5.7 gives an implementation.

def adder = {x, y -> return x+y}
def addOne = adder.curry(1)
assert addOne(5) == 6

We reuse the same closure you’ve seen a couple of times now for general summa-
tion. We call the curry method on it to create a new closure, which acts like a sim-
ple adder, but with the value of the first parameter always fixed as 1. Finally, we
check our results.

Listing 5.7 A simple currying example

Using closures 139
 If you’re new to closures or currying, now might be a good time to take a
break—and pick the book up again back at the start of the currying discussion, to
read it again. It’s a deceptively simple concept to describe mechanically, but it can
be quite difficult to internalize. Just take it slowly, and you’ll be fine.

 The real power of currying comes when the closure’s parameters are them-
selves closures. This is a common construction in functional programming, but it
does take a little getting used to.

 For an example, suppose you are implementing a logging facility. It should
support filtering of log lines, formatting them, and appending them to an output
device. Each activity should be configurable. The idea is to provide a single clo-
sure for a customized version of each activity, while still allowing you to imple-
ment the overall pattern of when to apply a filter, do the formatting, and finally
output the log line in one place. The following shows how currying is used to
inject the customized activity into that pattern:

def configurator = { format, filter, line ->
 filter(line) ? format(line) : null
}
def appender = { config, append, line ->
 def out = config(line)
 if (out) append(out)
}

def dateFormatter = { line -> "${new Date()}: $line" }
def debugFilter = { line -> line.contains('debug') }
def consoleAppender = { line -> println line }

def myConf = configurator.curry(dateFormatter, debugFilter)
def myLog = appender.curry(myConf, consoleAppender)

myLog('here is some debug message')
myLog('this will not be printed')

Closures b and c are like recipes: Given any filter, output format, destination,
and a line to potentially log, they perform the work, delegating appropriately.
The short closures in d are the specific ingredients in the recipe. They could be
specified every time, but we’re always going to use the same ingredients. Curry-
ing (at e) allows us to remember just one object rather than each of the indi-
vidual parts. To continue the recipe analogy, we’ve put all the ingredients
together, and the result needs to be put in the oven whenever we want to do
some logging.

 Logging is often dismissed as a dry topic. But in fact, the few lines in the pre-
ceding code prove that conception wrong. As a mindful engineer, you know that

Configuration
use

b

Formatting
use

c

Filter,
format, and
output parts

d

Put it all
together

e

140 CHAPTER 5
Working with closures
log statements will be called often, and any logging facility must pay attention to
performance. In particular, there should be the least possible performance hit
when no log is written.

 The time-consuming operations in this example are formatting and printing.
Filtering is quick. With the help of closures, we laid out a code pattern which
ensures that the expensive operations are not called for lines that don’t need to
be printed. The configurator and appender closures implement that pattern.

 This pattern is extremely flexible, because the logic of how the filtering works,
how the formatting is applied, and how the result is written is fully configurable
(even at runtime).

 With the help of closures and their curry method, we achieved a solution with
the best possible coherence and lowest possible coupling. Note how each of the
closures completely addresses exactly one concern.

 This is the beginning of functional programming. See Andrew Glover’s
excellent online article on functional programming with Groovy closures at
http://www-128.ibm.com/developerworks/library/j-pg08235/. It expands on how
to use this approach for implementing your own expression language, capturing
business rules, and checking your code for holding invariants.

Classification via the isCase method
Closures implement the isCase method to make closures work as classifiers in
grep and switch. In that case, the respective argument is passed into the clo-
sure, and calling the closure needs to evaluate to a Groovy Boolean value (see
section 6.1). As you see in

assert [1,2,3].grep{ it<3 } == [1,2]

switch(10){
 case {it%2 == 1} : assert false
}

this allows us to classify by arbitrary logic. Again, this is only possible because clo-
sures are objects.

Remaining methods
For the sake of completeness, it needs to be said that closures support the clone
method in the usual Java sense.

 The asWriteable method returns a clone of the current closure that has an
additional writeTo(Writer) method to write the result of a closure call directly
into the given Writer.

Understanding scoping 141
 Finally, there are a setter and getter for the so-called delegate. We will cross the
topic of what a delegate is and how it is used inside a closure when investigating a
closure’s scoping rules in the next section.

5.5 Understanding scoping

You have seen how to create closures when they are needed for a method call and
how to work with closures when they are passed to your method. This is very pow-
erful while still simple to use.

 This section looks under the hood and deepens your understanding of what
happens when you use this simple construction. We explore what data and meth-
ods you can access from a closure, what difference using the this reference
makes, and how to put your knowledge to the test with a classic example designed
to test any language’s expressiveness.

 This is a bit of a technical section, and you can safely skip it on first read. How-
ever, at some point you may want to read it and learn how Groovy can provide all
those clever tricks. In fact, knowing the details will enable you to come up with
particularly elegant solutions yourself.

 What is available inside a closure is called its scope. The scope defines

■ What local variables are accessible
■ What this (the current object) refers to
■ What fields and methods are accessible

We start with an explanation of the behavior that you have seen so far. For that
purpose, we revisit a piece of code that does something 10 times:

def x = 0
10.times {
 x++
}
assert x == 10

It is evident that the closure that is passed into the times method can access
variable x, which is locally accessible when the closure is declared. Remember: The
curly braces show the declaration time of the closure, not the execution time.
The closure can access x for both reading and writing at declaration time.

 This leads to a second thought: The closure surely needs to also access x at exe-
cution time. How could it increment it otherwise? But the closure is passed to the
times method, a method that is called on the Integer object with value 10. That
method, in turn, calls back to our closure. But the times method has no chance of

142 CHAPTER 5
Working with closures
knowing about x. So it cannot pass it to the closure, and it surely has no means of
finding out what the closure is doing with it.

 The only way in which this can possibly work is if the closure somehow remem-
bers the context of its birth and carries it along throughout its lifetime. That way,
it can work on that original context whenever the situation calls for it.

 This birthday context that the closure remembers needs to be a reference, not a
copy. If that context were a copy of the original one, there would be no way of
changing the original from inside the closure. But our example clearly does
change the value of x—otherwise the assertion would fail. Therefore, the birthday
context must be a reference.

5.5.1 The simple variable scope

Figure 5.3 depicts your current understanding of which objects are involved in
the times example and how they reference each other.

 The Script creates a Closure that has a back reference to x, which is in the local
scope of its declarer. Script calls the times method on the Integer 10 object, pass-
ing the declared closure as a parameter. In other words, when times is executed, a
reference to the closure object lies on the stack. The times method uses this refer-
ence to execute Closure’s call method, passing its local variable count to it. In this
specific example, the count is not used within Closure.call. Instead, Closure.call
only works on the x reference that it holds to the local variable x in Script.

 Through analysis, you see that local variables are bound as a reference to the
closure at declaration time.

Figure 5.3 Conceptual view of object references and method calls between a
calling script, an Integer object of value 10 that is used in the script, and the
closure that is attached to the Integer’s times method for defining something
that has to be done 10 times

Understanding scoping 143
5.5.2 The general closure scope

It would not be surprising if other scope elements were treated the same as local
variables: the value of this, fields, methods, and parameters.

 This generalization is correct, but the this reference is a special case. Inside a
closure, you could legitimately assume that this would refer to the current object,
which is the closure object itself. On the other hand, it should make no difference
whether you use this.reference or plain reference for locally accessible refer-
ences. The first approach has long been used in Groovy but was changed in favor
of the latter by the JSR expert group.3

 A reference to the declaring object is held in a special variable called owner.
Listing 5.8 extends the purpose of the initial example to reveal the remaining
scope elements.

 We implement a small class Mother that should give birth to a closure through
a method with that name. The class has a field, another method, parameters, and
local variables that we can study. The closure should return a list of all elements
that are in the current context (aka scope). Behind the scenes, these elements will
be bound at declaration time but not evaluated until the closure is called. Let’s
investigate the result of such a call.

class Mother {
 int field = 1
 int foo(){
 return 2
 }
 Closure birth (param) {
 def local = 3
 def closure = { caller ->
 [this, field, foo(), local, param, caller, this.owner]
 }
 return closure
 }
}

Mother julia = new Mother()

closure = julia.birth(4)

context = closure.call(this)

3 The implementation of the new behavior was not yet available at the time of writing. Therefore the
example contains no respective assertion but only a println.

Listing 5.8 Investigating the closure scope

This method creates and
returns the closure

b

Let a mother give
birth to a closure

c

Call the closured

144 CHAPTER 5
Working with closures
println context[0].class.name

assert context[1..4] == [1,2,3,4]
assert context[5] instanceof Script
assert context[6] instanceof Mother

firstClosure = julia.birth(4)
secondClosure = julia.birth(4)
assert false == firstClosure.is(secondClosure)

We added the optional return type to the method declaration in b to point out
that this method returns a closure object. A method that returns a closure is not
the most common usage of closures, but every now and then it comes in handy.
Note that we are at declaration time in this method. The list that the closure will
return when called doesn’t exist yet.

 After having constructed a new Mother, we call its birth method at c to
retrieve a newly born closure object. Even now, the closure hasn’t been called. The
list of elements is not yet constructed.

 Rubber meets road at d. Now we call the closure using the explicit call syntax
to make it stand out. The closure constructs its list of elements from what it
remembers about its birth. We store that list in a variable for further inspection.
Notice that we pass ourselves as a parameter into the closure in order to make it
available inside the closure as the caller.

 At e the example should print the script class name by the time you are read-
ing this. Groovy versions before 1.0 printed the closure type.

 The instance variable field, the result of calling foo(), the local variable
local, and the parameter param all have the expected values, as demonstrated in
f, although they were not known to the Script when it executed the closure.
This is the birthday recall that we expected. Only foo() is a bit tricky. As always, it
is a shortcut for this.foo(), and as we said, this refers to the closure, not to the
declaring object. At this point, closures play a trick for us. They delegate all4

method calls to a so-called delegate object, which by default happens to be the
declaring object (that is, the owner). This makes the closure appear as if the enclosed
code runs in the birthday context.

 Passing the caller explicitly into the closure is the way to make it accessible
inside. We demonstrate this at g. Throughout all previous closure examples in
this book, the calling and the declaring object were identical. Therefore, we could

4 Strictly speaking, not all method calls but only those that the closure cannot answer itself.

Scripte
No surprise?f

The calling objectg

The declaring objecth

Closure braces
are like new

i

Understanding scoping 145
easily apply side effects on it. You may have thought we were side-effecting the
caller while we were working on the declarer. If this sounds totally crazy to you,
don’t worry. The concept may be a bit too unfamiliar. Start over with the times
example, if you want. Breathe deeply. It’ll come in time.

 Inside a closure, the magic variable owner refers to the declaring object, as
shown at h.

 At i you see that with every call to birth, a new closure is constructed. Think
of the closures’ curly braces as if the word new appeared before them. Behind this
observation is a fundamental difference between closures and methods: Methods
are constructed exactly once at class-generation time. Closures are objects and
thus constructed at runtime, and there may be any number of them constructed
from the same lines of code.

 Figure 5.4 shows who refers to whom in listing 5.8.
 Lectures about lexical scoping and closures from other languages such as Lisp,

Smalltalk, Perl, Ruby, and Python typically end with some mind-boggling exam-
ples about variables with identical names, mutually overriding references, and
mystic rebirth of supposed-to-be foregone contexts. These examples are like puz-
zles. They make for an entertaining pastime on a long winter evening, but they
have no practical relevance. We will not provide any of those, because they can
easily undermine your carefully built confidence in the scoping rules.

Figure 5.4
Conceptual view of object
references and method calls
for the general scoping
example in listing 5.8,
revealing the calls to the
julia instance of Mother
for creating a closure that is
called in the trailing Script
code to return all values in
the current scope

146 CHAPTER 5
Working with closures
Our intention is to provide a reasonable introduction to Groovy’s closures. This
should give you the basic understanding that you need when hunting for more
complex examples in mailing lists and on the Web. Instead of giving a deliber-
ately obscure example, however, we will provide one that shows how closure
scopes can make an otherwise complex task straightforward.

5.5.3 Scoping at work: the classic accumulator test

There is a classic example to compare the power of languages by the way they
support closures. One of the things it highlights is the power of the scoping
rules for those languages as they apply to closures. Paul Graham first proposed
this test in his excellent article “Revenge of the Nerds” (http://www.paulgraham.com/
icad.html). Beside the test, his article is very interesting and informative to read.
It talks about the difference a language can make. You will find good arguments
in it for switching to Groovy.

 In some languages, this test leads to a brain-teasing solution. Not so in Groovy.
The Groovy solution is exceptionally obvious and straightforward to achieve.

 Here is the original requirement statement:

“We want to write a function that generates accumulators—a function that takes
a number n, and returns a function that takes another number i and returns n
incremented by i.”

The following are proposed solutions for other languages:

In Lisp:

(defun foo (n)
 (lambda (i) (incf n i)))

In Perl 5:

sub foo {
 my ($n) = @_;
 sub {$n += shift}
}

In Smalltalk:

foo: n
 |s|
 s := n.
 ^[:i| s := s+i.]

Understanding scoping 147
The following steps lead to a Groovy solution, as shown in listing 5.9:

1 We need a function that returns a closure. In Groovy, we don’t have func-
tions, but methods. (Actually, we have not only methods, but also clo-
sures. But let’s keep it simple.) We use def to declare such a method. It
has only one line, which after return creates a new closure. We will call
this method foo to make the solutions comparable in size. The name
createAccumulator would better reflect the purpose.

2 Our method takes an initial value n as required.

3 Because n is a parameter to the method that declares the closure, it gets
bound to the closure scope. We can use it inside the closure body to cal-
culate the incremented value.

4 The incremented value is not only calculated but also assigned to n as the
new value. That way we have a true accumulation.

We add a few assertions to verify our solution and reveal how the accumulator is
supposed to be used. Listing 5.9 shows the full code.

def foo(n) {
 return {n += it}
}

def accumulator = foo(1)
assert accumulator(2) == 3
assert accumulator(1) == 4

All the steps that led to the solution are straightforward applications of what
you’ve learned about closures.

 In comparison to the other languages, the Groovy solution is not only short but
also surprisingly clear. Groovy has passed this language test exceptionally well.

 Is this test of any practical relevance? Maybe not in the sense that we would
ever need an accumulator generator, but it is in a different sense. Passing this test
means that the language is able to dynamically put logic in an object and manage
the context that this object lives in. This is an indication of how powerful abstrac-
tions in that language can be.

Listing 5.9 The accumulator problem in Groovy

148 CHAPTER 5
Working with closures
5.6 Returning from closures

So far, you have seen how to declare closures and how to call them. However, there
is one crucial topic that we haven’t touched yet: how to return from a closure.

 In principle, there are two ways of returning:

■ The last expression of the closure has been evaluated, and the result of this
evaluation is returned. This is called end return. Using the return keyword
in front of the last expression is optional.

■ The return keyword can also be used to return from the closure prematurely.

This means the following ways of doubling the entries of a list have the very
same effect:

[1, 2, 3].collect{ it * 2 }

[1, 2, 3].collect{ return it * 2 }

A premature return can be used to, for example, double only the even entries:

[1, 2, 3].collect{
 if (it%2 == 0) return it * 2
 return it
}

This behavior of the return keyword inside closures is simple and straightforward.
You hardly expect any misconceptions, but there is something to be aware of.

WARNING There is a difference between using the return keyword inside and out-
side of a closure.

Outside a closure, any occurrence of return leaves the current method. When
used inside a closure, it only ends the current evaluation of the closure, which is a
much more localized effect. For example, when using List.each, returning early
from the closure doesn’t return early from the each method—the closure will still
be called again with the next element in the list.

 While progressing further through the book, we will hit this issue again and
explore more ways of dealing with it. Section 13.1.8 summarizes the topic.

Support for design patterns 149
5.7 Support for design patterns

Design patterns are widely used by developers to enhance the quality of their
designs. Each design pattern presents a typical problem that occurs in object-
oriented programming along with a corresponding well-tested solution. Let’s
take a closer look at the way the availability of closures affects how, which, and
when patterns are used.

 If you’ve never seen design patterns before, we suggest you look at the classic
book Design Patterns: Elements of Reusable Object-Oriented Software by Gamma et al,
or one of the more recent ones such as Head First Design Patterns by Freeman et al
or Refactoring to Patterns by Joshua Kerievsky, or search for “patterns repository”
or “patterns catalog” using your favorite search engine.

 Although many design patterns are broadly applicable and apply to any lan-
guage, some of them are particularly well-suited to solving issues that occur when
using programming languages such as C++ and Java. They most often involve
implementing new abstractions and new classes to make the original programs
more flexible or maintainable. With Groovy, some of the restrictions that face
C++ and Java do not apply, and the design patterns are either of less value or
more directly supported using language features rather than introducing new
classes. We pick two examples to show the difference: the Visitor and Builder pat-
terns. As you’ll see, closures and dynamic typing are the key differentiators in
Groovy that facilitate easier pattern usage.

5.7.1 Relationship to the Visitor pattern

The Visitor pattern is particularly useful when you wish to perform some com-
plex business functionality on a composite collection (such as a tree or list) of
existing simple classes. Rather than altering the existing simple classes to con-
tain the desired business functionality, a Visitor object is introduced. The
Visitor knows how to traverse the composite collection and knows how to per-
form the business functionality for different kinds of a simple class. If the com-
posite changes or the business functionality changes over time, typically only the
Visitor class is impacted.

 Listing 5.10 shows how simple the Visitor pattern can look in Groovy; the
composite traversal code is in the accept method of the Drawing class, whereas
the business functionality (in our case to perform some calculations involving
shape area) is contained in two closures, which are passed as parameters to the
appropriate accept methods. There is no need for a separate Visitor class in this
simple case.

150 CHAPTER 5
Working with closures
class Drawing {
 List shapes
 def accept(Closure yield) { shapes.each{it.accept(yield)} }
}
class Shape {
 def accept(Closure yield) { yield(this) }
}
class Square extends Shape {
 def width
 def area() { width**2 }
}
class Circle extends Shape {
 def radius
 def area() { Math.PI * radius**2 }
}

def picture = new Drawing(shapes:
 [new Square(width:1), new Circle(radius:1)])

def total = 0
picture.accept { total += it.area() }
println "The shapes in this drawing cover an area of $total units."
println 'The individual contributions are: '
picture.accept { println it.class.name + ":" + it.area() }

5.7.2 Relationship to the Builder pattern

The Builder pattern serves to encapsulate the logic associated with constructing
a product from its constituent parts. When using the pattern, you normally create a
Builder class, which contains logic determining what builder methods to call and
in which sequence to call them to ensure proper assembly of the product. For
each product, you must supply the appropriate logic for each relevant builder
method used by the Builder class; each builder method typically returns one of
the constituent parts.

 Coding Java solutions based on the Builder pattern is not hard, but the Java
code tends to be cumbersome and verbose and doesn’t highlight the structure of
the assembled product. For that reason, the Builder pattern is rarely used in Java;
developers instead use unstructured or replicated builder-type logic mixed in
with their other code. This is a shame, because the Builder pattern is so powerful.

 Groovy’s builders provide a solution using nested closures to conveniently
specify even very complex products. Such a specification is easy to read, because
the appearance of the code reflects the product structure. Groovy has built-in

Listing 5.10 The Visitor pattern in Groovy

Summary 151
library classes based on the Builder pattern that allow you to easily build arbi-
trarily nested node structures, produce markup like HTML or XML, define GUIs
in Swing or other widget toolkits, and even access the wide range of functionality
in Ant. You will see lots of examples in chapter 8, and we explain how to write
your own builders in section 8.6.

5.7.3 Relationship to other patterns

Almost all patterns are easier to implement in Groovy than in Java. This is often
because Groovy supports more lightweight solutions that make the patterns less
of a necessity—mostly because of closures and dynamic typing. In addition, when
patterns are required, Groovy often makes expressing them more succinct and
simpler to set up.

 We discuss a number of patterns in other sections of this book, patterns such as
Strategy (see 9.1.1 and 9.1.3), Observer (see 13.2.3), and Command (see 9.1.1)
benefit from using closures instead of implementing new classes. Patterns such as
Adapter and Decorator (see 7.5.3) benefit from dynamic typing and method lookup.
We also briefly discuss patterns such as Template Method (see section 5.2.2), the
Value Object pattern (see 3.3.2), the incomplete library class smell (see 7.5.3),
MVC (see 8.5.6), and the DTO and DAO patterns (see chapter 10). Just by existing,
closures can completely replace the Method Object pattern.

 Groovy provides plenty of support for using patterns within your own pro-
grams. Its libraries embody pattern practices throughout. Higher-level frame-
works such as Grails take it one step further. Grails provides you with a framework
built on top of Groovy’s libraries and patterns support. Because using such
frameworks saves you from having to deal with many pattern issues directly—you
just use the framework—you will automatically end up using patterns without
needing to understand the details in most cases. Even then, it is useful to know
about some of the patterns we have touched upon so that you can leverage the
maximum benefit from whichever frameworks you use.

5.8 Summary

You have seen that closures follow our theme of everything is an object. They cap-
ture a piece of logic, making it possible to pass it around for execution, return it
from a method call, or store it for later usage.

 Closures encourage centralized resource handling, thus making your code
more reliable. This doesn’t come at any expense. In fact, the codebase is relieved
from structural duplication, enhancing expressiveness and maintainability.

152 CHAPTER 5
Working with closures
 Defining and using closures is surprisingly simple because all the difficult
tasks such as keeping track of references and relaying method calls back to the
delegating owner are done transparently. If you don’t care about the scoping
rules, everything falls into place naturally. If you want to hook into the mechanics
and perform tasks such as deviating the calls to the delegate, you can. Of course,
such an advanced usage needs more care. You also need to be careful when
returning from a delegate, particularly when using one in a situation where in
other languages you might use a for loop or a similar construct. This has sur-
prised more than one new Groovy developer, although the behavior is logical
when examined closely. Re-read section 5.6 when in doubt.

 Closures open the door to several ways of doing things that may be new to many
developers. Some of these, such as currying, can appear daunting at first sight but
allow a great deal of power to be wielded with remarkably little code. Additionally,
closures can make familiar design patterns simpler to use or even unnecessary.

 Although you now have a good understanding of Groovy’s datatypes and
closures, you still need a means to control the flow of execution through your
program. This is achieved with control structures, which form the topic of the
next chapter.

Groovy control structures
The pursuit of truth and beauty is a sphere
of activity in which we are permitted to
remain children all our lives.

 —Albert Einstein
153

154 CHAPTER 6
Groovy control structures
At the hardware level, computer systems use simple arithmetic and logical opera-
tions, such as jump to a new location if a memory value equals zero. Any complex
flow of logic that a computer is executing can always be expressed in terms of these
simple operations. Fortunately, languages such as Java raise the abstraction level
available in programs we write so that we can express the flow of logic in terms of
higher-level constructs—for example, looping through all of the elements in an
array or processing characters until we reach the end of a file.

 In this chapter, we explore the constructs Groovy gives us to describe logic flow
in ways that are even simpler and more expressive than Java. Before we look at
the constructs themselves, however, we have to examine Groovy’s answer to that
age-old philosophical question: What is truth?1

6.1 The Groovy truth

In order to understand how Groovy will handle control structures such as if and
while, you need to know how it evaluates expressions, which need to have Boolean
results. Many of the control structures we examine in this chapter rely on the
result of a Boolean test—an expression that is first evaluated and then considered
as being either true or false. The outcome of this affects which path is then fol-
lowed in the code. In Java, the consideration involved is usually trivial, because
Java requires the expression to be one resulting in the primitive boolean type to
start with. Groovy is more relaxed about this, allowing simpler code at the slight
expense of language simplicity. We’ll examine Groovy’s rules for Boolean tests
and give some advice to avoid falling into an age-old trap.

6.1.1 Evaluating Boolean tests

The expression of a Boolean test can be of any (non-void) type. It can apply to
any object. Groovy decides whether to consider the expression as being true or
false by applying the rules shown in table 6.1, based on the result’s runtime type.
The rules are applied in the order given, and once a rule matches, it completely
determines the result.2

1 Groovy has no opinion as to what beauty is. We’re sure that if it did, however, it would involve expres-
sive minimalism. Closures too, probably.

2 It would be rare to encounter a situation where more than one rule matched, but you never know when
someone will subclass java.lang.Number and implement java.util.Map at the same time.

The Groovy truth 155
Listing 6.1 shows these rules in action, using the Boolean negation operator ! to
assert that expressions which ought to evaluate to false really do so.

assert true
assert !false

assert ('a' =~ /./)
assert !('a' =~ /b/)

assert [1]
assert ![]

assert ['a':1]
assert ![:]

assert 'a'
assert !''

assert 1
assert 1.1
assert 1.2f
assert 1.3g
assert 2L
assert 3G
assert !0

assert new Object()
assert !null

Table 6.1 Sequence of rules used to evaluate a Boolean test

Runtime type Evaluation criterion required for truth

Boolean Corresponding Boolean value is true

Matcher The matcher has a match

Collection The collection is non-empty

Map The map is non-empty

String, GString The string is non-empty

Number, Character The value is nonzero

None of the above The object reference is non-null

Listing 6.1 Example Boolean test evaluations

Boolean values
are trivial

Matchers must
match

Collections must
be non-empty

Maps must be
non-empty

Strings must be
non-empty

Numbers
(any type)
must be
nonzero

Any other value
must be non-null

156 CHAPTER 6
Groovy control structures
These rules can make testing for “truth” simpler and easier to read. However,
they come with a price, as you’re about to find out.

6.1.2 Assignments within Boolean tests

Before we get into the meat of the chapter, we have a warning to point out. Just
like Java, Groovy allows the expression used for a Boolean test to be an assign-
ment—and the value of an assignment expression is the value assigned. Unlike
Java, the type of a Boolean test is not restricted to booleans, which means that a
problem you might have thought was ancient history reappears, albeit in an alle-
viated manner. Namely, an equality operator == incorrectly entered as an assign-
ment operator = is valid code with a drastically different effect than the intended
one. Groovy shields you from falling into this trap for the most common appear-
ance of this error: when it’s used as a top-level expression in an if statement.
However, it can still arise in less usual cases.

 Listing 6.2 leads you through some typical variations of this topic.

def x = 1

if (x == 2) {
 assert false
}
/*******************
if (x = 2) {
 println x
}
********************/
if ((x = 3)) {
 println x
}
assert x == 3

def store = []
while (x = x - 1) {
 store << x
}
assert store == [2, 1]

while (x = 1) {
 println x
 break
}

Listing 6.2 What happens when == is mistyped as =

Normal
comparison

b

Not allowed!
Compiler error!c

Assign and test in
nested expressiond

Deliberate assign
and test in whilee

Ouch! This
will print 1!f

The Groovy truth 157
The equality comparison in b is fine and would be allowable in Java. In c, an
equality comparison was intended, but one of the equal signs was left out. This
raises a Groovy compiler error, because an assignment is not allowed as a top-
level expression in an if test.

 However, Boolean tests can be nested inside expressions in arbitrary depth;
the simplest one is shown at d, where extra parentheses around the assignment
make it a subexpression, and therefore the assignment becomes compliant with
the Groovy language. The value 3 will be assigned to x, and x will be tested for
truth. Because 3 is considered true, the value 3 gets printed. This use of paren-
theses to please the compiler can even be used as a trick to spare an extra line of
assignment. The unusual appearance of the extra parentheses then serves as a
warning sign for the reader.

 The restriction of assignments from being used in top-level Boolean expres-
sions applies only to if and not to other control structures such as while. This
is because doing assignment and testing in one expression are often used with
while in the style shown at e. This style tends to appear with classical usages
like processing tokens retrieved from a parser or reading data from a stream.
Although this is convenient, it leaves us with the potential coding pitfall shown
at f, where x is assigned the value 1 and the loop would never stop if there
weren’t a break statement.3

 This potential cause of bugs has given rise to the idiom in other languages
(such as C and C++, which suffer from the same problem to a worse degree) of
putting constants on the left side of the equality operator when you wish to per-
form a comparison with one. This would lead to the last while statement in the
previous listing (still with a typo) being

while (1 = x) {
 println x
}

This would raise an error, as you can’t assign a value to a constant. We’re back to
safety—so long as constants are involved. Unfortunately, not only does this fail
when both sides of the comparison are variables, it also reduces readability.
Whether it is a natural occurrence, a quirk of human languages, or conditioning,
most people find while (x==3) significantly simpler to read than while (3==x).
Although neither is going to cause confusion, the latter tends to slow people

3 Remember that the code in this book has been executed. If we didn’t have the break statement, the
book would have taken literally forever to produce.

Should
be ==

158 CHAPTER 6
Groovy control structures
down or interrupt their train of thought. In this book, we have favored readability
over safety—but our situation is somewhat different than that of normal develop-
ment. You will have to decide for yourself which convention suits you and your
team better.

 Now that we have examined which expressions Groovy will consider to be true
and which are false, we can start looking at the control structures themselves.

6.2 Conditional execution structures

Our first set of control structures deals with conditional execution. They all eval-
uate a Boolean test and make a choice about what to do next based on whether
the result was true or false. None of these structures should come as a completely
new experience to any Java developer, but of course Groovy adds some twists of
its own. We will cover if statements, the conditional operator, switch statements,
and assertions.

6.2.1 The humble if statement

Our first two structures act exactly the same way in Groovy as they do in Java,
apart from the evaluation of the Boolean test itself. We start with if and if/else
statements.

 Just as in Java, the Boolean test expression must be enclosed in parentheses.
The conditional block is normally enclosed in curly braces. These braces are
optional if the block consists of only one statement.4

 A special application of the “no braces needed for single statements” rule is
the sequential use of else if. In this case, the logical indentation of the code
is often flattened; that is, all else if lines have the same indentation although
their meaning is nested. The indentation makes no difference to Groovy and is
only of aesthetic relevance.

 Listing 6.3 gives some examples, using assert true to show the blocks of code
that will be executed and assert false to show the blocks that won’t be executed.

 There should be no surprises in the listing, although it might still look slightly
odd to you that non-Boolean expressions such as strings and lists can be used for
Boolean tests. Don’t worry—it becomes natural over time.

4 Even though the braces are optional, many coding conventions insist on them in order to avoid errors
that can occur through careless modification when they’re not used.

Conditional execution structures 159
if (true) assert true
else assert false

if (1) {
 assert true
} else {
 assert false
}

if ('non-empty') assert true
else if (['x']) assert false
else assert false

if (0) assert false
else if ([]) assert false
else assert true

6.2.2 The conditional ?: operator
Groovy also supports the ternary conditional ?: operator for small inline tests, as
shown in listing 6.4. This operator returns the object that results from evaluating
the expression left or right of the colon, depending on the test before the ques-
tion mark. If the first expression evaluates to true, the middle expression is eval-
uated. Otherwise, the last expression is evaluated. Just as in Java, whichever of
the last two expressions isn’t used as the result isn’t evaluated at all.

def result = (1==1) ? 'ok' : 'failed'
assert result == 'ok'

result = 'some string' ? 10 : ['x']
assert result == 10

Again, notice how the Boolean test (the first expression) can be of any type. Also
note that because everything is an object in Groovy, the middle and last expres-
sions can be of radically different types.

 Opinions about the ternary conditional operator vary wildly. Some people
find it extremely convenient and use it often. Others find it too Perl-ish. You may
well find that you use it less often in Groovy because there are features that make
its typical applications obsolete—for example, GStrings (covered in section 3.4.2)
allow dynamic creation of strings that would be constructed in Java using the ter-
nary operator.

Listing 6.3 The if statement in action

Listing 6.4 The conditional operator

160 CHAPTER 6
Groovy control structures
 So far, so Java-like. Things change significantly when we consider switch
statements.

6.2.3 The switch statement

On a recent train ride, I (Dierk) spoke with a teammate about Groovy, mention-
ing the oh-so-cool switch capabilities. He wouldn’t even let me get started, wav-
ing his hands and saying, “I never use switch!” I was put off at first, because I lost
my momentum in the discussion; but after more thought, I agreed that I don’t
use it either—in Java.

 The switch statement in Java is very restrictive. You can only switch on an int
type, with byte, char, and short automatically being promoted to int.5 With this
restriction, its applicability is bound to either low-level tasks or to some kind of
dispatching on a type code. In object-oriented languages, the use of type codes is
considered smelly.6

The switch structure
The general appearance of the switch construct is just like in Java, and its logic is
identical in the sense that the handling logic falls through to the next case unless
it is exited explicitly. We will explore exiting options in section 6.4.

 Listing 6.5 shows the general appearance.

def a = 1
def log = ''
switch (a) {
 case 0 : log += '0'
 case 1 : log += '1'
 case 2 : log += '2' ; break
 default : log += 'default'
}
assert log == '12'

Although the fallthrough is supported in Groovy, there are few cases where this fea-
ture really enhances the readability of the code. It usually does more harm than
good (and this applies to Java, too). As a general rule, putting a break at the end
of each case is good style.

5 As of Java 5, enum types can also be switched on, due to some compiler trickery.
6 See “Replace Conditional with Polymorphism” in Refactoring by Martin Fowler (Addison Wesley, 2000).

Listing 6.5 General switch appearance is like Java or C

Fall through

Conditional execution structures 161
Switch with classifiers
You have seen the Groovy switch used for classification in section 3.5.5 and when
working through the datatypes. A classifier is eligible as a switch case if it imple-
ments the isCase method. In other words, a Groovy switch like

switch (candidate) {
 case classifier1 : handle1() ; break
 case classifier2 : handle2() ; break
 default : handleDefault()
}

is roughly equivalent (beside the fallthrough and exit handling) to

if (classifier1.isCase(candidate)) handle1()
else if (classifier2.isCase(candidate)) handle2()
else handleDefault()

This allows expressive classifications and even some unconventional usages with
mixed classifiers. Unlike Java’s constant cases, the candidate may match more
than one classifier. This means that the order of cases is important in Groovy,
whereas it does not affect behavior in Java. Listing 6.6 gives an example of mul-
tiple types of classifiers. After having checked that our number 10 is not zero, not
in range 0..9, not in list [8,9,11], not of type Float, and not an integral multiple
of 3, we finally find it to be made of two characters.

switch (10) {
 case 0 : assert false ; break
 case 0..9 : assert false ; break
 case [8,9,11] : assert false ; break
 case Float : assert false ; break
 case {it%3 == 0}: assert false ; break
 case ~/../ : assert true ; break
 default : assert false ; break
}

The new feature in b is that we can classify by type. Float is of type
java.lang.Class, and the GDK enhances Class by adding an isCase method that
tests the candidate with isInstance.

 The isCase method on closures at c passes the candidate into the closure and
returns the result of the closure call coerced to a Boolean.

 The final classification d as a two-digit number works because ~/../ is a
Pattern and the isCase method on patterns applies its test to the toString value
of the argument.

Listing 6.6 Advanced switch and mixed classifiers

Type caseb

Closure casec

Regular expression cased

162 CHAPTER 6
Groovy control structures
 In order to leverage the power of the switch construct, it is essential to know
the available isCase implementations. It is not possible to provide an exhaustive
list, because any custom type in your code or in a library can implement it.
Table 6.2 has the list of known implementations in the GDK.

RECALL The isCase method is also used with grep on collections such that
collection.grep(classifier) returns a collection of all items that are
a case of that classifier.

Using the Groovy switch in the sense of a classifier is a big step forward. It adds
much to the readability of the code. The reader sees a simple classification
instead of a tangled, nested construction of if statements. Again, you are able to
reveal what the code does rather than how it does it.

 As pointed out in section 4.1.2, the switch classification on ranges is particularly
convenient for modeling business rules that tend to prefer discrete classification to
continuous functions. The resulting code reads almost like a specification.

 Look actively through your code for places to implement isCase. A character-
istic sign of looming classifiers is lengthy else if constructions.

It is possible to overload the isCase method to support different kinds of
classification logic depending on the type of the candidate. If you provide
both methods, isCase(String candidate) and isCase(Integer

candidate), then switch ('1') can behave differently than switch(1)
with your object as classifier.

Table 6.2 Implementations of isCase for switch

Class a.isCase(b) implemented as

Object a.equals(b)

Class a.isInstance(b)

Collection a.contains(b)

Range a.contains(b)

Pattern a.matcher(b.toString()).matches()

String (a==null && b==null) || a.equals(b)

Closure a.call(b)

ADVANCED
TOPIC

Conditional execution structures 163
Our next topic, assertions, may not look particularly important at first glance. How-
ever, although assertions don’t change the business capabilities of the code, they
do make the code more robust in production. Moreover, they do something even
better: enhance the development team’s confidence in their code as well as their
ability to remain agile during additional enhancements and ongoing maintenance.

6.2.4 Sanity checking with assertions

This book contains several hundred assertion statements—and indeed, you’ve
already seen a number of them. Now it’s time to go into some extra detail. We will
look at producing meaningful error messages from failed assertions, reflect over
reasonable uses of this keyword, and show how to use it for inline unit tests. We
will also quickly compare the Groovy solution to Java’s assert keyword and asser-
tions as used in unit test cases.

Producing informative failure messages
When an assertion fails, it produces a stacktrace and a message. Put the code

a = 1
assert a==2

in a file called FailingAssert.groovy, and let it run via

> groovy Failing-Assert.groovy

It is expected to fail, and it does so with the message

Caught: java.lang.AssertionError: Expression: (a==2). Values: a = 1
 at FailingAssert.run(FailingAssert.groovy:2)
 at FailingAssert.main(FailingAssert.groovy)

You see that on failure, the assertion prints out the failed expression as it appears
in the code plus the value of the variables in that expression. The trailing stack-
trace reveals the location of the failed assertion and the sequence of method calls
that led to the error. It is best read bottom to top:

■ We are in the file FailingAssert.groovy.
■ From that file, a class FailingAssert was constructed with a method main.
■ Within main, we called FailingAssert.run, which is located in the file

FailingAssert.groovy at line 2 of the file.7

■ At that point, the assertion fails.

7 The main and run methods are constructed for you behind the scenes when running a script.

164 CHAPTER 6
Groovy control structures
This is a lot of information, and it is sufficient to locate and understand the error
in most cases, but not always. Let’s try another example that tries to protect a file
reading code from being executed if the file doesn’t exist or cannot be read.8

input = new File('no such file')
assert input.exists()
assert input.canRead()
println input.text

This produces the output

Caught: java.lang.AssertionError: Expression: input.exists()
 …

which is not very informative. The missing information here is what the bad file
name was. To this end, assertions can be instrumented with a trailing message:

input = new File('no such file')
assert input.exists() , "cannot find '$input.name'"
assert input.canRead() , "cannot read '$input.canonicalPath'"
println input.text

This produces the following

… cannot find 'no such file'. Expression: input.exists()

which is the information we need. However, this special case also reveals the
sometimes unnecessary use of assertions, because in this case we could easily
leave the assertions out:

input = new File('no such file')
println input.text

The result is the following sufficient error message:

FileNotFoundException: no such file (The system cannot find the file
specified)

This leads to the following best practices with assertions:

■ Before writing an assertion, let your code fail, and see whether any other
thrown exception is good enough.

■ When writing an assertion, let it fail the first time, and see whether the fail-
ure message is sufficient. If not, add a message. Let it fail again to verify
that the message is now good enough.

8 Perl programmers will see the analogy to or die.

Conditional execution structures 165
■ If you feel you need an assertion to clarify or protect your code, add it
regardless of the previous rules.

■ If you feel you need a message to clarify the meaning or purpose of your
assertion, add it regardless of the previous rules.

Insure code with inline unit tests
Finally, there is a potentially controversial use of assertions as unit tests that live
right inside production code and get executed with it. Listing 6.7 shows this strat-
egy with a nontrivial regular expression that extracts a hostname from a URL.
The pattern is first constructed and then applied to some assertions before being
put to action. We also implement a simple method assertHost for easy asserting
of a match grouping.9

def host = /\/\/([a-zA-Z0-9-]+(\.[a-zA-Z0-9-])*?)(:|\/)/

assertHost 'http://a.b.c:8080/bla', host, 'a.b.c'
assertHost 'http://a.b.c/bla', host, 'a.b.c'
assertHost 'http://127.0.0.1:8080/bla', host, '127.0.0.1'
assertHost 'http://t-online.de/bla', host, 't-online.de'
assertHost 'http://T-online.de/bla', host, 'T-online.de'

def assertHost (candidate, regex, expected){
 candidate.eachMatch(regex){assert it[1] == expected}
}

Reading this code with and without assertions, their value becomes obvious. See-
ing the example matches in the assertions reveals what the code is doing and ver-
ifies our assumptions at the same time. Traditionally, these examples would live
inside a test harness or perhaps only within a comment. This is better than noth-
ing, but experience shows that comments go out of date and the reader cannot
really be sure that the code works as indicated. Tests in external test harnesses also
often drift away from the code. Some tests break, they are commented out of a
test suite under the pressures of meeting schedules, and eventually they are no
longer run at all.

Listing 6.7 Use assertions for inline unit tests

9 Please note that we use regexes here only to show the value of assertions. If we really set out to find
the hostname of a URL, we would use candidate.toURL().host.

Regular
expression
matching
hosts

Code to use the regular expression for useful work goes here

166 CHAPTER 6
Groovy control structures
 Some may fear a bad impact on performance when doing this style of inline
unit tests. The best answer is to use a profiler and investigate where performance
is really relevant. Our assertions in listing 6.7 run in a few milliseconds and
should not normally be an issue. When performance is important, one possibility
would be to put inline unit tests where they are executed only once per loaded
class: in a static initializer.

Relationships to other assertions
Java has had an assert keyword since JDK 1.4. It differs from Groovy assertions in
that it has a slightly different syntax (colon instead of comma to separate the
Boolean test from the message) and that it can be enabled and disabled. Java’s
assertion feature is not as powerful, because it works only on a Java Boolean test,
whereas the Groovy assert takes a full Groovy conditional (see section 6.1).

 The JDK documentation has a long chapter on assertions that talks about the
disabling feature for assertions and its impact on compiling, starting the VM,
and resulting design issues. Although this is fine and the design rationale
behind Java assertions is clear, we feel the disabling feature is the biggest stum-
bling block for using assertions in Java. You can never be sure that your asser-
tions are really executed.

 Some people claim that for performance reasons, assertions should be dis-
abled in production, after the code has been tested with assertions enabled. On
this issue, Bertrand Meyer,10 the father of design by contract, pointed out that it is
like learning to swim with a swimming belt and taking it off when leaving the pool
and heading for the ocean.

 In Groovy, your assertions are always executed.
 Assertions also play a central role in unit tests. Groovy comes with an included

version of JUnit, the leading unit test framework for Java. JUnit makes a lot of
specialized assertions available to its TestCases. Groovy adds even more of them.
Full coverage of these assertions is given in chapter 14. The information that
Groovy provides when assertions fail makes them very convenient when writing
unit tests, because it relieves the tester from writing lots of messages.

 Assertions can make a big difference to your personal programming style and
even more to the culture of a development team, regardless of whether they are
used inline or in separated unit tests. Asserting your assumptions not only

10 See Object Oriented Software Construction, 2nd ed., by Bertrand Meyer (Prentice Hall, 1997).

Looping 167
makes your code more reliable, but it also makes it easier to understand and eas-
ier to work with.

 That’s it for conditional execution structures. They are the basis for any kind
of logical branching and a prerequisite to allow looping—the language feature
that makes your computer do all the repetitive work for you. The next two sec-
tions cover the looping structures while and for.

6.3 Looping

The structures you’ve seen so far have evaluated a Boolean test once and changed
the path of execution once based on the result of the condition. Looping, on the
other hand, repeats the execution of a block of code multiple times. The loops
available in Groovy are while and for, both of which we cover here.

6.3.1 Looping with while

The while construct is like its Java counterpart. The only difference is the one
you’ve seen already—the power of Groovy Boolean test expressions. To summa-
rize very briefly, the Boolean test is evaluated, and if it’s true, the body of the loop
is then executed. The test is then re-evaluated, and so forth. Only when the test
becomes false does control proceed past the while loop. Listing 6.8 shows an
example that removes all entries from a list. We visited this problem in chapter 3,
where you discovered that you can’t use each for that purpose. The second exam-
ple adds the values again in a one-liner body without the optional braces.

def list = [1,2,3]
while (list) {
 list.remove(0)
}
assert list == []

while (list.size() < 3) list << list.size()+1
assert list == [1,2,3]

Again, there should be no surprises in this code, with the exception of using just
list as the Boolean test in the first loop.

 Note that there are no do {} while(condition) or repeat {} until (condition)
loops in Groovy.

Listing 6.8 Example while loops

168 CHAPTER 6
Groovy control structures
6.3.2 Looping with for

Considering it is probably the most commonly used type of loop, the for loop in
Java is relatively hard to use, when you examine it closely. Through familiarity,
people who have used a language with a similar structure (and there are many such
languages) grow to find it easy to use, but that is solely due to frequent use, not due
to good design. Although the nature of the traditional for loop is powerful, it is
rarely used in a way that can’t be more simply expressed in terms of iterating
through a collection-like data structure. Groovy embraces this simplicity, leading to
probably the biggest difference in control structures between Java and Groovy.

 Groovy for loops follow this structure:

for (variable in iterable) { body }

where variable may optionally have a declared type. The Groovy for loop iterates
over the iterable. Frequently used iterables are ranges, collections, maps, arrays,
iterators, and enumerations. In fact, any object can be an iterable. Groovy applies
the same logic as for object iteration, described in chapter 8.

 Curly braces around the body are optional if it consists of only one statement.
Listing 6.9 shows some of the possible combinations.

def store = ''
for (String i in 'a'..'c') store += i
assert store == 'abc'

store = ''
for (i in [1, 2, 3]) {
 store += i
}
assert store == '123'

def myString = 'Equivalent to Java'
store = ''
for (i in 0 ..< myString.size()) {
 store += myString[i]
}
assert store == myString

store = ''
for (i in myString) {
 store += i
}
assert store == myString

Listing 6.9 Multiple for loop examples

Typed, over string
range, no braces

b

Untyped, over list as
collection, braces

c

Untyped, over half-exclusive
IntRange, braces

d

Untyped, over string
as collection, braces

e

Looping 169
Example b uses explicit typing for i and no braces for a loop body of a single
statement. The looping is done on a range of strings.

 The usual for loop appearance when working on a collection is shown in c.
Recall that thanks to the autoboxing, this also works for arrays.

 Looping on a half-exclusive integer range as shown in d is equivalent to the
Java construction

for (int i=0; i < exclusiveUpperBound; i++) { // Java !

}

which is referred to as the classic for loop. It is currently not supported in Groovy
but may be in future versions.

 Example e is provided to make it clear that d is not the typical Groovy
style when working on strings. It is more Groovy to treat a string as a collection
of characters.

 Using the for loop with object iteration as described in section 9.1.3 provides
some very powerful combinations.

 You can use it to print a file line-by-line via

def file = new File('myFileName.txt')
for (line in file) println line

or to print all one-digit matches of a regular expression:

def matcher = '12xy3'=~/\d/
for (match in matcher) println match

If the container object is null, no iteration will occur:

for (x in null) println 'This will not be printed!'

If Groovy cannot make the container object iterable by any means, the fallback
solution is to do an iteration that contains only the container object itself:

for (x in new Object()) println "Printed once for object $x"

Object iteration makes the Groovy for loop a sophisticated control structure. It is
a valid counterpart to using methods that iterate over an object with closures,
such as using Collection’s each method.

 The main difference is that the body of a for loop is not a closure! That means
this body is a block:

for (x in 0..9) { println x }

whereas this body is a closure:

(0..9).each { println it }

Code using i would be here

170 CHAPTER 6
Groovy control structures
Even though they look similar, they are very different in construction.
 A closure is an object of its own and has all the features that you saw in chap-

ter 5. It can be constructed in a different place and passed to the each method.
 The body of the for loop, in contrast, is directly generated as bytecode at its

point of appearance. No special scoping rules apply.
 This distinction is even more important when it comes to managing exit han-

dling from the body. The next section shows why.

6.4 Exiting blocks and methods

Although it’s nice to have code that reads as a simple list of instructions with no
jumping around, it’s often vital that control is passed from the current block or
method to the enclosing block or the calling method—or sometimes even further
up the call stack. Just like in Java, Groovy allows this to happen in an expected,
orderly fashion with return, break, and continue statements, and in emergency
situations with exceptions. Let’s take a closer look.

6.4.1 Normal termination: return/break/continue

The general logic of return, break, and continue is similar to Java. One differ-
ence is that the return keyword is optional for the last expression in a method or
closure. If it is omitted, the return value is that of the last expression. Methods
with explicit return type void do not return a value, whereas closures always
return a value.11

 Listing 6.10 shows how the current loop is shortcut with continue and prema-
turely ended with break. Like Java, there is an optional label.

def a = 1
while (true) {
 a++
 break
}
assert a == 2

for (i in 0..10) {
 if (i==0) continue

11 But what if the last evaluated expression of a closure is a void method call? In this case, the closure
returns null.

Listing 6.10 Simple break and continue

Do forever

Forever is
over now

Proceed
with 1

Exiting blocks and methods 171
 a++
 if (i > 0) break
}
assert a==3

In classic programming style, the use of break and continue is sometimes consid-
ered smelly. However, it can be useful for controlling the workflow in services that
run in an endless loop. Similarly, returning from multiple points in the method is
frowned upon in some circles, but other people find it can greatly increase the
readability of methods that might be able to return a result early. We encourage
you to figure out what you find most readable and discuss it with whoever else is
going to be reading your code—consistency is as important as anything else.

 As a final note on return handling, remember that closures when used with
iteration methods such as each have a different meaning of return than the con-
trol structures while and for, as explained in section 5.6.

6.4.2 Exceptions: throw/try-catch-finally

Exception handling is exactly the same as in Java and follows the same logic. Just
as in Java, you can specify a complete try-catch-finally sequence of blocks, or
just try-catch, or just try-finally. Note that unlike various other control struc-
tures, braces are required around the block bodies whether or not they contain
more than one statement. The only difference between Java and Groovy in terms
of exceptions is that declarations of exceptions in the method signature are
optional, even for checked exceptions. Listing 6.11 shows the usual behavior.

def myMethod() {
 throw new IllegalArgumentException()
}

def log = []
try {
 myMethod()
} catch (Exception e) {
 log << e.toString()
} finally {
 log << 'finally'
}
assert log.size() == 2

Premature
loop end

Listing 6.11 Throw, try, catch, and finally

172 CHAPTER 6
Groovy control structures
Despite the optional typing in the rest of Groovy, a type is mandatory in the
catch expression.

 There are no compile-time or runtime warnings from Groovy when checked
exceptions are not declared. When a checked exception is not handled, it is prop-
agated up the execution stack like a RuntimeException.

 We cover integration between Java and Groovy in more detail in chapter 11;
however, it is worthwhile noting an issue relating to exceptions here. When using
a Groovy class from Java, you need to be careful—the Groovy methods will not
declare that they throw any checked exceptions unless you’ve explicitly added the
declaration, even though they might throw checked exceptions at runtime.
Unfortunately, the Java compiler attempts to be clever and will complain if you
try to catch a checked exception in Java when it believes there’s no way that the
exception can be thrown. If you run into this and need to explicitly catch a
checked exception generated in Groovy code, you may need to add a throws dec-
laration to the Groovy code, just to keep javac happy.

6.5 Summary

This was our tour through Groovy’s control structures: conditionally executing
code, looping, and exiting blocks and methods early. It wasn’t too surprising
because everything turned out to be like Java, enriched with a bit of Groovy flavor.
The only structural difference was the for loop. Exception handling is very simi-
lar to Java, except without the requirement to declare checked exceptions.12

 Groovy’s handling of Boolean tests is consistently available both in conditional
execution structures and in loops. We examined the differences between Java and
Groovy in determining when a Boolean test is considered to be true. This is a cru-
cial area to understand, because idiomatic Groovy will often use tests that are not
simple Boolean expressions.

 The switch keyword and its use as a general classifier bring a new object-
oriented quality to conditionals. The interplay with the isCase method allows
objects to control how they are treated inside that conditional. Although the use
of switch is often discouraged in object-oriented languages, the new power given
to it by Groovy gives it a new sense of purpose.

12 Checked exceptions are regarded by many as an experiment that was worth performing but which
proved not to be as useful as had been hoped.

Summary 173
 In the overall picture, assertions find their place as the bread-and-butter tool
for the mindful developer. They belong in the toolbox of every programmer who
cares about their craft.

 With what you learned in the tour, you have all the means to do any kind of
procedural programming. But certainly, you have higher goals and want to mas-
ter object-oriented programming. The next chapter will teach you how.

Dynamic object
orientation, Groovy style
Any intelligent fool can make things bigger,
more complex, and more violent. It takes a
touch of genius—and a lot of courage—to
move in the opposite direction.

—Albert Einstein
174

Defining classes and scripts 175
There is a common misconception about scripting languages. Because a scripting
language might support loose typing and provide some initially surprising syntax
shorthands, it may be perceived as a nice new toy for hackers rather than a lan-
guage suitable for serious object-oriented (OO) programming. This reputation
stems from the time when scripting was done in terms of shell scripts or early ver-
sions of Perl, where the lack of encapsulation and other OO features sometimes led
to poor code management, frequent code duplication, and obscure hidden bugs. It
wasn’t helped by languages that combined notations from several existing sources
as part of their heritage.

 Over time, the scripting landscape has changed dramatically. Perl has added
support for object orientation, Python has extended its object-oriented support,
and more recently Ruby has made a name for itself as a full-fledged dynamic
object-oriented scripting language with significant productivity benefits when
compared to Java and C++.

 Groovy follows the lead of Ruby by offering these dynamic object orientation
features. Not only does it enhance Java by making it scriptable, but it also pro-
vides new OO features. You have already seen that Groovy provides reference
types in cases where Java uses non-object primitive types, introduces ranges and
closures as first-class objects, and has many shorthand notations for working with
collections of objects. But these enhancements are just scratching the surface. If
this were all that Groovy had to offer, it would be little more than syntactic sugar
over normal Java. What makes Groovy stand apart is its set of dynamic features.

 In this chapter, we will take you on a journey. We begin in familiar territory,
with classes, objects, constructors, references, and so forth. Every so often, there’s
something a bit different, a little tweak of Grooviness. By the end of the chapter,
we’ll be in a whole new realm, changing the capabilities of objects and classes at
runtime, intercepting method calls, and much, much more. Welcome to the
Groovy world.

7.1 Defining classes and scripts

Class definition in Groovy is almost identical to Java; classes are declared using
the class keyword and may contain fields, constructors, initializers, and methods.1

Methods and constructors may themselves use local variables as part of their
implementation code. Scripts are different—offering additional flexibility but

1 Interfaces are also like their Java counterparts, but we will hold off discussing those further until
section 7.3.2.

176 CHAPTER 7
Dynamic object orientation, Groovy style
with some restrictions too. They may contain code, variable definitions, and
method definitions as well as class definitions. We will describe how all of these
members are declared and cover a previously unseen operator on the way.

7.1.1 Defining fields and local variables

In its simplest terms, a variable is a name associated with a slot of memory that
can hold a value. Just as in Java, Groovy has local variables, which are scoped
within the method they are part of, and fields, which are associated with classes or
instances of those classes. Fields and local variables are declared in much the
same way, so we cover them together.

Declaring variables
Fields and local variables must be declared before first use (except for a special
case involving scripts, which we discuss later). This helps to enforce scoping rules
and protects the programmer from accidental misspellings. The declaration
always involves specifying a name, and may optionally include a type, modifiers,
and assignment of an initial value. Once declared, variables are referenced by
their name.

 Scripts allow the use of undeclared variables, in which case these variables are
assumed to come from the script’s binding and are added to the binding if not yet
there. The binding is a data store that enables transfer of variables to and from
the caller of a script. Section 11.3.2 has more details about this mechanism.

 Groovy uses Java’s modifiers—the keywords private, protected, and public for
modifying visibility;2 final for disallowing reassignment; and static to denote
class variables. A nonstatic field is also known as an instance variable. These modi-
fiers all have the same meaning as in Java.

 The default visibility for fields has a special meaning in Groovy. When no vis-
ibility modifier is attached to field declaration, a property is generated for the
respective name. You will learn more about properties in section 7.4 when we
present GroovyBeans.

 Defining the type of a variable is optional. However, the identifier must not
stand alone in the declaration. When no type and no modifier are given, the def
keyword must be used as a replacement, effectively indicating that the field or
variable is untyped (although under the covers it will be declared as type Object).

2 Java’s default package-wide visibility is not supported.

Defining classes and scripts 177
 Listing 7.1 depicts the general appearance of field and variable declarations
with optional assignment and using a comma-separated list of identifiers to
declare multiple references at once.

class SomeClass {

 public fieldWithModifier
 String typedField
 def untypedField
 protected field1, field2, field3
 private assignedField = new Date()

 static classField

 public static final String CONSTA = 'a', CONSTB = 'b'

 def someMethod(){
 def localUntypedMethodVar = 1
 int localTypedMethodVar = 1
 def localVarWithoutAssignment, andAnotherOne
 }
}

def localvar = 1
boundvar1 = 1

def someMethod(){
 localMethodVar = 1
 boundvar2 = 1
}

Assignments to typed references must conform to the type—that is, you cannot
assign a number to a reference of type String or vice versa. You saw in chapter 3
that Groovy provides autoboxing and coercion when it makes sense. All other
cases are type-breaking assignments and lead to a ClassCastException at runt-
ime, as can be seen in listing 7.2.3

Listing 7.1 Variable declaration examples

3 The shouldFail method as used in this example checks that a ClassCastException occurs. More
details can be found in section 14.3.

178 CHAPTER 7
Dynamic object orientation, Groovy style
final static String PI = 3.14
assert PI.class.name == 'java.lang.String'
assert PI.length() == 4
new GroovyTestCase().shouldFail(ClassCastException.class){
 Float areaOfCircleRadiousOne = PI
}

As previously discussed, variables can be referred to by name in the same way as
in Java—but Groovy provides a few more interesting possibilities.

Referencing and dereferencing fields
In addition to referring to fields by name with the obj.fieldName4 syntax, they
can also be referenced with the subscript operator, as shown in listing 7.3. This
allows you to access fields using a dynamically determined name.

class Counter {
 public count = 0
}

def counter = new Counter()

counter.count = 1
assert counter.count == 1

def fieldName = 'count'
counter[fieldName] = 2
assert counter['count'] == 2

Accessing fields in such a dynamic way is part of the bigger picture of dynamic
execution that we will analyze in the course of this chapter.

 If you worked through the Groovy datatype descriptions, your next question
will probably be, “can I override the subscript operator?” Sure you can, and you will
extend but not override the general field-access mechanism that way. But you can
do even better and extend the field access operator!

 Listing 7.4 shows how to do that. To extend both set and get access, provide
the methods

Listing 7.2 Variable declaration examples

4 This notation can also appear in the form of obj.@fieldname, as you will see in section 7.4.2.

Listing 7.3 Referencing fields with the subscript operator

Defining classes and scripts 179
Object get (String name)
void set (String name, Object value)

There is no restriction on what you do inside these methods; get can return arti-
ficial values, effectively pretending that your class has the requested field. In list-
ing 7.4, the same value is always returned, regardless of which field value is
requested. The set method is used for counting the write attempts.

class PretendFieldCounter {
 public count = 0

 Object get (String name) {
 return 'pretend value'
 }
 void set (String name, Object value) {
 count++
 }
}

def pretender = new PretendFieldCounter()

assert pretender.isNoField == 'pretend value'
assert pretender.count == 0

pretender.isNoFieldEither = 'just to increase counter'

assert pretender.count == 1

With the count field, you can see that it looks like the get/set methods are not
used if the requested field is present. This is true for our special case. Later, in
section 7.4, you will see the full set of rules that produces this effect.

 Generally speaking, overriding the get method means to override the dot-
fieldname operator. Overriding the set method overrides the field assignment operator.

What about a statement of the form x.y.z=something?
This is equivalent to getX().getY().setZ(something).

Referencing fields is also connected to the topic of properties, which we will
explore in section 7.4, where we will discuss the need for the additional
obj.@fieldName syntax.

Listing 7.4 Extending the general field-access mechanism

FOR THE
GEEKS

180 CHAPTER 7
Dynamic object orientation, Groovy style
7.1.2 Methods and parameters

Method declarations follow the same concepts you have seen for variables: The
usual Java modifiers can be used; declaring a return type is optional; and, if no
modifiers or return type are supplied, the def keyword fills the hole. When the
def keyword is used, the return type is deemed to be untyped (although it can still
have no return type, the equivalent of a void method). In this case, under the cov-
ers, the return type will be java.lang.Object. The default visibility of methods
is public.

 Listing 7.5 shows the typical cases in a self-describing manner.

class SomeClass {

 static void main(args) {
 def some = new SomeClass()
 some.publicVoidMethod()
 assert 'hi' == some.publicUntypedMethod()
 assert 'ho' == some.publicTypedMethod()
 combinedMethod()
 }

 void publicVoidMethod(){
 }

 def publicUntypedMethod(){
 return 'hi'
 }
 String publicTypedMethod(){
 return 'ho'
 }

 protected static final void combinedMethod(){
 }
}

The main method b has some interesting twists. First, the public modifier can be
omitted because it is the default. Second, args usually has to be of type String[]
in order to make the main method the one to start the class execution. Thanks to
Groovy’s method dispatch, it works anyway, although args is now implicitly of
static type java.lang.Object. Third, because return types are not used for the dis-
patch, we can further omit the void declaration.

 So, this Java declaration

public static void main (String[] args)

Listing 7.5 Declaring methods

Implicit
public

b

Call static method
of current class

Defining classes and scripts 181
boils down to this in Groovy:

static main (args)

NOTE The Java compiler fails on missing return statements when a return type
is declared for the method. In Groovy, return statements are optional,
and therefore it’s impossible for the compiler to detect “accidentally”
missing returns.

The main(args) example illustrates that declaring explicit parameter types is
optional. When type declarations are omitted, Object is used. Multiple parame-
ters can be used in sequence, delimited by commas. Listing 7.6 shows that explicit
and omitted parameter types can also be mixed.

class SomeClass {
 static void main (args){
 assert 'untyped' == method(1)
 assert 'typed' == method('whatever')
 assert 'two args'== method(1,2)
 }
 static method(arg) {
 return 'untyped'
 }
 static method(String arg){
 return 'typed'
 }
 static method(arg1, Number arg2){
 return 'two args'
 }
}

In the examples so far, all method calls have involved positional parameters, where
the meaning of each argument is determined from its position in the parameter
list. This is easy to understand and convenient for the simple cases you have seen,
but suffers from a number of drawbacks for more complex scenarios:

■ You must remember the exact sequence of the parameters, which gets
increasingly difficult with the length of the parameter list.5

Listing 7.6 Declaring parameter lists

5 We recommend a coding style that encourages small numbers of parameters, but this is not always
possible.

182 CHAPTER 7
Dynamic object orientation, Groovy style
■ If it makes sense to call the method with different information for alternative
usage scenarios, different methods must be constructed to handle these alter-
natives. This can quickly become cumbersome and lead to a proliferation of
methods, especially where some parameters are optional. It is especially dif-
ficult if many of the optional parameters have the same type. Fortunately,
Groovy comes to the rescue with using maps as named parameters.

NOTE Whenever we talk about named parameters, we mean keys of a map that is
used as an argument in method or constructor calls. From a program-
mer’s perspective, this looks pretty much like native support for named
parameters, but it isn’t. This trick is needed because the JVM does not sup-
port storing parameter names in the bytecode.

Listing 7.7 illustrates Groovy method definitions and calls supporting posi-
tional and named parameters, parameter lists of variable length, and optional
parameters with default values. The example provides four alternative sum-
ming mechanisms, each highlighting different approaches for defining the
method call parameters.

class Summer {
 def sumWithDefaults(a, b, c=0){
 return a + b + c
 }
 def sumWithList(List args){
 return args.inject(0){sum,i -> sum += i}
 }
 def sumWithOptionals(a, b, Object[] optionals){
 return a + b + sumWithList(optionals.toList())
 }
 def sumNamed(Map args){
 ['a','b','c'].each{args.get(it,0)}
 return args.a + args.b + args.c
 }
}

def summer = new Summer()

assert 2 == summer.sumWithDefaults(1,1)
assert 3 == summer.sumWithDefaults(1,1,1)

assert 2 == summer.sumWithList([1,1])
assert 3 == summer.sumWithList([1,1,1])

Listing 7.7 Advanced parameter usages

Explicit arguments
and a default value

b

Define arguments
as a list

c

Optional arguments
as an array

d

Define arguments
as a mape

Defining classes and scripts 183
assert 2 == summer.sumWithOptionals(1,1)
assert 3 == summer.sumWithOptionals(1,1,1)

assert 2 == summer.sumNamed(a:1, b:1)
assert 3 == summer.sumNamed(a:1, b:1, c:1)
assert 1 == summer.sumNamed(c:1)

All four alternatives have their pros and cons. In b, sumWithDefaults, we have the
most obvious declaration of the arguments expected for the method call. It meets
the needs of the sample script—being able to add two or three numbers together—
but we are limited to as many arguments as we have declared parameters.

 Using lists as shown in c is easy in Groovy, because in the method call, the
arguments only have to be placed in brackets. We can also support argument
lists of arbitrary length. However, it is not as obvious what the individual list
entries should mean. Therefore, this alternative is best suited when all argu-
ments have the same meaning, as they do here where they are used for adding.
Refer to section 4.2.3 for details about the List.inject method.

 The sumWithOptionals method at d can be called with two or more parame-
ters. To declare such a method, define the last argument as an array. Groovy’s
dynamic method dispatch bundles excessive arguments into that array.

 Named arguments can be supported by using a map as in e. It is good prac-
tice to reset any missing values to a default before working with them. This also
better reveals what keys will be used in the method body, because this is not obvi-
ous from the method declaration.

 When designing your methods, you have to choose one of the alternatives.
You may wish to formalize your choice within a project or incorporate the
Groovy coding style.

NOTE There is a second way of implementing parameter lists of variable
length. You can hook into Groovy’s method dispatch by overriding the
invokeMethod(name, params[]) that every GroovyObject provides.
You will learn more about these hooks in section 7.6.2.

Advanced naming
When calling a method on an object reference, we usually follow this format:

objectReference.methodName()

This format imposes the Java restrictions for method names; for example, they
may not contain special characters such as minus (-) or dot (.). However, Groovy

184 CHAPTER 7
Dynamic object orientation, Groovy style
allows you to use these characters in method names if you put quotes around
the name:

objectReference.'my.method-Name'()

The purpose of this feature is to support usages where the method name of a call
becomes part of the functionality. You won’t normally use this feature directly, but
it will be used under the covers by other parts of Groovy. You will see this in action
in chapter 8 and chapter 10.

Where there’s a string, you can generally also use a GString. So how about
obj."${var}"()? Yes, this is also possible, and the GString will be
resolved to determine the name of the method that is called on the object!

That’s it for the basics of class members. Before we leave this topic, though, there
is one convenient operator we should introduce while we’re thinking about refer-
ring to members via references.

7.1.3 Safe dereferencing with the ?. operator

When a reference doesn’t point to any specific object, its value is null. When call-
ing a method or accessing a field on a null reference, a NullPointerException
(NPE) is thrown. This is useful to protect code from working on undefined pre-
conditions, but it can easily get in the way of “best effort” code that should be exe-
cuted for valid references and just be silent otherwise.

 Listing 7.8 shows several alternative approaches to protect code from NPEs. As
an example, we wish to access a deeply nested entry within a hierarchy of maps,
which results in a path expression—a dotted concatenation of references that is typ-
ically cumbersome to protect from NPEs. We can use explicit if checks or use the
try-catch mechanism. Groovy provides the additional ?. operator for safe deref-
erencing. When the reference before that operator is a null reference, the evalu-
ation of the current expression stops, and null is returned.

def map = [a:[b:[c:1]]]

assert map.a.b.c == 1

if (map && map.a && map.a.x){
 assert map.a.x.c == null
}

FOR THE
GEEKS

Listing 7.8 Protecting from NullPointerExceptions using the ?. operator

Protect with if: short-
circuit evaluation

b

Defining classes and scripts 185
try {
 assert map.a.x.c == null
} catch (NullPointerException npe){
}

assert map?.a?.x?.c == null

In comparison, using the safe dereferencing operator in d is the most elegant
and expressive solution.

 Note that b is more compact than its Java equivalent, which would need three
additional nullity checks. It works because the expression is evaluated from left to
right, and the && operator stops evaluation with the first operand that evaluates
to false. This is known as shortcut evaluation.

 Alternative c is a bit verbose and doesn’t allow fine-grained control to protect
only selective parts of the path expression. It also abuses the exception-handling
mechanism. Exceptions weren’t designed for this kind of situation, which is easily
avoided by verifying that the references are non-null before dereferencing them.
Causing an exception and then catching it is the equivalent of steering a car by
installing big bumpers and bouncing off buildings.

 Some software engineers like to think about code in terms of cyclomatic com-
plexity, which in short describes code complexity by analyzing alternative path-
ways through the code. The safe dereferencing operator merges alternative
pathways together and hence reduces complexity when compared to its alterna-
tives; essentially, the metric indicates that the code will be easier to understand
and simpler to verify as correct.

7.1.4 Constructors

Objects are instantiated from their classes via constructors. If no constructor is
given, an implicit constructor without arguments is supplied by the compiler.
This appears to be exactly like in Java, but because this is Groovy, it should not be
surprising that some additional features are available.

 In section 7.1.2, we examined the merits of named parameters versus positional
ones, as well as the need for optional parameters. The same arguments applicable
to method calls are relevant for constructors, too, so Groovy provides the same
convenience mechanisms. We’ll first look at constructors with positional parame-
ters, and then we’ll examine named parameters.

Protect with
try/catch

c

Safe
dereferencing

d

186 CHAPTER 7
Dynamic object orientation, Groovy style
Positional parameters
Until now, we have only used implicit constructors. Listing 7.9 introduces the first
explicit one. Notice that just like all other methods, the constructor is public by
default. We can call the constructor in three different ways: the usual Java way, with
enforced type coercion by using the as keyword, and with implicit type coercion.

class VendorWithCtor {
 String name, product

 VendorWithCtor(name, product) {
 this.name = name
 this.product = product
 }
}

def first = new VendorWithCtor('Canoo','ULC')

def second = ['Canoo','ULC'] as VendorWithCtor

VendorWithCtor third = ['Canoo','ULC']

The coercion in b and c may be surprising. When Groovy sees the need to
coerce a list to some other type, it tries to call the type’s constructor with all argu-
ments supplied by the list, in list order. This need for coercion can be enforced
with the as keyword or can arise from assignments to statically typed references.
The latter of these is called implicit construction, which we cover shortly.

Named parameters
Named parameters in constructors are handy. One use case that crops up fre-
quently is creating immutable classes that have some parameters that are
optional. Using positional parameters would quickly become cumbersome
because you would need to have constructors allowing for all combinations of the
optional parameters.

 As an example, suppose in listing 7.9 that VendorWithCtor should be immuta-
ble and name and product can be optional. We would need four6 constructors: an
empty one, one to set name, one to set product, and one to set both attributes. To
make things worse, we couldn’t have a constructor with only one argument,

Listing 7.9 Calling constructors with positional parameters

6 In general, 2n constructors are needed, where n is the number of optional attributes.

Constructor
definition

Normal
constructor use

Coercion with asb

Coercion in assignmentc

Defining classes and scripts 187
because we couldn’t distinguish whether to set the name or the product attribute
(they are both strings). We would need an artificial extra argument for distinction,
or we would need to strongly type the parameters.

 But don’t panic: Groovy’s special way of supporting named parameters comes
to the rescue again.

 Listing 7.10 shows how to use named parameters with a simplified version
of the Vendor class. It relies on the implicit default constructor. Could that be
any easier?

class Vendor {
 String name, product
}

new Vendor()
new Vendor(name: 'Canoo')
new Vendor(product:'ULC')
new Vendor(name: 'Canoo', product:'ULC')

def vendor = new Vendor(name: 'Canoo')
assert 'Canoo' == vendor.name

The example in listing 7.10 illustrates how flexible named parameters are for
your constructors. In cases where you don’t want this flexibility and want to lock
down all of your parameters, just define your desired constructor explicitly; the
implicit constructor with named parameters will no longer be available.

 Coming back to how we started this section, the empty default constructor call
new Vendor appears in a new light. Although it looks exactly like its Java equiva-
lent, it is a special case of the default constructor with named parameters that hap-
pens to be called without any being supplied.

Implicit constructors
Finally, there is a way to call a constructor implicitly by simply providing the
constructor arguments as a list. That means that instead of calling the
Dimension(width, height) constructor explicitly, for example, you can use

java.awt.Dimension area

area = [200, 100]

assert area.width == 200
assert area.height == 100

Listing 7.10 Calling constructors with named parameters

188 CHAPTER 7
Dynamic object orientation, Groovy style
Of course, Groovy must know what constructor to call, and therefore implicit con-
structors are solely available for assignment to statically typed references where
the type provides the respective constructor. They do not work for abstract classes
or even interfaces.

 Implicit constructors are often used with builders, as you’ll see in the Swing-
Builder example in section 8.5.7.

 That’s it for the usual class members. This is a solid basis we can build upon.
But we are not yet in the penthouse; we have four more levels to go. We walk
through the topic of how to organize classes and scripts to reach the level of
advanced object-oriented features. The next floor is named GroovyBeans and
deals with simple object-oriented information about objects. At this level, we can
play with Groovy’s power features. Finally, we will visit the highest level, which is meta
programming in Groovy—making the environment fully dynamic, and respond-
ing to ordinary-looking method calls and field references in an extraordinary way.

7.2 Organizing classes and scripts

In section 2.4.1, you saw that Groovy classes are Java classes at the bytecode level,
and consequently, Groovy objects are Java objects in memory. At the source-code
level, Groovy class and object handling is almost a superset of the Java syntax,
with the exception of nested classes that are currently not supported by the
Groovy syntax and some slight changes to the way arrays are defined. We will
examine the organization of classes and source files, and the relationships
between the two. We will also consider Groovy’s use of packages and type aliasing,
as well as demystify where Groovy can load classes from in its classpath.

7.2.1 File to class relationship

The relationship between files and class declarations is not as fixed as in Java.
Groovy files can contain any number of public class declarations according to the
following rules:

■ If a Groovy file contains no class declaration, it is handled as a script; that is,
it is transparently wrapped into a class of type Script. This automatically
generated class has the same name as the source script filename7 (without
the extension). The content of the file is wrapped into a run method, and
an additional main method is constructed for easily starting the script.

7 Because the class has no package name, it is implicitly placed in the default package.

Organizing classes and scripts 189
■ If a Groovy file contains exactly one class declaration with the same name
as the file (without the extension), then there is the same one-to-one rela-
tionship as in Java.

■ A Groovy file may contain multiple class declarations of any visibility, and
there is no enforced rule that any of them must match the filename. The
groovyc compiler happily creates *.class files for all declared classes in such
a file. If you wish to invoke your script directly, for example using groovy
on the command line or within an IDE, then the first class within your file
should have a main method.8

■ A Groovy file may mix class declarations and scripting code. In this case,
the scripting code will become the main class to be executed, so don’t
declare a class yourself having the same name as the source filename.

When not compiling explicitly, Groovy finds a class by matching its name to a cor-
responding *.groovy source file. At this point, naming becomes important.
Groovy only finds classes where the class name matches the source filename.
When such a file is found, all declared classes in that file are parsed and become
known to Groovy.

 Listing 7.11 shows a sample script with two simple classes, Vendor and Address.
For the moment, they have no methods, only public fields.

class Vendor {
 public String name
 public String product
 public Address address = new Address()
}
class Address {
 public String street, town, state
 public int zip
}

def canoo = new Vendor()
canoo.name = 'Canoo Engineering AG'
canoo.product = 'UltraLightClient (ULC)'
canoo.address.street = 'Kirschgartenst. 7'
canoo.address.zip = 4051

8 Strictly speaking, you can alternatively extend GroovyTestCase or implement the Runnable interface.

Listing 7.11 Multiple class declarations in one file

190 CHAPTER 7
Dynamic object orientation, Groovy style
canoo.address.town = 'Basel'
canoo.address.state = 'Switzerland'

assert canoo.dump() =~ /ULC/
assert canoo.address.dump() =~ /Basel/

Vendor and Address are simple data storage classes. They are roughly equivalent
to structs in C or Pascal records. We will soon explore more elegant ways of
defining such classes.

 Listing 7.11 illustrates a convenient convention supported by Groovy’s source
file to class mapping rules, which we discussed earlier. This convention allows
small helper classes that are used only with the current main class or current
script to be declared within the same source file. Compare this with Java, which
allows you to use nested classes to introduce locally used classes without cluttering
up your public class namespace or making navigation of the codebase more diffi-
cult by requiring a proliferation of source code files. Although it isn’t exactly the
same, this convention has similar benefits for Groovy developers.

7.2.2 Organizing classes in packages
Groovy follows Java’s approach of organizing files in packages of hierarchical
structure. The package structure is used to find the corresponding class files in
the filesystem’s directories.

 Because *.groovy source files are not necessarily compiled to *.class files, there
is also a need to look up *.groovy files. When doing so, the same strategy is used:
The compiler looks for a Groovy class Vendor in the business package in the file
business/Vendor.groovy.

 In listing 7.12, we separate the Vendor and Address classes from the script
code, as shown in listing 7.11, and move them to the business package.

Classpath
The lookup has to start somewhere, and Java uses its classpath for this purpose.
The classpath is a list of possible starting points for the lookup of *.class files.
Groovy reuses the classpath for looking up *.groovy files.

 When looking for a given class, if Groovy finds both a *.class and a *.groovy
file, it uses whichever is newer; that is, it will recompile source files into *.class
files if they have changed since the previous class file was compiled.9

9 Whether classes are checked for runtime updates can be controlled by the CompilerConfiguration,
which obeys the system property groovy.recompile by default. See the API documentation for
details.

Organizing classes and scripts 191
Packages
Exactly like in Java, Groovy classes must specify their package before the class def-
inition. When no package declaration is given, the default package is assumed.

 Listing 7.12 shows the file business/Vendor.groovy, which has a package state-
ment as its first line.

package business

class Vendor {
 public String name
 public String product
 public Address address = new Address()
}

class Address {
 public String street, town, state
 public int zip
}

To reference Vendor in the business package, you can either use business.Vendor
within the code or use imports for abbreviation.

Imports
Groovy follows Java’s notion of allowing import statements before any class decla-
ration to abbreviate class references.

NOTE Please keep in mind that unlike in some other scripting languages,
import has nothing to do with literal inclusion of the imported class or
file. It merely informs the compiler how to resolve references.

Listing 7.13 shows the use of the import statement, with the .* notation advising
the compiler to try resolving all unknown class references against all classes in the
business package.

import business.*

def canoo = new Vendor()
canoo.name = 'Canoo Engineering AG'

Listing 7.12 Vendor and Address classes moved to the business package

Listing 7.13 Using import to access Vendor in the business package

192 CHAPTER 7
Dynamic object orientation, Groovy style
canoo.product = 'UltraLightClient (ULC)'

assert canoo.dump() =~ /ULC/

NOTE By default, Groovy imports six packages and two classes, making it seem
like every groovy code program contains the following initial statements:

 import java.lang.*
 import java.util.*
 import java.io.*
 import java.net.*
 import groovy.lang.*
 import groovy.util.*
 import java.math.BigInteger
 import java.math.BigDecimal

Type aliasing
The import statement has another nice twist: together with the as keyword, it can
be used for type aliasing. Whereas a normal import allows a fully qualified class to
be referred to by its base name, a type alias allows a fully qualified class to be
referred to by a name of your choosing. This feature resolves naming conflicts
and supports local changes or bug fixes to a third-party library.

 Consider the following library class:

package thirdparty

class MathLib {
 Integer twice(Integer value) {
 return value * 3 // intentionally wrong!
 }
 Integer half(Integer value) {
 return value / 2
 }
}

Note its obvious error10 (although in general it might not be an error but just a
locally desired modification). Suppose now that we have some existing code that
uses that library:

assert 10 == new MathLib().twice(5)

10 Where are the library author’s unit tests?

Organizing classes and scripts 193
We can use a type alias to rename the old library and then use inheritance to
make a fix. No change is required to the original code that was using the library,
as you can see in listing 7.14.

import thirdparty.MathLib as OrigMathLib

class MathLib extends OrigMathLib {
 Integer twice(Integer value) {
 return value * 2
 }
}

// nothing changes below here
def mathlib = new MathLib()

assert 10 == mathlib.twice(5)
assert 2 == mathlib.half(5)

Now, suppose that we have the following additional math library that we need
to use:

package thirdparty2

class MathLib {
 Integer increment(Integer value) {
 return value + 1
 }
}

Although it has a different package, it has the same name as the previous library.
Without aliasing, we have to fully qualify one or both of the libraries within our
code. With aliasing, we can avoid this in an elegant way and also improve commu-
nication by better indicating intent within our program about the role of the
third-party library’s code, as shown in listing 7.15.

import thirdparty.MathLib as TwiceHalfMathLib
import thirdparty2.MathLib as IncMathLib

def math1 = new TwiceHalfMathLib()
def math2 = new IncMathLib()

assert 3 == math1.half(math2.increment(5))

Listing 7.14 Using import as for local library modifications

Listing 7.15 Using import as for avoiding name clashes

Usage code for library
remains unchanged

Invoke fixed
method

Invoke original method

194 CHAPTER 7
Dynamic object orientation, Groovy style
For example, if we later find a math package with both increment and twice/half
functionality, we can refer to that new library twice and keep our more meaning-
ful names.

 You should consider using aliases within your own program, even when using
simple built-in types. For example, if you are developing an adventure game, you
might alias Map11 to SatchelContents. This doesn’t provide the strong typing that
defining a separate SatchelContents class would give, but it does greatly improve
the human understandability of the code.

7.2.3 Further classpath considerations

Finding classes in *.class and *.groovy files is an important part of working with
Groovy, and unfortunately a likely source of problems.

 If you installed the J2SDK including the documentation, you will find the class-
path explanation under %JAVA_HOME%/docs/tooldocs/windows/classpath.html
under Windows, or under a similar directory for Linux and Solaris. Everything
the documentation says equally applies to Groovy.

 A number of contributors can influence the effective classpath in use. The
overview in table 7.1 may serve as a reference when you’re looking for a possible
bad guy that’s messing up your classpath.

11 Here we mean java.util.Map and not TreasureMap, which our adventure game might allow us to
place within the satchel!

Table 7.1 Forming the classpath

Origin Definition Purpose and use

JDK/JRE %JAVA_HOME%/lib
%JAVA_HOME%/lib/ext

Bootclasspath for the Java Runtime Environment and its
extensions

OS setting CLASSPATH variable Provides general default settings

Command shell CLASSPATH variable Provides more specialized settings

Java -cp
--classpath
option

Settings per runtime invocation

Groovy %GROOVY_HOME%/lib The Groovy Runtime Environment

Groovy -cp Settings per groovy execution call

Groovy . Groovy classpath defaults to the current directory

Advanced OO features 195
Groovy defines its classpath in a special configuration file under %GROOVY_
HOME%/conf. Looking at the file groovy-starter.conf reveals the following lines
(beside others):

Load required libraries
load ${groovy.home}/lib/*.jar

load user specific libraries
load ${user.home}/.groovy/lib/*

Uncommenting the last line by removing the leading hash sign enables a cool
feature. In your personal home directory user.home, you can use a subdirectory
.groovy/lib (note the leading dot!), where you can store any *.class or *.jar files
that you want to have accessible whenever you work with Groovy.

 If you have problems finding your user.home, open a command shell and execute
groovy -e "println System.properties.'user.home'"

Chances are, you are in this directory by default anyway.
 Chapter 11 goes through more advanced classpath issues that need to be

respected when embedding Groovy in environments that manage their own class-
loading infrastructure—for example an application server.

 You are now able to use constructors in a number of different ways to make
new instances of a class. Classes may reside in packages, and you have seen how to
make them known via imports. This wraps up our exploration of object basics.
The next step is to explore more advanced OO features, which we discuss in the
following section.

7.3 Advanced OO features

Before beginning to embrace further parts of the Groovy libraries that make fun-
damental use of the OO features we have been discussing, we first stop to briefly
explore other OO concepts that change once you enter the Groovy world. We will
cover inheritance and interfaces, which will be familiar from Java, and multi-
methods, which will give you a taste of the dynamic object orientation coming later.

7.3.1 Using inheritance
You have seen how to explicitly add your own fields, methods, and constructors
into your class definitions. Inheritance allows you to implicitly add fields and
methods from a base class. The mechanism is useful in a range of use cases. We
leave it up to others12 to describe its benefits and warn you about the potential

12 Designing Object-Oriented Software, Rebecca Wirfs-Brock et al (Prentice-Hall, 1990).

196 CHAPTER 7
Dynamic object orientation, Groovy style
overuse of this feature. We simply let you know that all the inheritance features of
Java (including abstract classes) are available in Groovy and also work (almost
seamlessly13) between Groovy and Java.

 Groovy classes can extend Groovy and Java classes and interfaces alike. Java
classes can also extend Groovy classes and interfaces. You need to compile your
Java and Groovy classes in a particular order for this to work. See section 11.4.2
for more details. The only other thing you need to be aware of is that Groovy is
more dynamic than Java when it selects which methods to invoke for you. This
feature is known as multimethods and is discussed further in section 7.3.3.

7.3.2 Using interfaces

A frequently advocated style of Java programming involves using Java’s interface
mechanism. Code written using this style refers to the dependent classes that it
uses solely by interface. The dependent classes can be safely changed later with-
out requiring changes to the original program. If a developer accidentally tries
to change one of the classes for another that doesn’t comply with the interface,
this discrepancy is detected at compile time. Groovy fully supports the Java inter-
face mechanism.

 Some14 argue that interfaces alone are not strong enough, and design-by-
contract is more important for achieving safe object substitution and allowing
nonbreaking changes to your libraries. Judicious use of abstract methods and
inheritance becomes just as important as using interfaces. Groovy’s support for
Java’s abstract methods, its automatically enabled assert statement, and its built-
in ready access to test methods mean that it is ideally suited to also support this
stricter approach.

 Still others15 argue that dynamic typing is the best approach, leading to much
less typing and less scaffolding code without much reduced safety—which should
be covered by tests in any case. The good news is that Groovy supports this style as
well. To give you a flavor of how this would impact you in everyday coding, con-
sider how you would build a plug-in mechanism in Java and Groovy.

13 The only limitation that we are aware of has to do with Map-based constructors, which Groovy provides
by default. These are not available directly in Java if you extend a Groovy class. They are provided by
Groovy as a runtime trick.

14 See Object-oriented Software Construction, 2nd ed., by Bertrand Meyer (Prentice-Hall, 1997) and http://cafe.
elharo.com/java/the-three-reasons-for-data-encapsulation/.

15 See http://en.wikipedia.org/wiki/Duck_typing.

Advanced OO features 197
 In Java, you would normally write an interface for the plug-in mechanism and
then an implementation class for each plug-in that implements that interface. In
Groovy, dynamic typing allows you to more easily create and use implementations
that meet a certain need. You are likely to be able to create just two classes as part
of developing two plug-in implementations. In general, you have a lot less scaf-
folding code and a lot less typing.

If you decide to make heavy use of interfaces, Groovy provides ways to
make them more dynamic. If you have an interface MyInterface with a
single method and a closure myClosure, you can use the as keyword to
coerce the closure to be of type MyInterface. Similarly, if you have an
interface with several methods, you can create a map of closures keyed on
the method names and coerce the map to your interface type. See the
Groovy wiki for more details.

In summary, if you’ve come from the Java world, you may be used to following a
strict style of coding that strongly encourages interfaces. When using Groovy, you
are not compelled to stick with any one style. In many situations, you can mini-
mize the amount of typing by making use of dynamic typing; and if you really
need it, the full use of interfaces is available.

7.3.3 Multimethods

Remember that Groovy’s mechanics of method lookup take the dynamic type of
method arguments into account, whereas Java relies on the static type. This
Groovy feature is called multimethods.

 Listing 7.16 shows two methods, both called oracle, that are distinguishable
only by their argument types. They are called two times with arguments of the
same static type but different dynamic types.

def oracle(Object o) { return 'object' }
def oracle(String o) { return 'string' }

Object x = 1
Object y = 'foo'

assert 'object' == oracle(x)
assert 'string' == oracle(y)

FOR THE
GEEKS

Listing 7.16 Multimethods: method lookup relies on dynamic types

This would return
object in Java

198 CHAPTER 7
Dynamic object orientation, Groovy style
The x argument is of static type Object and of dynamic type Integer. The y argu-
ment is of static type Object but of dynamic type String.

 Both arguments are of the same static type, which would make the equivalent
Java program dispatch both to oracle(Object). Because Groovy dispatches by
the dynamic type, the specialized implementation of oracle(String) is used in the
second case.

 With this capability in place, you can better avoid duplicated code by being
able to override behavior more selectively. Consider the equals implementation
in listing 7.17 that overrides Object’s default equals method only for the argu-
ment type Equalizer.

class Equalizer {
 boolean equals(Equalizer e){
 return true
 }
}

Object same = new Equalizer()
Object other = new Object()

assert new Equalizer().equals(same)
assert ! new Equalizer().equals(other)

When an object of type Equalizer is passed to the equals method, the specialized
implementation is chosen. When an arbitrary object is passed, the default imple-
mentation of its superclass Object.equals is called, which implements the equal-
ity check as a reference identity check.

 The net effect is that the caller of the equals method can be fully unaware of
the difference. From a caller’s perspective, it looks like equals(Equalizer) would
override equals(Object), which would be impossible to do in Java. Instead, a Java
programmer has to write it like this:

public class Equalizer { // Java
 public boolean equals(Object obj)
 {
 if (obj == null) return false;
 if (!(obj instanceof Equalizer)) return false;
 Equalizer w = (Equalizer) obj;
 return true; // custom logic here
 }
}

Listing 7.17 Multimethods to selectively override equals

Working with GroovyBeans 199
This is unfortunate, because the logic of how to correctly override equals needs
to be duplicated for every custom type in Java. This is another example where
Java uses the static type Object and leaves the work of dynamic type resolution to
the programmer.

NOTE Wherever there’s a Java API that uses the static type Object, this code
effectively loses the strength of static typing. You will inevitably find it
used with typecasts, compromising compile-time type safety. This is why
the Java type concept is called weak static typing: You lose the merits of
static typing without getting the benefits of a dynamically typed language
such as multimethods.

Groovy, in contrast, comes with a single and consistent implementation of dis-
patching methods by the dynamic types of their arguments.

7.4 Working with GroovyBeans

The JavaBeans specification16 was introduced with Java 1.1 to define a light-
weight and generic software component model for Java. The component model
builds on naming conventions and APIs that allow Java classes to expose their
properties to other classes and tools. This greatly enhanced the ability to define
and use reusable components and opened up the possibility of developing
component-aware tools.

 The first tools were mainly visually oriented, such as visual builders that
retrieved and manipulated properties of visual components. Over time, the Java-
Beans concept has been widely used and extended to a range of use cases includ-
ing server-side components (in Java Server Pages [JSP]), transactional behavior
and persistence (Enterprise JavaBeans [EJB]), object-relational mapping (ORM)
frameworks, and countless other frameworks and tools.

 Groovy makes using JavaBeans (and hence most of these other JavaBean-
related frameworks) easier with special language support. This support covers
three aspects: special Groovy syntax for creating JavaBean classes; mechanisms
for easily accessing beans, regardless of whether they were declared in Groovy or
Java; and support for JavaBean event handling. This section will examine each
part of this language-level support as well as cover the library support provided
by the Expando class.

16 See http://java.sun.com/products/javabeans/docs/spec.html.

200 CHAPTER 7
Dynamic object orientation, Groovy style
7.4.1 Declaring beans

JavaBeans are normal classes that follow certain naming conventions. For exam-
ple, to make a String property myProp available in a JavaBean, the bean’s class
must have public methods declared as String getMyProp and void setMyProp
(String value). The JavaBean specification also strongly recommends that beans
should be serializable so they can be persistent and provide a parameterless con-
structor to allow easy construction of objects from within tools. A typical Java
implementation is as follows:

// Java
public class MyBean implements java.io.Serializable {
 private String myprop;
 public String getMyprop(){
 return myprop;
 }
 public void setMyprop(String value){
 myprop = value;
 }
}

The Groovy equivalent is

class MyBean implements Serializable {
 String myprop
}

The most obvious difference is size. One line of Groovy replaces seven lines of
Java. But it’s not only about less typing, it is also about self-documentation. In
Groovy, it is easier to assess what fields are considered exposed properties: all
fields that are declared with default visibility. The three related pieces of informa-
tion—the field and the two accessor methods—are kept together in one declara-
tion. Changing the type or the name of the property requires changing the code
in only a single place.

NOTE Older versions of Groovy used an @Property syntax for denoting prop-
erties. This was considered ugly and was removed in favor of handling
properties as a “default visibility.”

Underneath the covers, Groovy provides public accessor methods similar to this
Java code equivalent, but you don’t have to type them. Moreover, they are gener-
ated only if they don’t already exist in the class. This allows you to override the
standard accessors with either customized logic or constrained visibility. Groovy
also provides a private backing field (again similar to the Java equivalent code).

Working with GroovyBeans 201
Note that the JavaBean specification cares only about the available accessor
methods and doesn’t even require a backing field; but having one is an intuitive
and simple way to implement the methods—so that is what Groovy does.

NOTE It is important that Groovy constructs the accessor methods and adds
them to the bytecode. This ensures that when using a MyBean in the Java
world, the Groovy MyBean class is recognized as a proper JavaBean.

Listing 7.18 shows the declaration options for properties with optional typing
and assignment. The rules are equivalent to those for fields (see section 7.2.1).

class MyBean implements Serializable {
 def untyped
 String typed
 def item1, item2
 def assigned = 'default value'
}

def bean = new MyBean()
assert 'default value' == bean.getAssigned()
bean.setUntyped('some value')
assert 'some value' == bean.getUntyped()
bean = new MyBean(typed:'another value')
assert 'another value' == bean.getTyped()

Properties are sometimes called readable or writeable depending on whether the cor-
responding getter or setter method is available. Groovy properties are both readable
and writeable, but you can always roll your own if you have special requirements.
When the final keyword is used with a property declaration, the property will only
be readable (no setter method is created and the backing field is final).

 Writing GroovyBeans is a simple and elegant solution for fully compliant Java-
Bean support, with the option of specifying types as required.

7.4.2 Working with beans
The wide adoption of the JavaBeans concept in the world of Java has led to a com-
mon programming style where bean-style accessor methods are limited to simple
access (costly operations are strictly avoided in these methods). These are the types
of accessors generated for you by Groovy. If you have complex additional logic
related to a property, you can always override the relevant getter or setter, but you
are usually better off writing a separate business method for your advanced logic.

Listing 7.18 Declaring properties in GroovyBeans

202 CHAPTER 7
Dynamic object orientation, Groovy style
Accessor methods
Even for classes that do not fully comply with the JavaBeans standard, you can
usually assume that such an accessor method can be called without a big perfor-
mance penalty or other harmful side-effects. The characteristics of an accessor
method are much like those of a direct field access (without breaking the uniform
access principle17).

 Groovy supports this style at the language level according to the mapping of
method calls shown in table 7.2.

This mapping works regardless of whether it’s applied to a Groovy or plain old Java
object (POJO), and it works for beans as well as for all other classes. Listing 7.19
shows this in a combination of bean-style and derived properties.

class MrBean {
 String firstname, lastname

 String getName(){
 return "$firstname $lastname"
 }
}

def bean = new MrBean(firstname: 'Rowan')
bean.lastname = 'Atkinson'

assert 'Rowan Atkinson' == bean.name

Note how much the Groovy-style property access in c and d looks like direct
field access, whereas b makes clear that there is no field but only some derived
value. From a caller’s point of view, the access is truly uniform.

17 See http://en.wikipedia.org/wiki/Uniform_access_principle.

Table 7.2 Groovy accessor method to property mappings

Java Groovy

getPropertyname() propertyname

setPropertyname(value) propertyname = value

Listing 7.19 Calling accessors the Groovy way

Groovy style
properties

Getter for derived propertyb

Generic
constructor

Call setterc

Call getterd

Working with GroovyBeans 203
 Because field access and the accessor method shortcut have an identical syn-
tax, it takes rules to choose one or the other.

RULES When both a field and the corresponding accessor method are accessible
to the caller, the property reference is resolved as an accessor method
call. If only one is accessible, that option is chosen.

That looks straightforward, and it is in the majority of cases. However, there are
some points to consider, as you will see next.

Field access with .@
Before we leave the topic of properties, we have one more example to explore:
listing 7.20. The listing illustrates how you can provide your own accessor meth-
ods and also how to bypass the accessor mechanism. You can get directly to the
field using the .@ dot-at operator when the need arises.

class DoublerBean {
 public value

 void setValue(value){
 this.value = value
 }

 def getValue(){
 value * 2
 }
}

def bean = new DoublerBean(value: 100)

assert 200 == bean.value
assert 100 == bean.@value

Let’s start with what’s familiar: bean.value at d calls getValue and thus returns
the doubled value. But wait—getValue calculates the result at c as value * 2. If
value was at this point interpreted as a bean shortcut for getValue, we would have
an endless recursion.

 A similar situation arises at b, where the assignment this.value = would in
bean terms be interpreted as this.setValue, which would also let us fall into end-
less looping. Therefore the following rules have been set up.

Listing 7.20 Advanced accessors with Groovy

Visible field

Inner field accessb

Inner field accessc

Property accessd

Outer field access

204 CHAPTER 7
Dynamic object orientation, Groovy style
RULES Inside the lexical scope of a field, references to fieldname or
this.fieldname are resolved as field access, not as property access. The
same effect can be achieved from outside the scope using the refer-
ence.@fieldname syntax.

It needs to be mentioned that these rules can produce pathological corner cases
with logical but surprising behavior, such as when using @ from a static context or
with def x=this; x.@fieldname, and so on. We will not go into more details here,
because such a design is discouraged. Decide whether to expose state as a field, as
a property, or via explicit accessor methods, but do not mix these approaches.
Keep the access uniform.

Bean-style event handling
Besides properties, JavaBeans can also be event sources that feed event listeners.18

An event listener is an object with a callback method that gets called to notify the lis-
tener that an event was fired. An event object that further qualifies the event is
passed as a parameter to the callback method.

 The JDK is full of different types of event listeners. A simple event listener is
the ActionListener on a button, which calls an actionPerformed(ActionEvent)
method whenever the button is clicked. A more complex example is the
VetoableChangeListener that allows listeners to throw a PropertyVetoException
inside their vetoableChange(PropertyChangeEvent) method to roll back a change
to a bean’s property. Other usages are multifold, and it’s impossible to provide an
exhaustive list.

 Groovy supports event listeners in a simple but powerful way. Suppose you
need to create a Swing JButton with the label “Push me!” that prints the label to
the console when it is clicked. A Java implementation can use an anonymous
inner class in the following way:

// Java
final JButton button = new JButton("Push me!");
button.addActionListener(new IActionListener(){
 public void actionPerformed(ActionEvent event){
 System.out.println(button.getText());
 }
});

The developer needs to know about the respective listener and event types (or
interfaces) as well as about the registration and callback methods.

18 See the JavaBeans Specification.

Working with GroovyBeans 205
 A Groovy programmer only has to attach a closure to the button as if it were a
field named by the respective callback method:

button = new JButton('Push me!')
button.actionPerformed = { event ->
 println button.text
}

The event parameter is added only to show how we could get it when needed. In
this example, it could have been omitted, because it is not used inside the closure.

NOTE Groovy uses bean introspection to determine whether a field setter refers
to a callback method of a listener that is supported by the bean. If so, a
ClosureListener is transparently added that calls the closure when noti-
fied. A ClosureListener is a proxy implementation of the required lis-
tener interface.

Event handling is conceived as a JavaBeans standard. However, you don’t need to
somehow declare your object to be a bean before you can do any event handling.
The dependency is the other way around: As soon as your object supports this
style of event handling, it is called a bean.

 Although Groovy adds the ability to register event listeners easily as closures,
the Java style of bean event handling remains fully intact. That means you can
still use all available Java methods to get a list of all registered listeners, adding
more of them, or removing them when they are no longer needed.

7.4.3 Using bean methods for any object

Groovy doesn’t distinguish between beans and other kinds of object. It solely
relies on the accessibility of the respective getter and setter methods.

 Listing 7.21 shows how to use the getProperties method and thus the
properties property (sorry for the tricky wording) to get a map of a bean’s prop-
erties. You can do so with any object you fancy.

class SomeClass {
 def someProperty
 public someField
 private somePrivateField
}

def obj = new SomeClass()

Listing 7.21 GDK methods for bean properties

206 CHAPTER 7
Dynamic object orientation, Groovy style
def store = []
obj.properties.each { property ->
 store += property.key
 store += property.value
}
assert store.contains('someProperty')
assert store.contains('someField') == false
assert store.contains('somePrivateField') == false
assert store.contains('class')
assert store.contains('metaClass')

assert obj.properties.size() == 3

In addition to the property that is explicitly declared, you also see class and meta-
Class references. These are artifacts of the Groovy class generation.19

 This was a taste of what will be explained in more detail in section 9.1.

7.4.4 Fields, accessors, maps, and Expando

In Groovy code, you will often find expressions such as object.name. Here is what
happens when Groovy resolves this reference:

■ If object refers to a map, object.name refers to the value corresponding to
the name key that is stored in the map.

■ Otherwise, if name is a is a property of object, the property is referenced (with
precedence of accessor methods over fields, as you saw in section 7.4.2).

■ Every Groovy object has the opportunity to implement its own getProperty
(name) and setProperty(name, value) methods. When it does, these imple-
mentations are used to control the property access. Maps, for example, use
this mechanism to expose keys as properties.

■ As shown in section 7.1.1, field access can be intercepted by providing the
object.get(name) method. This is a last resort as far as the Groovy runtime
is concerned: It’s used only when there is no appropriate JavaBeans prop-
erty available and when getProperty isn’t implemented.

It is worth noting that when name contains special characters that would not be
valid for an identifier, it can be supplied in string delimiters: for example,
object.'my-name'. You can also use a GString: def name = 'my-name'; object.

19 The class property stems from Java. However, tools that use Java’s bean introspection often hide
this property.

Using power features 207
"$name". As you saw in section 7.1.1 and we will further explore in section 9.1.1,
there is also a getAt implementation on Object that delegates to the property
access such that you can access a property via object[name].

 The rationale behind the admittedly nontrivial reference resolution is to allow
dynamic state and behavior for Groovy objects. Groovy comes with an example of
how useful this feature is: Expando. An Expando can be thought of as an expand-
able alternative to a bean, albeit one that can be used only within Groovy and not
directly in Java. It supports the Groovy style of property access with a few exten-
sions. Listing 7.22 shows how an Expando object can be expanded with proper-
ties by assignment, analogous to maps. The difference comes with assigning
closures to a property. Those are executed when accessing the property, option-
ally taking parameters. In the example, the boxer fights back by returning multi-
ple times what he has taken before.

def boxer = new Expando()

assert null == boxer.takeThis

boxer.takeThis = 'ouch!'

assert 'ouch!' == boxer.takeThis

boxer.fightBack = {times -> return this.takeThis * times }

assert 'ouch!ouch!ouch!' == boxer.fightBack(3)

In a way, Expando’s ability to assign closures to properties and have property access
calling the stored closures is like dynamically attaching methods to an object.

 Maps and Expandos are extreme solutions when it comes to avoiding writing
dump data structures as classes, because they do not require any extra class to be
written. In Groovy, accessing the keys of a map or the properties of an Expando
doesn’t look different from accessing the properties of a full-blown JavaBean.
This comes at at a price: Expandos cannot be used as beans in the Java world and
do not support any kind of typing.

7.5 Using power features

This section presents three power features that Groovy supports at the language
level: GPath, the Spread operator, and the use keyword.

Listing 7.22 Expando

208 CHAPTER 7
Dynamic object orientation, Groovy style
 We start by looking at GPaths. A GPath is a construction in Groovy code that
powers object navigation. The name is chosen as an analogy to XPath, which is a
standard for describing traversal of XML (and equivalent) documents. Just like
XPath, a GPath is aimed at expressiveness: realizing short, compact expressions
that are still easy to read.

 GPaths are almost entirely built on concepts that you have already seen: field
access, shortened method calls, and the GDK methods added to Collection. They
introduce only one new operator: the *. spread-dot operator. Let’s start working
with it right away.

7.5.1 Querying objects with GPaths
We’ll explore Groovy by paving a path through the Reflection API. The goal is to
get a sorted list of all getter methods for the current object. We will do so step-by-
step, so please open a groovyConsole and follow along. You will try to get infor-
mation about your current object, so type

this

and run the script (by pressing Ctrl-Enter). In the output pane, you will see some-
thing like

Script1@e7e8eb

which is the string representation of the current object. To get information about
the class of this object, you could use this.getClass, but in Groovy you can type

this.class

which displays (after you run the script again)

class Script2

The class object reveals available methods with getMethods, so type

this.class.methods

which prints a long list of method object descriptions. This is too much informa-
tion for the moment. You are only interested in the method names. Each method
object has a getName method, so call

this.class.methods.name

and get a list of method names, returned as a list of string objects. You can easily
work on it applying what you learned about strings, regular expressions, and
lists. Because you are only interested in getter methods and want to have them
sorted, type

this.class.methods.name.grep(~/get.*/).sort()

Using power features 209
and voilà, you will get the result

["getBinding", "getClass", "getMetaClass", "getProperty"]

Such an expression is called a GPath. One special thing about it is that you can call
the name property on a list of method objects and receive a list of string objects—
that is, the names.

 The rule behind this is that

list.property

is equal to

list.collect{ item -> item?.property }

This is an abbreviation of the special case when properties are accessed on lists.
The general case reads like

list*.member

where *. is called the spread-dot operator and member can be a field access, a prop-
erty access, or a method call. The spread-dot operator is needed whenever
a method should be applied to all elements of the list rather than to the list itself.
It is equivalent to

list.collect{ item -> item?.member }

To see GPath in action, we step into an example that is reasonably close to reality.
Suppose you are processing invoices that consist of line items, where each line
refers to the sold product and a multiplicity. A product has a price in dollars and
a name.

 An invoice could look like table 7.3.

Figure 7.1 depicts the corresponding software model in a UML class diagram.
The Invoice class aggregates multiple LineItems that in turn refer to a Product.

 Listing 7.23 is the Groovy implementation of this design. It defines the classes
as GroovyBeans, constructs sample invoices with this structure, and finally uses
GPath expressions to query the object graph in multiple ways.

Table 7.3 Sample invoice

Name Price in $ Count Total

ULC 1499 5 7495

Visual Editor 499 1 499

210 CHAPTER 7
Dynamic object orientation, Groovy style
class Invoice {
 List items
 Date date
}
class LineItem {
 Product product
 int count
 int total() {
 return product.dollar * count
 }
}
class Product {
 String name
 def dollar
}

def ulcDate = new Date(107,0,1)
def ulc = new Product(dollar:1499, name:'ULC')
def ve = new Product(dollar:499, name:'Visual Editor')

def invoices = [
 new Invoice(date:ulcDate, items: [
 new LineItem(count:5, product:ulc),
 new LineItem(count:1, product:ve)
]),
 new Invoice(date:[107,1,2], items: [
 new LineItem(count:4, product:ve)
])
]

assert [5*1499, 499, 4*499] == invoices.items*.total()

assert ['ULC'] ==
 invoices.items.grep{it.total() > 7000}.product.name

def searchDates = invoices.grep{
 it.items.any{it.product == ulc}
}.date*.toString()
assert [ulcDate.toString()] == searchDates

Listing 7.23 Invoice example for GPath

Figure 7.1 UML class diagram of an Invoice class that aggregates
multiple instances of a LineItem class, which in turn aggregates
exactly one instance of a Product class

Set up data
structures

Fill with
sample data

Total for each
line itemb

Query of
product namesc

Query of
invoice date

d

Using power features 211
The queries in listing 7.23 are fairly involved. The first, at b, finds the total for
each invoice, adding up all the line items. We then run a query, at c, which finds
all the names of products that have a line item with a total of over 7,000 dollars.
Finally, query d finds the date of each invoice containing a purchase of the ULC
product and turns it into a string.

 Printing the full Java equivalent here would cover four pages and would be bor-
ing to read. If you want to read it, you can find it in the book’s online resources.

 The interesting part is the comparison of GPath and the corresponding Java
code. The GPath

invoices.items.grep{ it.total() > 7000 }.product.name

leads to the Java equivalent

// Java
private static List getProductNamesWithItemTotal(Invoice[] invoices) {
 List result = new LinkedList();
 for (int i = 0; i < invoices.length; i++) {
 List items = invoices[i].getItems();
 for (Iterator iter = items.iterator(); iter.hasNext();) {
 LineItem lineItem = (LineItem) iter.next();
 if (lineItem.total() > 7000){
 result.add(lineItem.getProduct().getName());
 }
 }
 }
 return result;
}

Table 7.4 gives you some metrics about both full versions, comparing lines
of code (LOC), number of statements, and complexity in the sense of nest-
ing depth

 There may be ways to slim down the Java version, but the order of magnitude
remains: Groovy needs less than 25% of the Java code lines and fewer than 10% of
the statements!

 Writing less code is not just an exercise for its own sake. It also means lower
chances of making errors and thus less testing effort. Whereas some new devel-
opers think of a good day as one in which they’ve added lots of lines to the code-
base, we consider a really good day as one in which we’ve added functionality but
removed lines from the codebase.

 In a lot of languages, less code comes at the expense of clarity. Not so in
Groovy. The GPath example is the best proof. It is much easier to read and under-
stand than its Java counterpart. Even the complexity metrics are superior.

212 CHAPTER 7
Dynamic object orientation, Groovy style
As a final observation, consider maintainability. Suppose your customer refines
their requirements, and you need to change the lookup logic. How much effort
does that take in Groovy as opposed to Java?

7.5.2 Injecting the spread operator

Groovy provides a * spread operator that is connected to the spread-dot operator
in that it deals with tearing a list apart. It can be seen as the reverse counterpart of
the subscript operator that creates a list from a sequence of comma-separated
objects. The spread operator distributes all items of a list to a receiver that can
take this sequence. Such a receiver can be a method that takes a sequence of argu-
ments or a list constructor.

 What is this good for? Suppose you have a method that returns multiple results
in a list, and your code needs to pass these results to a second method. The spread
operator distributes the result values over the second method’s parameters:

def getList(){
 return [1,2,3]
}
def sum(a,b,c){
 return a + b + c
}
assert 6 == sum(*list)

This allows clever meshing of methods that return and receive multiple values
while allowing the receiving method to declare each parameter separately.

Table 7.4 GPath example: Groovy and Java metrics compared

LOCa Statementsb Complexity

Groovy Java Groovy Java Groovy Java

CallingScript 16 84 7 72 1 4

Invoice 4 16 0 4 0 1

LineItem 7 19 1 5 1 1

Product 4 16 0 4 0 1

Total 31 135 7 85

a. Lines of code without comments and newlines
b. Assignments, method calls, and returns

Using power features 213
 The distribution with the spread operator also works on ranges and when dis-
tributing all items of a list into a second list:

def range = (1..3)
assert [0,1,2,3] == [0,*range]

The same trick can be applied to maps:

def map = [a:1,b:2]
assert [a:1, b:2, c:3] == [c:3, *:map]

The spread operator eliminates the need for boilerplate code that would other-
wise be necessary to merge lists, ranges, and maps into the expected format. You
will see this in action in section 10.3, where this operator helps implement a user
command language for database access.

 As shown in the previous assertions, the spread operator is conveniently used
inside expressions, supporting a functional style of programming as opposed to a
procedural style. In a procedural style, you would introduce statements like
list.addAll(otherlist).

 Now comes Groovy’s ultimate power feature, which you can use to assign new
methods to any Groovy or Java class.

7.5.3 Mix-in categories with the use keyword

Consider a program that reads two integer values from an external device, adds
them together, and writes the result back. Reading and writing are in terms of
strings; adding is in terms of integer math. You can’t write

write(read() + read())

because this would result in calling the plus method on strings and would concat-
enate the arguments rather than adding them.

 Groovy provides the use method,20 which allows you to augment a class’s avail-
able instance methods using a so-called category. In our example, we can augment
the plus method on strings to get the required Perl-like behavior:

use(StringCalculationCategory) {
 write(read() + read())
}

20 Like most Groovy programmers, we prefer to call use a keyword, but strictly speaking it is a method
that Groovy adds to java.lang.Object.

214 CHAPTER 7
Dynamic object orientation, Groovy style
A category is a class that contains a set of static methods (called category methods).
The use keyword makes each of these methods available on the class of that
method’s first argument, as an instance method:

class StringCalculationCategory {

 static String plus(String self, String operand) {
 // implementation
 }
}

Because self is the first argument, the plus(operand) method is now available (or
overridden) on the String class.

 Listing 7.24 shows the full example. It implements these requirements with
a fallback in case the strings aren’t really integers and a usual concatenation
should apply.

class StringCalculationCategory {
 static def plus(String self, String operand) {
 try {
 return self.toInteger() + operand.toInteger()
 }
 catch (NumberFormatException fallback){
 return (self << operand).toString()
 }
 }
}

use (StringCalculationCategory) {
 assert 1 == '1' + '0'
 assert 2 == '1' + '1'
 assert 'x1' == 'x' + '1'
}

The use of a category is limited to the duration of the attached closure and the
current thread. The rationale is that such a change should not be globally visible
to protect from unintended side effects.

 Throughout the language basics part of this book, you have seen that Groovy
adds new methods to existing classes. The whole GDK is implemented by adding
new methods to existing JDK classes. The use method allows any Groovy pro-
grammer to use the same strategy in their own code.

 A category can be used for multiple purposes:

Listing 7.24 The use keyword for calculation on strings

Using power features 215
■ To provide special-purpose methods, as you have seen with StringCalcu-
lationCategory, where the calculation methods have the same receiver
class and may override existing behavior. Overriding operator methods
is special.

■ To provide additional methods on library classes, effectively solving the
incomplete library class smell.21

■ To provide a collection of methods on different receivers that work in com-
bination—for example, a new encryptedWrite method on java.io.Output-
Stream and decryptedRead on java.io.InputStream.

■ Where Java uses the Decorator22 pattern, but without the hassle of writing
lots of relay methods.

■ To split an overly large class into a core class and multiple aspect catego-
ries that are used with the core class as needed. Note that use can take any
number of category classes.

When a category method is assigned to Object, it is available in all objects—that is,
everywhere. This makes for nice all-purpose methods like logging, printing, per-
sistence, and so on. For example, you already know everything to make that hap-
pen for persistence:

class PersistenceCategory {
 static void save(Object self) {
 // whatever you do to store 'self' goes here
 }
}
use (PersistenceCategory) {
 save()
}

Instead of Object, a smaller area of applicability may be of interest, such as all
Collection classes or all your business objects if they share a common interface.

 Note that you can supply as many category classes as you wish as arguments to
the use method by comma-separating the classes or supplying them as a list.

use (ACategory, BCategory, CCategory) {}

21 See chapter 3 (written by Kent Beck and Martin Fowler) of Refactoring (Addison-Wesley, 2000).
22 See page 195 of Design Patterns: Elements of Reusable Object-Oriented Software by Gamma et al (Addison

Wesley, 1994).

216 CHAPTER 7
Dynamic object orientation, Groovy style
By now, you should have some idea of Groovy’s power features. They are impres-
sive even at first read, but the real appreciation will come when you apply them
in your own code. It is worth consciously bearing them in mind early on in your
travels with Groovy so that you don’t miss out on some elegant code just because
the features and patterns are unfamiliar. Before long, they will become so famil-
iar that you will miss them a lot when you are forced to go back to Java. The
good news is that Groovy can easily be used from Java, as we will explore in
chapter 11.

 The use of category classes in closures is a feature that Groovy can provide
because of its Meta concept, which is presented in the next section.

7.6 Meta programming in Groovy

In order to fully leverage the power of Groovy, it’s beneficial to have a general
understanding of how it works inside. It is not necessary to know all the details,
but familiarity with the overall concepts will allow you to work more confidently
in Groovy and find more elegant solutions.

 This section provides you with a peek inside how Groovy performs its magic.
The intent is to explain some of the general concepts used under the covers, so
that you can write solutions that integrate more closely with Groovy’s inner runt-
ime workings. Groovy has numerous interception points, and choosing between
them lets you leverage or override different amounts of the built-in Groovy capa-
bilities. This gives you many options to write powerful yet elegant solutions out-
side the bounds of what Groovy can give you out of the box. We will describe these
interception points and then provide an example of how they work in action.

 The capabilities described in this section collectively form Groovy’s imple-
mentation of the Meta-Object Protocol (MOP). This is a term used for a system’s
ability to change the behavior of objects and classes at runtime—to mess around
with the guts of the system, to put it crudely.

 At the time of writing, a redesign of the MOP is ongoing and is called the new
MOP. It is mainly concerned with improving the internals with respect to consis-
tency of the implementation and runtime performance. We highlight where
changes are expected for the programmer.

7.6.1 Understanding the MetaClass concept

In Groovy, everything starts with the GroovyObject interface, which, like all the
other classes we’ve mentioned, is declared in the package groovy.lang. It looks
like this:

Meta programming in Groovy 217
public interface GroovyObject {
 public Object invokeMethod(String name, Object args);
 public Object getProperty(String property);
 public void23 setProperty(String property, Object newValue);
 public MetaClass getMetaClass();
 public void setMetaClass(MetaClass metaClass);
}

All classes you program in Groovy are constructed by the GroovyClassGenerator
such that they implement this interface and have a default implementation for
each of these methods—unless you choose to implement it yourself.

NOTE If you want a usual Java class to be recognized as a Groovy class, you only
have to implement the GroovyObject interface. For convenience, you
can also subclass the abstract class GroovyObjectSupport, which pro-
vides default implementations.

GroovyObject has an association with MetaClass, which is the navel of the Groovy
meta concept. It provides all the meta-information about a Groovy class, such as
the list of available methods, fields, and properties. It also implements the follow-
ing methods:

Object invokeMethod(Object obj, String methodName, Object args)
Object invokeMethod(Object obj, String methodName, Object[] args)
Object invokeStaticMethod(Object obj, String methodName, Object[] args)
Object invokeConstructor(Object[] args)

These methods do the real work of method invocation,24 either through the Java
Reflection API or (by default and with better performance) through a transpar-
ently created reflector class. The default implementation of GroovyObject.

invokeMethod relays any calls to its MetaClass.
 The MetaClass is stored in and retrieved from a central store, the

MetaClassRegistry.
 Figure 7.2 shows the overall picture (keep this picture in mind when thinking

through Groovy’s process of invoking a method).

23 New MOP: return boolean to indicate success of the operation. No more exceptions are thrown.
24 New MOP: These methods no longer throw an exception in case of errors but return an error token.

The same is true for getProperty. The internals of the implementation may also change; for exam-
ple, more specialized methods may be used for faster dispatch.

218 CHAPTER 7
Dynamic object orientation, Groovy style
NOTE The MetaClassRegistry class is intended to be a Singleton but it is not
used as such, yet. Anyway, throughout the code, a factory method on
InvokerHelper is used to refer to a single instance of this registry.

The structure as depicted in figure 7.2 is able to deal with having one MetaClass
per object, but this capability is not used in the default implementations. Current
default implementations use one MetaClass per class in the MetaClassRegistry.
This difference becomes important when you’re trying to define methods that are
accessible only on certain instances of a class (like singleton methods in Ruby).

NOTE The MetaClass that a GroovyObject refers to and the MetaClass that is
registered for the type of this GroovyObject in the MetaClassRegistry
do not need to be identical. For instance, a certain object can have a spe-
cial MetaClass assigned that differs from the MetaClass of all other
objects of this class.

7.6.2 Method invocation and interception

Groovy generates its Java bytecode such that each method call (after some redi-
rections) is handled by one of the following mechanisms:

1 The class’s own invokeMethod implementation (which may further choose
to relay it to some MetaClass)

2 Its own MetaClass, by calling getMetaClass().invokeMethod(…)

3 The MetaClass that is registered for its type in the MetaClassRegistry

Figure 7.2
UML class diagram of the
GroovyObject interface
that refers to an instance
of class MetaClass, where
MetaClass objects are
also aggregated by the
MetaClassRegistry to
allow class-based retrieval of
MetaClasses in addition to
GroovyObject’s potentially
object-based retrieval

Meta programming in Groovy 219
The decision is taken by an Invoker singleton that applies the logic as shown in
figure 7.3.25 Each number in the diagram refers to the corresponding mechanism
in the previous numbered list.

 This is a relatively complex decision to make for every method call, and of
course most of the time you don’t need to think about it. You certainly shouldn’t
be mentally tracing your way through the diagram for every method call you
make—after all, Groovy is meant to make things easier, not harder! However, it’s
worth having the details available so that you can always work out exactly what
will happen in a complicated situation. It also opens your mind to a wide range of
possibilities for adding dynamic behavior to your own classes. The possibilities
include the following:

25 New MOP: Closures will no longer be handled as a special case in the default MetaClass. Instead, a
custom MetaClass for closures will produce the same effect.

Figure 7.3 Nassi-Shneidermann diagram of Groovy’s decision logic for three
distinct kinds of method invocation based on the method’s receiver type and method
availability. Follow the conditions like a flow diagram to discover which course of
action is taken.

220 CHAPTER 7
Dynamic object orientation, Groovy style
■ You can intercept method calls with cross-cutting concerns (aspects) such as
logging/tracing all invocations, applying security restrictions, enforcing
transaction control, and so on.

■ You can relay method calls to other objects. For example, a wrapper can
relay to a wrapped object all method calls that it cannot handle itself.

BY THE WAY This is what closures do. They relay method calls to their delegate.

■ You can pretend to execute a method while some other logic is applied. For
example, an Html class could pretend to have a method body, while the call
was executed as print('body').

BY THE WAY This is what builders do. They pretend to have methods that are used to
define nested product structures. This will be explained in detail in chap-
ter 8.

The invocation logic suggests that there are multiple ways to implement inter-
cepted, relayed, or pretended methods:

■ Implementing/overriding invokeMethod in a GroovyObject to pretend or
relay method calls (all your defined methods are still called as usual).

■ Implementing/overriding invokeMethod in a GroovyObject, and also imple-
menting the GroovyInterceptable interface to additionally intercept calls to
your defined methods.

■ Providing an implementation of MetaClass, and calling setMetaClass on
the target GroovyObjects.

■ Providing an implementation of MetaClass, and registering it in the
MetaClassRegistry for all target classes (Groovy and Java classes). This sce-
nario is supported by the ProxyMetaClass.

Generally speaking, overriding/implementing invokeMethod means to override
the dot-methodname operator.

 The next section will teach you how to leverage this knowledge.

7.6.3 Method interception in action

Suppose we have a Groovy class Whatever with methods outer and inner that call
each other, and we have lost track of the intended calling sequence. We would like
to get a runtime trace of method calls like

Meta programming in Groovy 221
before method 'outer'
 before method 'inner'
 after method 'inner'
after method 'outer'

to confirm that the outer method calls the inner method.
 Because this is a GroovyObject, we can override invokeMethod. To make

sure we can intercept calls to our defined methods, we need to implement the
GroovyInterceptable interface, which is only a marker interface and has
no methods.

 Inside invokeMethod, we write into a trace log before and after executing the
method call. We keep an indentation level for tidy output. Trace output should go
to System.out by default or to a given Writer, which allows easy testing. We
achieve this by providing a writer property.

 To make our code more coherent, we put all the tracing functionality in a
superclass Traceable. Listing 7.25 shows the final solution.

import org.codehaus.groovy.runtime.StringBufferWriter
import org.codehaus.groovy.runtime.InvokerHelper

class Traceable implements GroovyInterceptable {

 Writer writer = new PrintWriter(System.out)
 private int indent = 0

 Object invokeMethod(String name, Object args){
 writer.write("\n" + ' '*indent + "before method '$name'")
 writer.flush()
 indent++
 def metaClass = InvokerHelper.getMetaClass(this)
 def result = metaClass.invokeMethod(this, name, args)
 indent--
 writer.write("\n" + ' '*indent + "after method '$name'")
 writer.flush()
 return result
 }
}
class Whatever extends Traceable {
 int outer(){
 return inner()
 }
 int inner(){
 return 1
 }
}

Listing 7.25 Trace implementation by overriding invokeMethod

Tagged
superclass

Default : stdout

Override
default

Execute
call

b

Production
class

222 CHAPTER 7
Dynamic object orientation, Groovy style
def log = new StringBuffer()
def traceMe = new Whatever(writer: new StringBufferWriter(log))

assert 1 == traceMe.outer()

assert log.toString() == """
before method 'outer'
 before method 'inner'
 after method 'inner'
after method 'outer'"""

It’s crucial not to step into an endless loop when relaying the method call, which
would be unavoidable when calling the method in the same way the interception
method was called (thus falling into the same column in figure 7.3). Instead, we
enforce falling into the leftmost column with the invokeMethod call at b.

 We use Groovy’s convenient StringBufferWriter to access the output at c. To
see the output on System.out, use new Whatever without parameters.

 The whole execution starts at c. We also assert that we still get the pro-
per result.

 Unfortunately, this solution is limited. First, it works only on GroovyObjects,
not on arbitrary Java classes. Second, it doesn’t work if the class under inspection
already extends some other superclass.

 Recalling figure 7.3, we need a solution that replaces our MetaClass in the
MetaClassRegistry with an implementation that allows tracing. There is such a
class in the Groovy codebase: ProxyMetaClass.

 This class serves as a decorator over an existing MetaClass and adds intercept-
ablility to it by using an Interceptor (see groovy.lang.Interceptor in the Groovy
Javadocs). Luckily, there is a TracingInterceptor that serves our purposes. List-
ing 7.26 shows how we can use it with the Whatever class.

import org.codehaus.groovy.runtime.StringBufferWriter

class Whatever {
 int outer(){
 return inner()
 }
 int inner(){
 return 1
 }
}

Listing 7.26 Intercepting method calls with ProxyMetaClass
and TracingInterceptor

Test
settings

Startc

Meta programming in Groovy 223
def log = new StringBuffer("\n")
def tracer = new TracingInterceptor()
tracer.writer = new StringBufferWriter(log)
def proxy = ProxyMetaClass.getInstance(Whatever.class)
proxy.interceptor = tracer
proxy.use {
 assert 1 == new Whatever().outer()
}

assert log.toString() == """
before Whatever.ctor()
after Whatever.ctor()
before Whatever.outer()
 before Whatever.inner()
 after Whatever.inner()
after Whatever.outer()
"""

Note that this solution also works with all Java classes when called from Groovy.
 For GroovyObjects that are not invoked via the MetaClassRegistry, you can

pass the object under analysis to the use method to make it work:

proxy.use(traceMe){
 // call methods on traceMe
}

Interceptor and ProxyMetaClass can be useful for debugging purposes but also
for simple profiling tasks. They open the door for all the cross-cutting concerns
that we mentioned earlier.

NOTE Take care when applying wide-ranging changes to the MetaClassReg-
istry. This can potentially have unintended effects on parts of the code-
base that seem unrelated. Be careful with your cross-cutting concerns,
and avoid cutting too much or too deeply!

That’s it for our tour through Groovy’s Meta capabilities. The magician has
revealed all his tricks (well, at least most of them), and you can now be a magi-
cian yourself.

 MOP makes Groovy a dynamic language. It is the basis for numerous inventions
that Groovy brings to the Java platform. The remainder of this book will show the
most important ones: builders, markup, persistency, distributed programming,
transparent mocks and stubs for testing purposes, and all kinds of dynamic APIs

Construct the
Interceptor Retrieve a

suitable
ProxyMetaClass

Determine scope for using it

Start
execution

224 CHAPTER 7
Dynamic object orientation, Groovy style
over existing frameworks, such as for Windows scripting with Scriptom or object-
relational mapping through Hibernate.

 This dynamic nature makes a framework such as Grails (see chapter 16) possi-
ble on the Java platform.

 Groovy is often perceived as a scripting language for the JVM, and it is. But
making Java scriptable is not the most distinctive feature. The Meta-Object Pro-
tocol and the resulting dynamic nature elevate Groovy over other languages.

7.7 Summary

Congratulations on making it to the end of this chapter and the end of part 1 of
this book. If you are new to dynamic languages, your head may be spinning right
now—it’s been quite a journey!

 The chapter started without too many surprises, showing the similarities
between Java and Groovy in terms of defining and organizing classes. As we intro-
duced named parameters for constructors and methods, optional parameters for
methods, and dynamic field lookup with the subscript operator, as well as
Groovy’s “load at runtime” abilities, it became obvious that Groovy has more
spring in its step than Java.

 Groovy’s handling of the JavaBeans conventions reinforced this, as we
showed Groovy classes with JavaBean-style properties that were simpler and
more expressive to both create and use than their Java equivalents. By the time
you saw Groovy’s power features such as GPath and categories, the level of depar-
ture was becoming more apparent, and Groovy’s dynamic nature was beginning
to show at the seams.

 Finally, with a discussion of Groovy’s implementation of the Meta-Object Pro-
tocol, this dynamic nature came out in the open. What began as a “drip, drip,
drip” of features with a mixture of dynamic aspects and syntactic sugar ended as a
torrent of options for changing almost every aspect of Groovy’s behavior dynam-
ically at runtime.

 In retrospect, the dependencies and mutual support between these different
aspects of the language become obvious: using the map datatype with default con-
structors, using the range datatype with the subscript operator, using operator
overriding with the switch control structure, using closures for grepping through
a list, using the list datatype in generic constructors, using bean properties with
a field-like syntax, and so on. This seamless interplay not only gives Groovy its
power but also makes it fun to use.

Summary 225
 What is perhaps most striking is the compactness of the Groovy code while the
readability is preserved if not enhanced. It has been reported26 that developer
productivity hasn’t improved much since the ’70s in terms of lines of code written
per day. The boost in productivity comes from the fact that a single line of code
nowadays expresses much more than in previous eras. Now, if a single line of
Groovy can replace multiple lines of Java, we could start to see the next major
boost in developer productivity.

26 The Journal of Defense Software Engineering, 08/2000, http://www.stsc.hill.af.mil/crosstalk/2000/08/
jensen.html, based on the work of Gerald M. Weinberg.

Part 2

Around the Groovy library

Part 1 has lifted you to the level where you can confidently work with the
Groovy language. You have also seen a glimpse of some of the fundamental
parts of Groovy library. Part 2 builds upon this knowledge, diving into other
parts of the Groovy library and exploring how Groovy extends the Java
Runtime Environment. You have already seen how Groovy tries to make
commonly performed tasks as easy as possible in the language—this part of
the book shows how the same principle is applied in Groovy’s libraries, using
many of the advanced language features available to let you do more work
with less code.

 Chapter 8 introduces the builder concept, which is one of Groovy’s dis-
tinctive capabilities, because it can only be implemented in a general library
class with a truly dynamic language. We will examine the builders that come
as part of the Groovy distribution and show you how to implement your
own builders.

 Chapter 9 covers at the object/method level pure GDK library capabilities
that were not presented in part 1, because they are not directly related to lan-
guage features.

 Chapter 10 goes through Groovy’s library support for dealing with rela-
tional database systems, providing total flexibility where necessary and signifi-
cant shortcuts where simple solutions suffice.

 Chapter 11 presents various ways of making Java applications more
dynamic by integrating them with Groovy, allowing for rich runtime customi-
zation and interaction.

228 PART 2
Around the Groovy library
 Chapter 12 dives into the special topic of XML support in Groovy: reading
and writing XML documents, transforming them into other representations, and
using XML for interoperation of heterogeneous systems.

 Part 3 will finally show how to put all the Groovy language and library capa-
bilities into action for your everyday tasks.

Working with builders
Art is the imposing of a pattern on experience,
and our aesthetic enjoyment is recognition of
the pattern.

—Alfred North Whitehead
229

230 CHAPTER 8
Working with builders
As software developers, everything we do day in and day out is building: We build
graphical applications, command-line tools, data stores, and a lot of other, often
invisible products. To this end, we make use of components and frameworks as
building blocks assembled on a fundamental base. We build by following the rules
of the architecture and the best practices of our trade.

 Not surprisingly, the general task of building faces us with recurring activities
and structures. Over time, developer experience has led to proven standard solu-
tions for repetitive building tasks captured in terms of patterns. One such pattern
is the Builder pattern. In this pattern, a builder object is used to help build a com-
plex object, called the product. It encapsulates the logic of how to assemble the
product from given pieces.1

 Products can be complex because they maintain a tricky internal state (think of
a parser object) or because they are built out of numerous objects with interde-
pendencies. The latter case is frequently seen when there are tree-like structures
that you find everywhere in the world of software:

■ Most obviously, a filesystem is a tree of directories and files.
■ This book is a tree of parts, chapters, sections, subsections, and paragraphs.
■ HTML and XML documents have a tree-like document object model.
■ Test cases are bundled into suites, and suites are bundled into higher-level

suites such that a tree of tests is constructed.
■ Graphical user interfaces are built from components that are assembled

into containers. A Swing JFrame may include multiple JPanels that include
multiple JPanels, and so forth.

■ Less obviously, business objects often form a tree at runtime: Invoice
objects that refer to multiple LineItems that refer to Products, and so on.

Surprisingly, most programming languages have a hard time modeling this oh-
so-common structure, especially building a tree-like structure in program code.
Most of the time, the programmer is left with the task of calling several addChild
and setParent methods.

 This has two major drawbacks:

■ The logic of how to properly build the tree structure is often subject to
massive duplication.

■ When reading the code, it is hard to get an overall picture of the nest-
ing structure.

1 Erich Gamma et al, Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley, 1995).

Learning by example—using a builder 231
To overcome the latter drawback, many approaches store the nesting structure in
some external format, typically XML, and construct runtime objects from there.
This, of course, has other limitations: You lose all the merits of your program-
ming language when defining the structure. This leads to a lack of flexibility and is
likely to produce a lot of duplication in the XML.

 Groovy offers an alternative approach. Its builder support allows you to define
nested, tree-like structures in the code, being descriptive and flexible at the same
time. When you view the code, at least in reasonably simple situations, the resulting
hierarchy is easily visible on the screen. Groovy enables this as a language through
the use of closures, the Meta-Object Protocol (MOP), and simple map declara-
tions. The library support comes from BuilderSupport and its subclasses including
NodeBuilder, MarkupBuilder, AntBuilder, and SwingBuilder.

 Understanding the sample code doesn’t require a deep understanding of the
MOP; but if you feel uncertain about closures and map literals, you might want to
look back at chapters 4 (for maps) and 5 (for closures), or at least have them ear-
marked for quick reference.

 In this chapter, we visit each of these subclasses in turn to see specific uses of
builders, and then we give more details of how you can implement your own
builder using BuilderSupport.

8.1 Learning by example—using a builder

Builders are easier to understand with concrete examples, so we’ll take a brief
look at some sample code and compare it with how we’d achieve the same result
without builders. At this point, we’re not going to present the details of builders,
just the feeling of using them. We happen to use MarkupBuilder, but the general
principle is the same for all of the builders.

 Builders provide a convenient way to build hierarchical data models. They
don’t allow you to create anything you couldn’t have created before, but the con-
venience they add is enormous, giving a direct correlation between hierarchy in
the code and the hierarchy of the generated data. We demonstrate this by build-
ing the short XML2 document shown in listing 8.1. The XML contains informa-
tion about the numbers 10 through 15, their square values, and their factors—
for every number x the factors y such that x % y == 0. Obviously, this isn’t a terri-
bly useful document in real-world terms, but it means we can focus on the code
for generating the XML instead of code required to gather more interesting data.

2 For more information about XML processing in Groovy, see chapter 12.

232 CHAPTER 8
Working with builders
There is nothing in the example that wouldn’t apply just as much in a more com-
plex case.

<?xml version="1.0"?>
<numbers>
 <description>Squares and factors of 10..15</description>
 <number value="10" square="100">
 <factor value="2" />
 <factor value="5" />
 </number>
 <number value="11" square="121" />
 <number value="12" square="144">
 <factor value="2" />
 <factor value="3" />
 <factor value="4" />
 <factor value="6" />
 </number>
 <number value="13" square="169" />
 <number value="14" square="196">
 <factor value="2" />
 <factor value="7" />
 </number>
 <number value="15" square="225">
 <factor value="3" />
 <factor value="5" />
 </number>
</numbers>

Before we show the Groovy way of generating this, let’s look at how we’d do it in
Java using the W3C DOM API. Don’t worry if you haven’t used DOM before—the
idea isn’t to understand the details of the code, but to get an idea of the shape
and complexity of the code required. To keep the example in listing 8.2 short,
we’ll assume we’ve already constructed an empty Document, and we won’t do any-
thing with it when we’ve finished. All we’re interested in is creating the data.

// Java!
// … doc made available here …
Element numbers = doc.createElement("numbers");
Element description = doc.createElement("description");
doc.appendChild(numbers);
numbers.appendChild(description);
description.setTextContent("Squares and factors of 10..15");

Listing 8.1 XML example data: squares and factors of 10 through 15

Listing 8.2 Java snippet for producing the example XML

Learning by example—using a builder 233
for (int i=10; i <= 15; i++)
{
 Element number = doc.createElement("number");
 numbers.appendChild(number);
 number.setAttribute("value", String.valueOf(i));
 number.setAttribute("square", String.valueOf(i*i));
 for (int j=2; j < i; j++)
 {
 if (i % j == 0)
 {
 Element factor = doc.createElement("factor");
 factor.setAttribute("value", String.valueOf(j));
 number.appendChild(factor);
 }
 }
}

Note how there’s a lot of text in listing 8.2 that isn’t directly related to the data
itself—all the calls to methods, and explicitly stating the hierarchy using vari-
ables. This is remarkably error-prone—just in creating this simple example, we
accidentally appended two elements to the wrong place. The hierarchy isn’t evi-
dent, either—the numbers element appears at the same indentation level as the
description element, despite one being a parent of the other. The loops create
a feeling of hierarchy, but it’s only incidental—in a different example, they
could be setting attributes on another element, without adding to the depth of
the tree.

 Now let’s look at the Groovy equivalent in listing 8.3. This is a complete script
that writes the XML out to the console when it’s run. You’ll see later how simple it
is to write the content elsewhere, but for the moment the default behavior makes
testing the example easy.

 This time, there’s little to the program apart from the data. There’s no need
for variables to hold elements while we build up the data for them—the data is
constructed inline, with method parameters specifying attributes and closures
specifying nested elements. The hierarchy is much clearer, too—every child ele-
ment is indented further than the parent element. The exact amount of indenta-
tion depends on other control structures such as the if and for statements, but
there is no danger of accidentally having, say, factor elements show up as siblings
of number elements.

234 CHAPTER 8
Working with builders
def builder = new groovy.xml.MarkupBuilder()
builder.numbers {

 description 'Squares and factors of 10..15'

 for (i in 10..15) {
 number (value: i, square: i*i) {
 for (j in 2..<i) {
 if (i % j == 0) {
 factor (value: j)
 }
 }
 }
 }
}

The example may feel slightly like magic at the moment. That’s a natural first reac-
tion to builders, because we appear to be getting something almost for nothing. We
generally view anything magical as somewhat suspicious—if it appears too good to
be true, it usually is. As you’ll see, however, builders are clever but not miraculous.
They use the language features provided by Groovy—particularly closures and
meta-programming—and combine them to form an elegant coding pattern.

 Now that you have a first impression of what using a builder looks like and what
builders are good for, let’s go into more detail and see how they work, as you learn
how to create hierarchies of straightforward objects instead of XML elements.

8.2 Building object trees with NodeBuilder

We start the more detailed explanation of builders with the same example we
used in section 7.5.1 to demonstrate GPath: modeling Invoices with LineItems
and Products. We will build a runtime structure of nodes rather than specialized
business objects and watch the building process closely. You will learn not only
about how NodeBuilder works, but also how the general principle of builders is
applied in Groovy. We will then consider how the declarative style of builder use
can be freely mixed with normal logic.

 Builders can be used without any special knowledge, but in order to understand
how they work, it is a prerequisite to know about pretended and relayed methods
(section 7.6) and closure scoping (section 5.5).

 Based on our invoice example from section 7.5.1, we set out to build a runtime
object structure as depicted in figure 8.1.

Listing 8.3 Using MarkupBuilder to produce the sample XML

Emit number elements
10 through 15

Emit each factor
element

Building object trees with NodeBuilder 235
In listing 7.23, we built this runtime structure with three defined classes
Invoice, LineItem, and Product and through calling their default constructors in
a nested manner.

8.2.1 NodeBuilder in action—a closer look at builder code

Listing 8.4 shows how to implement the invoice example using a NodeBuilder.
The NodeBuilder can replace all three of our classes, assuming that we’re just
treating them as data storage types (that is, we don’t need to add methods for
business logic or other behavior). Also added is a final GPath expression to prove
that we can still walk conveniently through the object graph. This is the same
query we used in section 7.5.1. Note how the tree structure from figure 8.1 is
reflected in the code!

def builder = new NodeBuilder()
def ulcDate = new Date(107,0,1)
def invoices = builder.invoices{
 invoice(date: ulcDate){
 item(count:5){
 product(name:'ULC', dollar:1499)
 }

Figure 8.1
Runtime structure of
objects and references
in the invoice example
where an invoices node
refers to multiple
instances of the
Invoice class that in
turn holds one or more
LineItem objects that
further refer to a single
Product object each

Listing 8.4 Invoice example with NodeBuilder

Builder creationb

Root node creationc

Invoice creationd

236 CHAPTER 8
Working with builders
 item(count:1){
 product(name:'Visual Editor', dollar:499)
 }
 }
 invoice(date: new Date(106,1,2)){
 item(count:4) {
 product(name:'Visual Editor', dollar:499)
 }
 }
}

soldAt = invoices.grep {
 it.item.product.any{ it.'@name' == 'ULC' }
 }.'@date'
assert soldAt == [ulcDate]

We make a new instance of the NodeBuilder for later use at b, and then we call
the invoices method on the NodeBuilder instance at c. This is a pretended
method: The NodeBuilder intercepts the method call. It constructs a node based
on the name of the intercepted method name and returns it into the invoices
variable.3 Before the node is constructed, the trailing closure is called to construct
its nested nodes. To make this possible, the BuilderSupport that NodeBuilder
inherits from sets the closure’s delegate to the NodeBuilder instance.

 The invoice method call is relayed to the NodeBuilder instance in d, because it
is the current closure’s delegate. This method also takes a map as a parameter. The
content of this map describes the attributes of the constructed node.

 Finally, we need to adapt the GPath a little to use it in e. First, we’ve broken it
into multiple lines to allow proper typesetting in the book. Second, node
attributes are no longer accessible as properties but as map entries. Therefore,
product.name now becomes product['@name'] or, even shorter, product.'@name'.
The additional at-sign is used for denoting attributes in analogy to XPath
attribute conventions. A third change is that through the general handling mech-
anism of nodes, item.product is now a list of products, not a single one.

3 Because invoices is the root node, the method name makes no difference in how we use the node in
the example. Listing 8.4 also works if you replace builder.invoice with builder.whatever.

GPath
query

e

Building object trees with NodeBuilder 237
8.2.2 Understanding the builder concept

From the previous example, we extract the following general rules:

■ Nodes are constructed from pretended method calls on the builder.
■ Method names determine node names.
■ When a map is passed as a method argument, it determines the node’s

attributes. Generally speaking, each key/value pair in the map is used to call
the field’s setter method named by the key with the value. This refinement
will later be used with SwingBuilder to register event listeners.

■ Nesting of nodes is done with closures. Closures relay method calls to
the builder.

This concept is an implementation of the Builder pattern [GOF]. Instead of pro-
gramming how some tree-like structure is built, only the result, the what, is speci-
fied. The how is left to the builder.

 Note that only simple attribute names can be declared in the attribute map
without enclosing them in single or double quotes. Similarly, node names are
constructed from method names, so if you need names that aren’t valid Groovy
identifiers—such as x.y or x-y—you will again need to use quotes.

 So far, we have done pretty much the same as we did with hand-made classes,
but without writing the extra code. This is already a useful advantage, but there is
more to come.

8.2.3 Smart building with logic

With builders, you can mix declarative style and Groovy logic, as listing 8.5 shows.
We create nested invoices in a loop for three consecutive days, with sales of the
product growing each day. To assess the result, we use a pretty-printing facility
available for nodes.

System.setProperty("user.timezone","CET")
def builder = new NodeBuilder()
def invoices = builder.invoices {
 for(day in 1..3) {
 invoice(date: new Date(107,0,day)){
 item(count:day){
 product(name:'ULC', dollar:1499)
 }
 }

Listing 8.5 Using logic inside the NodeBuilder

Loop in
declaration

b

238 CHAPTER 8
Working with builders
 }
}

def writer = new StringWriter()
invoices.print(new PrintWriter(writer))
def result = writer.toString().replaceAll("\r","")
assert "\n"+result == """
invoices() {
 invoice(date:Mon Jan 01 00:00:00 CET 2007) {
 item(count:1) {
 product(name:'ULC', dollar:1499)
 }
 }
 invoice(date:Tue Jan 02 00:00:00 CET 2007) {
 item(count:2) {
 product(name:'ULC', dollar:1499)
 }
 }
 invoice(date:Wed Jan 03 00:00:00 CET 2007) {
 item(count:3) {
 product(name:'ULC', dollar:1499)
 }
 }
}
"""

The code in b calls the NodeBuilder methods directly. This is fine for loops like
for and while; but when looping with closures as in an [1..3].each{} loop, you
have to call the NodeBuilder like builder.invoice, because it wouldn’t be known
otherwise. The closure passed to each will have a delegate of the calling context
(the script), whereas the rest of the method calls appear within closures that have
had their delegates set to the instance of NodeBuilder. It is important to under-
stand what the delegate of each closure is. Just remember that the first thing a
method call to NodeBuilder does is set the closure of the delegate parameter to
the builder.

 Of course, more options are available than for/while. The closure is normal
code—you can use other control structures such as if and switch as well.

 Nodes as constructed with the NodeBuilder have some interesting methods,
as listed in table 8.1. Note that these methods being present on the nodes doesn’t
prevent you from having nodes of the same name (such as a node called
iterator)—you build child nodes by calling methods on the NodeBuilder, not on
the nodes themselves. For a complete and up-to-date description, look at Node’s
API documentation at http://groovy.codehaus.org/apidocs/groovy/util/Node.html.

Print to a StringWriter
for testing

Reduce CR/LF
to LF to allow
comparison

Working with MarkupBuilder 239
Nodes are used throughout the Groovy library for transparently storing tree-like
structures. You will see further usages with XmlParser in section 12.1.2.

With this in mind, you may want to have some fun by typing

println invoices.depthFirst()*.name()

That’s all there is to NodeBuilder. It makes a representative example for all build-
ers in the sense that whenever you use a builder, you create a builder instance and
call methods on it with attached nested closures that result in an object tree.

8.3 Working with MarkupBuilder

In listing 8.5, you saw the structured, pretty-printed output from the tree of
nodes. This can be useful when debugging object structures, but we frequently
want to exchange that information with non-Groovy programs or store it in a
standard format for later retrieval. XML is the most obvious candidate format, so
of course Groovy makes it easy to generate. You’ve already encountered Markup-
Builder in our quick introduction, and now we’ll look more closely at its capabili-
ties with both XML and HTML.

Table 8.1 Public node methods (excerpt)

Return type Method name Purpose

Object name() The name of the node, such as invoice

Object value() The node itself

Map attributes() All attributes in a map

Node parent() The backreference to the parent

List children() The list of all children

Iterator iterator() The iterator over all children

List depthFirst() A collection of all the nodes in the tree, using a
depth-first traversal

List breadthFirst() A collection of all the nodes in the tree, using a
breadth-first traversal

void print(PrintWriter out) Pretty-printing as a nested structure

240 CHAPTER 8
Working with builders
8.3.1 Building XML

Listing 8.6 shows how simple that is: Replace the NodeBuilder with a Markup-
Builder, and voilà—you’re done. The only other difference is the way you obtain
the results. Because markup is usually generated for formatted output, the print-
ing is done implicitly as soon as the construction is finished. To make this possi-
ble, a Writer is passed into the MarkupBuilder’s constructor.

writer = new StringWriter()
builder = new groovy.xml.MarkupBuilder(writer)
invoices = builder.invoices {
 for(day in 1..3) {
 invoice(date: new Date(106,0,day)){
 item(count:day){
 product(name:'ULC', dollar:1499)
 }
 }
 }
}

result = writer.toString().replaceAll("\r","")

assert "\n"+result == """
<invoices>
 <invoice date='Sun Jan 01 00:00:00 CET 2006'>
 <item count='1'>
 <product name='ULC' dollar='1499' />
 </item>
 </invoice>
 <invoice date='Mon Jan 02 00:00:00 CET 2006'>
 <item count='2'>
 <product name='ULC' dollar='1499' />
 </item>
 </invoice>
 <invoice date='Tue Jan 03 00:00:00 CET 2006'>
 <item count='3'>
 <product name='ULC' dollar='1499' />
 </item>
 </invoice>
</invoices>"""

There is no change whatsoever in the two listings as far as the nested builder
calls are concerned. That means you can extract that code in a method and pass
it different builders for different purposes. This is an inherent benefit of the
Builder pattern.

Listing 8.6 Invoice example with MarkupBuilder

New: MarkupBuilder
replaces NodeBuilder

Working with MarkupBuilder 241
 Just as with NodeBuilder, you need to be careful about node and attribute
names containing special characters. This frequently occurs when using Markup-
Builder, because multiword names often appear with hyphens in XML. Suppose
you want to generate a J2EE web.xml descriptor with a MarkupBuilder. You need
to construct markup like <web-app>, but you cannot have a minus sign in a
method name, so you need quotes, like this:

def writer = new StringWriter()
def builder = new groovy.xml.MarkupBuilder(writer)

def web = builder.'web-app' {
 builder.'display-name'('Groovy WebApp')
}

def result = writer.toString().replaceAll("\r","")

assert "\n"+result == """
<web-app>
 <display-name>Groovy WebApp</display-name>
</web-app>"""

Note that a method name in quotes also needs an object reference to be called on,
like this or builder.

8.3.2 Building HTML

XML and HTML follow the common strategy of bringing structure to a text using
markup with tags. Rules for HTML are more special, but for the sole purpose of
building a well-formed serialized format, the same rules apply.

 It should come as no surprise that MarkupBuilder can also produce HTML to
realize web pages, as shown in figure 8.2.

 This web page is created from the following HTML source code:

Figure 8.2
Screenshot of a web page that
is rendered by the browser from
HTML source code that was built
from MarkupBuilder to show a
level-one heading and three check
boxes with labels

242 CHAPTER 8
Working with builders
<html>
 <head>
 <title>Constructed by MarkupBuilder</title>
 </head>
 <body>
 <h1>What can I do with MarkupBuilder?</h1>
 <form action='whatever'>
 <input checked='checked' type='checkbox' id='Produce HTML'/>
 <label for='Produce HTML'>Produce HTML</label>

 <input checked='checked' type='checkbox' id='Produce XML'/>
 <label for='Produce XML'>Produce XML</label>

 <input checked='checked' type='checkbox' id='Have some fun'/>
 <label for='Have some fun'>Have some fun</label>

 </form>
 </body>
</html>

Listing 8.7 shows how this HTML source code is built with a MarkupBuilder. It’s all
straightforward. To build the check boxes, we use a list of labels and do the itera-
tions with the for loop.

def writer = new FileWriter('markup.html')
def html = new groovy.xml.MarkupBuilder(writer)
html.html {
 head {
 title 'Constructed by MarkupBuilder'
 }
 body {
 h1 'What can I do with MarkupBuilder?'
 form (action:'whatever') {
 for (line in ['Produce HTML','Produce XML','Have some fun']){
 input(type:'checkbox',checked:'checked', id:line, '')
 label(for:line, line)
 br('')
} } } }

HTML source code as produced by the MarkupBuilder is always properly built with
respect to balancing and nesting tags. It also deals with a number of character
encoding issues such as replacing the < character with the < entity. See the
Groovy API Javadocs for details.

 MarkupBuilder expects that the last argument to each method call will be
either a closure for further nesting or a string that forms the text content.

Listing 8.7 HTML GUI with MarkupBuilder

Task automation with AntBuilder 243
NOTE MarkupBuilder does not support elements with intermingled text and
child elements, such as <parent>Some text<child>Child text</child>
More text</parent>. Every element has either a list of child elements or
just text. Use an HTML division tag like div(text) if all else fails.

That’s it for MarkupBuilder. It is often used whenever some XML processing is to
be done and when developing web applications. MarkupBuilder works nicely in
combination with Groovy’s templating engines, which are the topic of section 9.4.

8.4 Task automation with AntBuilder

Ant (http://ant.apache.org/) is a build automation tool. If you’ve never worked with
Ant, you should give it a try. It’s a great tool for any kind of automation task and
works nicely in combination with Groovy. For the remainder of this section, it is
assumed that you have some basic understanding of Ant.

 AntBuilder is a Groovy builder that is used to build and execute Ant
datatypes and tasks. This allows you to harness the power of Ant directly within
Groovy scripts and classes. Often, representing interactions with the outside
world—manipulating the filesystem, compiling code, running unit tests, fetch-
ing the contents of web sites—is more easily expressed in Ant than with the stan-
dard Java libraries. Using Ant within normal Java programs is clumsy in various
ways, but Groovy makes it straightforward with AntBuilder. This section shows
how Ant scripts can be represented in Groovy, examines how AntBuilder works,
and demonstrates what a powerful combination the two technologies can form.

NOTE During the final stages of preparation for this book, a new module called
Gant was being developed. It builds on AntBuilder, allowing additional
build logic and dependency resolution to be captured in Groovy syntax.
Check out the Groovy web site for further details.

Ant uses the notion of a build for describing its work. Unfortunately, this naming
sometimes clashes with what we do in a builder. For distinction in the text, build is
always set in italics when referring to the Ant meaning of the word.

8.4.1 From Ant scripts to Groovy scripts

Ant build scripts are typically used for automating tasks that need to be done as
part of the process of transforming source files and other resources into project
deliverables (executables and other artifacts). Build scripts often involve a range
of tasks: cleaning directories, compiling code, running unit tests, producing

244 CHAPTER 8
Working with builders
documentation, moving and copying files, bundling archive files, deploying the
application, and much more.

 A first example of an Ant build script was shown in the introductory sections of
this book in listing 1.2. Listing 8.8 provides another tiny example to show the
XML-based syntax of Ant build scripts. It achieves one of the tasks that build this
book: cleaning the target directory and copying the raw documents to it, exclud-
ing any temporary Word documents.

<project name="prepareBookDirs" default="copy">

 <property name="target.dir" value="target"/>
 <property name="chapters.dir" value="chapters"/>

 <target name="copy">
 <delete dir="${target.dir}" />
 <copy todir="${target.dir}">
 <fileset dir="${chapters.dir}"
 includes="*.doc"
 excludes="~*" />
 </copy>
 </target>
</project>

After saving such a script to build.xml, you can start it from the command line via
the ant command, which produces output like

C:\safe\subversion\groovy-book>ant
Buildfile: build.xml

copy:
 [delete] Deleting directory C:\safe\subversion\groovy-book\target
 [copy] Copying 10 files to C:\safe\subversion\groovy-book\target

BUILD SUCCESSFUL
Total time: 0 seconds

The real production process doesn’t use this build.xml file but an AntBuilder in a
Groovy script:

TARGET_DIR = 'target'
CHAPTERS_DIR = 'chapters'
ant = new AntBuilder()

ant.delete(dir:TARGET_DIR)
ant.copy(todir:TARGET_DIR){

Listing 8.8 Tiny Ant script for file manipulation

Task automation with AntBuilder 245
 fileset(dir:CHAPTERS_DIR, includes:'*.doc', excludes:'~*')
}

When transferring Ant build scripts to Groovy scripts by using the AntBuilder, the
following rules apply:

■ Ant task names map to AntBuilder method names.
■ Ant attributes are passed as a map to AntBuilder methods.
■ In places where traditional Ant uses strings for other datatypes (such as

boolean and int), Groovy code can directly pass data of the correct type:
for example, ant.copy(…, overwrite:true).

■ Nested Ant tasks or elements map to method calls in the attached closure.

Ant comes with a cornucopia of useful tasks, far more than we could possi-
bly describe here. Please refer to the Ant documentation: http://ant.apache.
org/manual.

 Groovy comes with a bundled version of Ant that is used automatically (with-
out any further setup) whenever you use AntBuilder.

8.4.2 How AntBuilder works
Looking at the similarity between build.xml and the corresponding Groovy
script, you could easily assume that AntBuilder builds this XML like a Markup-
Builder and passes it to Ant for execution. This is not the case.

 The Groovy AntBuilder works directly on the Java classes that Ant uses for
doing its work. We need to take a quick detour into the internals of Ant to build a
better picture of AntBuilder’s approach.

 When Ant has parsed build.xml, it iterates through the XML nodes and builds
Java objects. For example, when it sees the copy element, it looks into a taskdef
and finds that it must construct an org.apache.tools.ant.taskdefs.Copy object.
Similarly, the nested fileset element results in a FileSet object that is added to
the Copy object. When all the task objects are created, their perform method is
called and finally executes the task logic. Figure 8.3 shows the resulting object
dependencies in a UML class diagram.

 AntBuilder follows the same approach, but without the need to work on the
XML structure. When the copy method is called on AntBuilder, it uses Ant’s
helper methods to construct an instance of Ant’s Copy object. The nested fileset
call is handled equivalently. As a result, the same object structure as depicted in
figure 8.3 is created.

 When the construction of a top-level element is finished, AntBuilder automati-
cally calls its perform method to start task execution.

246 CHAPTER 8
Working with builders
8.4.3 Smart automation scripts with logic

AntBuilder shines when it comes to using Ant functionality mixed with logic. In
Ant, even the simplest conditional logic is cumbersome to use.

 Suppose your build fails with an error message when you try to run it on an
unsupported version of Java. Look at a possible build.xml that implements this
feature,4 to get an impression of the complexity, not to go through all the details:

<project name="AntIf" default="main" >

 <target name="check.java.version">
 <condition property="java.version.ok">
 <contains string="${java.version}" substring="1.4"/>
 </condition>
 <fail unless="java.version.ok">
 This build script requires JDK 1.4.x.
 </fail>
 </target>

 <target name="main"
 depends="check.java.version"
 if="java.version.ok">

 <!-- further action -->

 </target>

</project>

The same can be achieved with the following Groovy script:

ant = new AntBuilder()
if (! System.properties.'java.version'.contains('1.4')) {

Figure 8.3
UML class diagram
of Ant’s Delete and
Copy tasks, which both
inherit from the Task
class, where Copy also
refers to a FileSet
object that was added
at build time via Copy’s
addFileset method

4 It may seem odd to think of failure as a feature—but if you’ve ever fought against a build that didn’t
quite work, you’ll understand that a failure with an explanation can save hours of frustration!

Easy GUIs with SwingBuilder 247
 ant.fail 'This build script requires JDK 1.4.x'
}
// further action

We think the advantage is obvious.
 When it comes to putting looping logic inside an Ant build, plain Ant cannot

offer much. Additional packages such as Jelly and AntContrib enhance Ant with
logic, but then you end up programming in XML syntax, which is not for every-
body. Using AntBuilder, in contrast, allows you to smoothly integrate any kind of
Groovy looping logic with Ant’s declarative style of task definitions.

 For all the usual automation tasks that you encounter in software development
projects, the combination of Groovy and AntBuilder is a one-two punch. Ant-
Builder gives you simple access to a huge amount of Ant’s functionality while
Groovy lets you set this functionality into action in flexible ways. Whenever you
find yourself struggling with Ant’s XML approach, check whether you can use
Groovy to make things easier. If you’re struggling with an automation task
in Groovy, look at the Ant documentation and search for a task that does the
trick. One powerful technique is to use Ant-in-Groovy-in-Ant: The <groovy> task
allows you to run Groovy code within an Ant script and sets up an AntBuilder
attached to the project containing the script. You can express sophisticated logic
within your build and reference the results elsewhere in the Ant script. We will
look at this functionality further in chapter 13.

 AntBuilder is a prominent example of providing an intuitive API to a Java
framework by using Groovy builders, but it’s not the only one. The next section
presents SwingBuilder, which simplifies implementing graphical user interfaces
(GUIs) with the Java Swing framework.

8.5 Easy GUIs with SwingBuilder

Even in the era of web applications, it’s beneficial to know how to build interac-
tive desktop applications with a user-friendly GUI in terms of presentation and
responsiveness. For this purpose, Java provides two frameworks: the Abstract
Window Toolkit (AWT) and Swing, where Swing is the recommended option.

 Groovy’s SwingBuilder is a simplified API to the Swing framework that enables
quicker development and easier maintenance through a lot of shortcut expres-
sions and by revealing the GUI’s containment structure in the structure of the code.

 We will start our presentation of SwingBuilder with a simple initial example
that reads a password from user input for further processing in a script. With this
example in mind, we’ll explain the main concept: the range of features and the

248 CHAPTER 8
Working with builders
rationale of the implementation. Finally, we will apply this knowledge in a com-
plete Swing application.

 For the remainder of this section, it is assumed that you have some basic
understanding of how to program with Swing. If you are new to Swing, you may
want to first work through the Swing tutorial at http://java.sun.com/docs/books/
tutorial/uiswing.

8.5.1 Reading a password with SwingBuilder

In a recent project, we used a Groovy automation script to connect to a secure web
site. We needed to give it a password, but we didn’t want to hard-wire the pass-
word in the code. The script was used for a corporate client, so we couldn’t read
the password from a file, the command line, or the standard input stream,
because it would then possibly be visible to others.

 Luckily, we remembered that Swing provides a
JPasswordField that shields user input from accidental
over-the-shoulder readers with an echo character (* by
default). Placed inside a JFrame, the simplest solution
looks like figure 8.4.

 Using SwingBuilder, it was easy to integrate that dialog
in the script. Listing 8.9 contains the snippet that achieves
this. It follows the same strategy that you have already seen for other builders: It
creates a builder instance, and calls methods on it with attached closures that
make up the nesting structure and argument maps that further define properties
of the product.

 For the case of the password dialog, the nesting structure is simple: There is
only one container—the outermost JFrame—containing one simple component—
the JPasswordField.

 Because we are working with Swing widgets, we need to add an ActionLis-
tener to the password field, whose actionPerformed method is called as soon as
the user finishes their input. In Groovy, we can do that with a simple closure.

 Finally, we need to call JFrame’s layout manager via the pack method, make it
visible, and start the main loop via show.

import groovy.swing.SwingBuilder

swing = new SwingBuilder()
frame = swing.frame(title:'Password') {

Listing 8.9 A simple password dialog with SwingBuilder

Figure 8.4 Screenshot
of a JPasswordField
to read a password from
user input

Easy GUIs with SwingBuilder 249
 passwordField(columns:10, actionPerformed: { event ->
 println event.source.text
 // any further processing is called here
 System.exit(0)
 }
)
}
frame.pack()
frame.show()

The example shows some idiosyncrasies of SwingBuilder:

■ For constructing a JFrame, the apppropriate method name is frame, not
jFrame as you may expect. This allows us to reuse code with builders for
other widget sets such as AWTBuilder (not yet available), SWTBuilder, or
ULCBuilder5 (under development).

■ Adding the ActionListener to the password field follows the style you saw
in section 7.4.2; we define a closure that is executed when the field notifies
its listener’s actionPerformed method. In this closure, we print the current
content of the field and exit the application. It’s important to spot that the
closure is specified as a value in the map, not as a closure one level down
from the password field.

The flow of execution is different from normal console-based scripts but simi-
lar to normal Swing applications. The flow doesn’t wait for the user input, but
runs right until the end, where Swing’s main loop is started implicitly. When
the user has committed their input with the Enter key, the flow proceeds in the
actionPerformed closure. This is where any trailing activities must reside.

 The initial example was basic. For more elaborate usages, you need more
information about SwingBuilder’s access to Swing’s views and models, as well as
guidance on how to use layout managers and Swing’s action concept. The next
sections are about those features.

 If you would rather look at some advanced examples at this point, you can do
so within your Groovy distribution and online. Table 8.2 gives directions;
GROOVY_SOURCES refers to the Groovy Subversion source tree.

5 ULC is a server-side widget set you can use to write web applications on the server in a Swing-equiva-
lent manner. The user interface is presented on the client through an application-independent UI en-
gine. ULCBuilder will enable you to write Groovy ULC applications analogous to writing Swing
applications with SwingBuilder. See http://www.canoo.com/ulc .

250 CHAPTER 8
Working with builders
8.5.2 Creating Swing widgets

SwingBuilder is simple in appearance but elaborate inside. Its methods not only
create and connect the plain Swing widgets that represent views but also give
access to the objects Swing uses to glue together the final GUI, such as actions,
models, layout managers, and constraints.

 This section lists the factory method calls for building views. The following
sections go into detail about building supporting objects.

 SwingBuilder knows about the Swing widgets that are listed in table 8.3. If no
other indication is given, the factory methods in the table return the product
object, optionally setting properties from a supplied map.

 SwingBuilder cares about proper containment of widgets by following the clo-
sure’s nesting structure. Only standalone containers can be used without a parent.

Table 8.2 SwingBuilder usages within the Groovy distribution and online source repository

Example Location Purpose/Features

groovyConsole GROOVY_HOME
/lib/groovy-*.jar
groovy/ui/Console.groovy

Interactive Groovy shell; using MenuBar, Menu,
MenuItem, Accelerator, CaretListener, Action,
TextArea, TextPane, StyledDocument, Look&Feel,
FileChooser, and Dialog

ObjectBrowser GROOVY_HOME
/lib/groovy-*.jar
groovy/inspect/swingui/
ObjectBrowser.groovy

Inspecting objects; using Label, TabbedPane, Table,
TableModel, ClosureColumn, MouseListener,
BorderLayout, FlowLayout, Look&Feel, ScrollPane,
and Dialog

paintingByNumbers GROOVY_SOURCES
/examples/groovy2d/
paintingByNumbers.groovy

Random patchwork graphics; using simple
Java2D API graphics

BloglinesClient GROOVY_SOURCES
/examples/swing/
BloglinesClient.groovy

RSS Reader; using Lists, ListModels, ScrollPanes,
ValueChangedListeners, and a define-before-layout
approach

Widgets GROOVY_SOURCES
/examples/swing/
Widgets.groovy

Swing Widget demonstrator; using various Dialogs,
MenuBar, Menu, MenuItem, Action, TabbedPane,
Panel, GridLayout, GridBagLayout, Constraints,
BorderLayout, FormattedTextField, Slider, and Spinner
(with model)

SwingDemo GROOVY_TEST_SOURCES
/groovy/swing/
SwingDemo.groovy

SwingBuilder demonstrator, giving access to
groovy.model.MvcDemo, TableDemo and
TableLayoutDemo; additionally featuring VBox,
ComboBox, Table, TableModel, TableLayout (td, tr),
PropertyColumn, and ClosureColumn

Easy GUIs with SwingBuilder 251
See the Swing API documentation for full coverage of the product classes and
their properties.

Table 8.3 SwingBuilder’s widget factory methods

SwingBuilder method Product

button JButton

buttonGroup ButtonGroup
Invisible; used to group radio buttons and check boxes

checkBox JCheckBox

checkBoxMenuItem JCheckBoxMenuItem

colorChooser JColorChooser

comboBox JComboBox
Obeys an optional argument items

desktopPane JDesktopPane

dialog JDialog
Can be used inside a parent container as well as standalone

editorPane JEditorPane

fileChooser JFileChooser

formattedTextField JFormattedTextField
Obeys either the format or value property (in that order)

frame JFrame
Standalone container

internalFrame JInternalFrame

label JLabel

layeredPane JLayeredPane

list JList

menu JMenu

menuBar JMenuBar

menuItem JMenuItem

optionPane JOptionPane

panel JPanel

passwordField JPasswordField

popupMenu JPopupMenu

continued on next page

252 CHAPTER 8
Working with builders
What is missing in SwingBuilder is JToolTip, which cannot be set as a nested ele-
ment but only via the toolTipText attribute. Also missing is JApplet, which is not
implemented at the time of writing.

 With the information from table 8.3, you can construct a GUI that looks like fig-
ure 8.5. The outermost container is a JFrame that contains two top-level elements:
a JMenuBar and a JPanel. The JMenuBar in turn contains a JMenu with JMenuItems.
The JPanel contains three JComponents: a JLabel, a JSlider, and a JComboBox with
a simple list.

progressBar JProgressBar

radioButton JRadioButton

radioButtonMenuItem JRadioButtonMenuItem

scrollBar JScrollBar

scrollPane JScrollPane

separator JSeparator

slider JSlider

spinner JSpinner

splitPane JSplitPane
Initializes its subcomponents

tabbedPane JTabbedPane

table JTable

textArea JTextArea

textField JTextField

textPane JTextPane

toggleButton JToggleButton

toolBar JToolBar

tree JTree

viewport JViewport

window JWindow
Can be used inside a parent container as well as standalone;
obeys the owner argument to override containment

Table 8.3 SwingBuilder’s widget factory methods (continued)

SwingBuilder method Product

Easy GUIs with SwingBuilder 253
 We were tempted to show this simple contain-
ment structure in a diagram, and we would have
done so if we were programming in Java. But
because we’re using Groovy’s SwingBuilder, the
containment structure is nicely reflected in the
code, as you can see in listing 8.10. The code is its
own documentation.

import groovy.swing.SwingBuilder

swing = new SwingBuilder()
frame = swing.frame(title:'Demo') {
 menuBar {
 menu('File') {
 menuItem 'New'
 menuItem 'Open'
 }
 }
 panel {
 label 'Label 1'
 slider()
 comboBox(items:['one','two','three'])
 }
}
frame.pack()
frame.show()

The Java equivalent is not only three to four times longer (and thus too long to
print here), but, perhaps more important, it also fails to reveal the widget con-
tainment in the code layout. If you have ever written Swing GUIs in Java, the code
in listing 8.10 will probably feel like a big improvement.

NOTE We made use of SwingBuilder’s default text key in the attribute map;
menu(text:'File') can be abbreviated as menu('File'). Where paren-
theses are optional, even menuItem 'New' is possible, as demonstrated in
the listing.

The label, slider, and combo box need to be contained in a panel, because a
frame’s root pane can contain at most one element. The panel serves as this sin-
gle element.

Listing 8.10 Simple widget containment demo with SwingBuilder

Figure 8.5 Screenshot of a Swing
GUI with multiple contained widgets

254 CHAPTER 8
Working with builders
NOTE SwingBuilder is an ideal place to use the implicit constructor, as introduced
in section 7.1.4. Say you want to set a frame’s size attribute. In Java, you
need to create a Dimension object for that purpose. With Groovy’s gen-
eral constructor, you write frame(size:[100,100]).

The panel in listing 8.10 needs to visually arrange its contained widget. For that
purpose, it uses its default layout manager, which is FlowLayout for JPanels.
SwingBuilder also gives access to Swing’s other layout managers, as shown in the
next section.

8.5.3 Arranging your widgets

For visual arrangement of widgets, the builder’s nesting structure doesn’t provide
enough information. Suppose a panel contains two buttons. Are they to be arranged
horizontally or vertically? Swing’s layout management provides this information.

 Layout management with SwingBuilder can be achieved in two ways: by set-
ting the appropriate properties on the widgets or by using nested method calls.

 We start with the first option, which works without
any layout-specific treatment in SwingBuilder. This is
shown with an example that uses Swing’s BorderLayout
with JButtons in figure 8.6.

 Listing 8.11 produces the layout in figure 8.6 and
shows that no special methods need to be called. It is
sufficient to set the appropriate properties on the
Swing widgets: layout and constraints. We use
Groovy’s import as feature (see section 7.2.2) for con-
venience, to ease access to BorderLayout with the BL
abbreviation.

import groovy.swing.SwingBuilder
import java.awt.BorderLayout as BL

swing = new SwingBuilder()
frame = swing.frame(title:'Layout Demo') {
 panel(layout: new BL()) {
 button(constraints: BL.NORTH, 'North')
 button(constraints: BL.CENTER, 'Center')
 button(constraints: BL.SOUTH, 'South')
 button(constraints: BL.EAST, 'East')
 button(constraints: BL.WEST, 'West')

Listing 8.11 Laying out widgets the common Swing way

Figure 8.6 Screenshot of
a Swing BorderLayout
defined through
SwingBuilder

Easy GUIs with SwingBuilder 255
 }
}
frame.pack()
frame.show()

The second option for laying out widgets is to use method calls that work inside
the nesting structure, as listed in table 8.4. In addition to Swing’s standard lay-
out options, SwingBuilder also provides simplified access to supporting objects
such as constraints, glues, and struts. See the Swing API documentation for full
coverage of the layout managers, descriptions of their layout strategies, their
properties together with predefined constant values, and the constraints they
rely on.

Table 8.4 SwingBuilder’s methods for laying out components within a user interface

SwingBuilder method Swing class/method Notes

borderLayout BorderLayout Layout manager

boxLayout BoxLayout Layout manager; obeys axis, default:
X_AXIS

cardLayout CardLayout Layout manager

flowLayout FlowLayout Layout manager

gridBagLayout GridBagLayout Layout manager

gridBagConstraints GridBagConstraints Constraints to be used with
GridBagLayout

gbc GridBagConstraints Abbreviation for
gridBagConstraints

gridLayout GridLayout Layout manager

overlayLayout OverlayLayout Layout manager

springLayout SpringLayout Layout manager

tableLayout n/a Container; needs nested
tr() / td() calls

hbox Box.createHorizontalBox Container

hglue Box.createHorizontalGlue Widget

continued on next page

256 CHAPTER 8
Working with builders
All layout management methods in table 8.4 can be used as nested elements of
the laid-out container, which arranges two buttons horizontally:

panel {
 boxLayout()
 button 'one'
 button 'two'
}

In contrast, container methods as marked in table 8.4 start their own nesting
structure to lay out their nested widgets. Here we arrange two buttons vertically:

vbox {
 button 'one'
 button 'two'
}

In HTML-based web applications, tables are often used to control the page layout.
SwingBuilder lets you to follow this approach with a genuine TableLayout that
almost looks like HTML made by MarkupBuilder:

tableLayout{
 tr {
 td { button 'one' }
 td { button 'two' }
 }
 tr {
 td(colspan:2) { button 'three' }
 }
}

Note td’s colspan attribute. The table layout can be adjusted with such cell
attributes. The list of available cell attributes is in table 8.5, or it can be derived
from the API documentation of groovy.swing.impl.TableLayoutCell.

hstrut Box.createHorizontalStrut Widget; obeys width, default: 6

vbox Box.createVerticalBox Container

vglue Box.createVerticalGlue Widget

vstrut Box.createVerticalStrut Widget; obeys height, default: 6

glue Box.createGlue Widget

rigidArea Box.createRigidArea Widget; obeys size or (width,

height), default: 6

Table 8.4 SwingBuilder’s methods for laying out components within a user interface (continued)

SwingBuilder method Swing class/method Notes

Easy GUIs with SwingBuilder 257
What’s still left to explain from table 8.4 are the invisible horizontal and vertical
glues and struts, and the rigid area. Within SwingBuilder, they are used like any
other widget in the containment structure. They fill excessive space in the layout.
Struts are of fixed size, whereas glues grow and shrink with the available space. A
rigid area is a two-dimensional strut.

 The following is a simple example of a vertical glue between two buttons. It
fills vertical space, effectively forcing button “one” to flow to the left and button
“two” to flow to the right of the surrounding panel:

panel {
 button 'one'
 glue()
 button 'two'
}

More precisely, a glue is an invisible widget that has an indefinite maximum size
and a minimum size of [0,0]. The effect of adding a glue to a container depends
on that container’s layout management and the (preferred, minimum, maxi-
mum) size of other contained widgets.

 So far, you have seen how to create and compose widgets and how to
arrange them. To be set into action, widgets and their according event listeners
need a way to refer to each other. The next sections show how to do that.

8.5.4 Referring to widgets

Suppose we have an application with a text field and a button. When the button is
clicked, the current content of the text field is to be printed to the console. This
simplistic application could look like figure 8.7.

Table 8.5 Cell attributes in table layouts

Attribute Type Range/Default

align String ‘LEFT’, ‘CENTER’, ‘RIGHT’

valign String ‘TOP’, ‘MIDDLE’, ‘BOTTOM’

colspan int Default: 1

rowspan int Default: 1

colfill boolean Default: false

rowfill boolean Default: false

258 CHAPTER 8
Working with builders
 The corresponding code would contain a snippet like
the following (which is incomplete):

textField(columns:10)
button(text:'Print', actionPerformed: { event ->
 println 'the entered text is ... ???'
})

To print the content of the text field, the actionPerformed
closure would need a reference to it. This section is about
various ways of obtaining such a reference:

■ By traversing the containment structure
■ By id
■ By variables

The first option makes use of the event object that gets passed to the closure. It
has a source property that refers to the source of the event: the button. So, at
least, we have a reference to the button.

 Button and text fields are nested in the same parent container, available via
the button’s parent property. That parent in turn reveals its nested components,
and the text field happens to be the first one of those. The final traversal looks
like the following:

panel {
 textField(columns:10)
 button(text:'Print', actionPerformed: { event ->
 println event.source.parent.components[0].text
 })
}

This works, but it’s ugly for a number of reasons. First, the path expression
doesn’t nicely reveal that we are referring to the text field. Second, when rear-
ranging the containment structure, the code will break. Third, the purpose of the
text field remains unexplained.

 The second option of referencing addresses these concerns. An id attribute
can be attached to the text field. It is subsequently available as a property on the
SwingBuilder:

swing = new SwingBuilder()
frame = swing.frame(title:'Printer') {
 panel {
 textField(id:'message', columns:10)
 button(text:'Print', actionPerformed: {
 println swing.message.text

Figure 8.7 Screenshot
of a simple application
that prints the content
of the text field to
the console

Easy GUIs with SwingBuilder 259
 })
 }
}

This is much better, but it raises the question why this special handling is needed.
Why not use variables to reference an object? We can do so, and the following
snippet works as well:

message = textField(columns:10)
button(text:'Print', actionPerformed: {
 println message.text
})

This looks appealing at first, but you need to be careful when things are not as
simple as in this example. Variables need to be known in the scope of the refer-
rer, and they must have been properly assigned before use. SwingBuilder’s
appearance can easily lead to overlooking this requirement. Remember that we
are in a closure and thus in a closed block. We cannot introduce a variable to the
enclosing scope.

 Suppose we set out to print not the text field content, but the frame title. We
already have a variable called frame. A first—unsuccessful—try could be

button(text:'Print', actionPerformed: {
 println frame.title // fails !!!
})

This fails because we are still in the process of frame construction when we try to
reference the frame. It isn’t even declared yet!

 Obviously, when going the “reference by variable” route, it makes sense to
first fully construct your widgets and take care of nesting, layout, and referenc-
ing afterward.

 This can look like the following code, where we first construct the frame and
hold a reference to it. When defining the containment structure, we can use this
reference at two places: where the frame widget is needed for containment, and
in the actionPerformed closure. SwingBuilder’s widget method lets us place a pre-
defined widget in the containment structure:

swing = new SwingBuilder()
frame = swing.frame(title:'Printer')

swing.widget(frame) {
 panel {
 textField(columns:10)
 button(text:'Print', actionPerformed: {

260 CHAPTER 8
Working with builders
 println frame.title
 })
 }
}

Or we can do the same with the button and attach the listener after the frame
construction is finished:

swing = new SwingBuilder()
button = swing.button('Print')

frame = swing.frame(title:'Printer') {
 panel {
 textField(columns:10)
 widget(button)
 }
}

button.actionPerformed = {
 println frame.title
}

The latter is particularly handy when constructing views or attaching listeners
gets more complex, such that it would hamper understanding the containment
structure if done inline.

 A further Swing abstraction that helps code readability is the action concept.
The next section shows how it is supported in SwingBuilder.

8.5.5 Using Swing actions

The full description of Swing’s action concept is in the API documentation of
javax.swing.Action; but in short, an action is an ActionListener that can be used
from multiple widgets. In addition to a shared actionPerformed method, it stores
common properties and broadcasts property changes to its widgets.

 This is particularly helpful when a menu item and a toolbar button should do
the same thing, for example. With a shared action, they share, for instance, the
enabled state such that disabling the action instantly disables both the menu item
and the toolbar button.

 Table 8.6 lists the predefined action properties with a short description.
 The accelerator and keyStroke properties both take string representations of

a keystroke as described with javax.swing.KeyStroke.getKeyStroke(String); you
don’t have to bother with the keystroke abstractions but can use 'ctrl ENTER' and
the like.

Easy GUIs with SwingBuilder 261
As expected, SwingBuilder uses the action method to create an action object:

swing = new SwingBuilder()

printAction = swing.action(name:'Print', closure: {
 println swing.message.text
})

Such a reference can be used with the action property of its widgets:

frame = swing.frame(title:'Printer') {
 panel {
 textField(action: printAction, id:'message',columns:10)
 button (action: printAction)
 }
}

We added the action to both widgets. Therefore, the action closure also gets
called when we press the Enter key in the text field.

 The button no longer needs a text property. Instead, the button retrieves its
label from the action name.

 There is a second option for referring to an action that is equally valid but
less intuitive: An action can be nested. For this purpose, a second flavor of
the action method makes the given action known to the parent (similar to the
widget method).

Table 8.6 Predefined action properties

Property Type Note

closure Closure Introduced by SwingBuilder; the closure to be
called for actionPerformed

accelerator String Keystroke to invoke a JMenuItem, even if not visible

mnemonic Single-char String Character in the name used for quick navigation
to the widget

name String Default text for widgets

shortDescription String Used for tooltip text

longDescription String Can be used for context help

enabled Boolean Shared enabled state

smallIcon javax.swing.Icon Shared icon for widgets (toolbar buttons), typically
javax.swing.ImageIcon

keyStroke String General keystroke to invoke the action

262 CHAPTER 8
Working with builders
frame = swing.frame(title:'Printer') {
 panel {
 textField(id:'message',columns:10) { action(printAction) }
 button { action(printAction) }
 }
}

This second option seems questionable to us. We can’t see any benefit,
only the drawback of making things more complicated. We wouldn’t be
surprised if it was discontinued by the time you are reading this.

Using SwingBuilder’s action support is usually a good choice. It helps in terms of
structuring the code, achieving consistent action behavior, and providing user-
friendly GUIs that can be controlled by the keyboard or mouse.

8.5.6 Using models

Swing follows the Model-View-Controller (MVC) pattern, and thus models are
used to provide widgets with data. All the usual Swing models can be used with
SwingBuilder. In addition, SwingBuilder provides factory methods for models, as
listed in table 8.7.

PERSONAL
NOTE

Table 8.7 Factory methods for models

Method Model Note

boundedRangeModel DefaultBoundedRangeModel For JSlider and JProgressBar

spinnerDateModel SpinnerDateModel For JSpinner

spinnerListModel SpinnerListModel For JSpinner

spinnerNumberModel SpinnerNumberModel For JSpinner

tableModel groovy.model.
DefaultTableModel

For JTable; obeys the model and
list properties for ValueModel
(in that order); supports nested
TableColumns

propertyColumn TableColumn Supports header, propertyName,
and type(Class)

closureColumn TableColumn Supports header, read(Closure),
write(Closure), and

type(Class)

Easy GUIs with SwingBuilder 263
NOTE At the time of this writing, there is no special SwingBuilder support for
TreeModel to be used with JTree or ListModel to be used with JList
and JComboBox.

In table 8.7, the tableModel is most special. We
start its presentation with a small example table
that lists the nicknames and full names of some
Groovy committers.6 It produces the GUI shown
in figure 8.8.

 Listing 8.12 contains the code that makes up
the GUI in figure 8.8. The tableModel method
uses nested TableColumn objects, propertyColumn
in this example. Note the containment of scroll-
Pane—table—tableModel—propertyColumn that
is reflected in the code layout.

import groovy.swing.SwingBuilder

data = [
 [nick:'MrG', full:'Guillaume Laforge'],
 [nick:'jez', full:'Jeremy Rayner'],
 [nick:'fraz', full:'Franck Rasolo'],
 [nick:'sormuras', full:'Christian Stein'],
 [nick:'blackdrag', full:'Jochen Theodorou'],
 [nick:'Mittie', full:'Dierk Koenig']
]

swing = new SwingBuilder()
frame = swing.frame(title:'Table Demo') {
 scrollPane {
 table() {
 tableModel(list:data) {
 propertyColumn(header:'Nickname', propertyName:'nick')
 propertyColumn(header:'Full Name',propertyName:'full')
 }
 }

6 Please forgive us for not listing all the committers here. It’s a question of space. We concentrated on
unusual nicknames for this example. The list of all committers is available at http://groovy.
codehaus.org/team-list.html.

Listing 8.12 Example of a table backed by tableModel and propertyColumns

Figure 8.8 Screenshot of a table
backed by tableModel and
propertyColumns

264 CHAPTER 8
Working with builders
 }
}
frame.pack()
frame.show()

When you use propertyColumn, the data must be a list of objects that can be asked
for the propertyName.

 If the data isn’t exactly in the format that should be displayed in the table,
closureColumn allows you to funnel all read and write access to the data through a
read or write closure.

 Suppose you have to work on the preceding data but you want to display
only the first name, not the full name. Replace the previous propertyColumn
lines with

closureColumn(header:'Nickname', read:{it.nick})
closureColumn(header:'First Name',read:{it.full.tokenize()[0]})

When your table is editable by the user or you change the table content program-
matically, consider providing an additional write closure. It is used to convert the
external format of a value back to the table’s internal format. Think about it as
the reverse operation of the read closure.

 SwingBuilder’s special support for TableColumn makes using TableModel much
easier. Normally there is no more need to implement extra TableModel classes on
your own, but you can still do so when the need arises and use them with JTable’s
model property. Nested tableModel methods can also take a custom model argu-
ment to allow this.

 So far, you have seen only small examples and snippets that discuss possible
variations. We still owe you a comprehensive example of a Swing application built
with SwingBuilder. We will keep that promise in the next section.

8.5.7 Putting it all together

Finally, we implement a complete application using SwingBuilder. The idea is to cre-
ate something that shows how all the pieces fit together and that also reveals the ben-
efit that Groovy’s dynamic nature brings to application development.

Gathering requirements
The application plots arbitrary mathematical functions with one free variable, f(x)
in mathematical terms. The user enters the function in the format of a Groovy
expression on x.

 The application is shown in figure 8.9.

Easy GUIs with SwingBuilder 265
 GUI features include the following:

■ The user defines the function.
■ To plot the graph, the user can press Enter

in any input field, click the Paint button,
choose from a menu, or press Ctrl-P.

■ The user can define the domain and range
upper and lower bounds either by typing
in a new value or by increasing/decreasing
the current value with the mouse or arrow
keys. A repaint is triggered immediately
when any of these values changes.

■ Resizing the window shell resizes the plot-
ting canvas.

■ All menus and buttons support
quick navigation.

■ A Help/About box as shown in
figure 8.10 is provided via menu
and via the F1 function key.

Getting prepared
SwingBuilder makes it possible to start
with a minimal design and refine and
extend the containment structure and
layout management as the application grows. This is a big improvement over
ordinary Swing programming in Java and competitive to using visual builders.7

 However, sketching the design in advance prevents us from getting lost.
Figure 8.11 splits the expected GUI in pieces, gives hints about the general layout
management, and notes some ideas about the components.

 The requirements suggest a BorderLayout. All function-specific controls can
float to NORTH, and dimension controls can be placed WEST and SOUTH. Most impor-
tant, the plotting canvas can be CENTERed and will thus expand when resized.

 All subcontainers can be arranged as horizontal or vertical boxes.
 The dimension controls max/min/from/to that are placed at the corners share

some commonalities: They are built from a label, a small space, a spinner, and a

7 Because many visual builders create source code that is effectively usable only within the builder and
is virtually unreadable on its own, SwingBuilder can be said to have the edge over them.

Figure 8.9 Screenshot of a general
function plotter built with
SwingBuilder

Figure 8.10 Screenshot of a Help/About
message made by SwingBuilder

266 CHAPTER 8
Working with builders
spinner model. It would be nice to avoid code duplication and have something
like a labeledSpinner concept.

 Two questions are still open: how to plot a graph using Swing and how to
dynamically evaluate the function text. This is not explained in much detail,
because our current focus is on SwingBuilder. In brief, however:

■ Any Swing widget can be asked for its Graphics object (and thus, we can
use a simple panel). This object in turn has a number of painting methods.
See the API documentation of java.awt.Graphics. The main point to con-
sider is the system of coordinates. It starts at the upper-left corner with
[0,0] and expands right and down. We need some transformation of coordi-
nates to handle that.

■ Dynamic code evaluation will be handled in depth in chapter 11. For our
purpose we can ask a GroovyShell to parse the text into a script. We pass it
the current value of x; calling script.run returns f(x).

This should be enough preparation to start implementing.

Implementation
The code in listing 8.13 resides in a single file. It is made up of four steps:

■ Defining actions
■ Building widgets, containment structure, and layout in one place; ids are

used for referencing widgets

Figure 8.11
Design sketch of
components and layout for
the plotter application

Easy GUIs with SwingBuilder 267
■ Starting the main loop
■ Defining additional helper methods and classes

Event listener closures are implemented as methods and referred to as method
closures (the .& operator; see chapter 5). They are used in two places: in actions
and the spinner’s ChangeListener (stateChanged method).

 The Dynamo class encapsulates the dynamic expression evaluation. It caches
the current script to avoid excessive reparsing.

import groovy.swing.SwingBuilder
import java.awt.Color
import java.awt.BorderLayout as BL
import javax.swing.WindowConstants as WC
import javax.swing.BorderFactory as BF
import javax.swing.JOptionPane

swing = new SwingBuilder()

paint = swing.action(
 name: 'Paint',
 closure: this.&paintGraph,
 mnemonic: 'P',
 accelerator: 'ctrl P'
)
about = swing.action(
 name: 'About',
 closure: this.&showAbout,
 mnemonic: 'A',
 accelerator: 'F1'
)

frame = swing.frame(title:'Plotter',
 location:[100,100], size:[300,300],
 defaultCloseOperation:WC.EXIT_ON_CLOSE) {
 menuBar (){
 menu(mnemonic:'A','Action'){
 menuItem(action:paint)
 }
 glue()
 menu(mnemonic:'H','Help'){
 menuItem(action:about)
 }
 }
 panel (border:BF.createEmptyBorder(6,6,6,6)) {
 borderLayout()
 vbox (constraints: BL.NORTH){

Listing 8.13 The mathematical function plotter application

Type aliases
as shortcuts

Refer to method
closure

General
constructor

Separate
help menu

268 CHAPTER 8
Working with builders
 hbox {
 hstrut(width:10)
 label 'f(x) = '
 textField(id:'function',action:paint,'Math.sin(x)')
 button(action:paint)
 }
 }
 vbox (constraints: BL.WEST){
 labeledSpinner('max',1d)
 20.times { swing.vglue()} // todo: check 'swing'
 labeledSpinner('min',-1d)
 }
 vbox(constraints: BL.CENTER,
 border:BF.createTitledBorder('Function Plot')) {
 panel(id:'canvas')
 }
 hbox (constraints: BL.SOUTH){
 hstrut(width:10)
 labeledSpinner('from',0d)
 10.times { swing.hglue()}
// todo: check 'swing'
 labeledSpinner('to',6.3d)
 }
 }
}
frame.show()

// implementation methods

def labeledSpinner(label, value){
 swing.label(label)
 swing.hstrut()
 swing.spinner(id:label, stateChanged:this.&paintGraph,
 model:swing.spinnerNumberModel(value:value)
)
}
def paintGraph(event) {
 calc = new Dynamo(swing.function.text)
 gfx = swing.canvas.graphics
 int width = swing.canvas.size.width
 int height = swing.canvas.size.height
 gfx.color = new Color(255, 255, 150)
 gfx.fillRect(0, 0, width, height)
 gfx.color = Color.blue
 xFactor = (swing.to.value - swing.from.value) / width
 yFactor = height / (swing.max.value - swing.min.value)
 int ceiling = height + swing.min.value * yFactor
 int lastY = calc.f(swing.from.value) * yFactor
 for (x in (1..width)) {
 int y = calc.f(swing.from.value + x * xFactor) * yFactor
 gfx.drawLine(x-1, ceiling-lastY, x, ceiling-y)

Use factory
method

Build
with logic

b

Factory
method

c

Method used
as closure

d

Main plotting
loop

Easy GUIs with SwingBuilder 269
 lastY = y
 }
}
void showAbout(event) {
 JOptionPane.showMessageDialog(frame,
'''A Function Plotter
that serves as a SwingBuilder example for
Groovy in Action''')
}
// Keep all dynamic invocation handling in one place.
class Dynamo {
 static final GroovyShell SHELL = new GroovyShell()
 Script functionScript
 Dynamo(String function){
 functionScript = SHELL.parse(function)
 }
 Object f(x) {
 functionScript.x = x
 return functionScript.run()
 }
}

It doesn’t happen often, but sometimes building with logic that you have seen with
other builders is also useful with SwingBuilder, as it is in b. At this point, the ratio-
nale is that adding a single glue isn’t enough to push the labeled spinners into
their corners, because a box layout tries to distribute component sizes evenly. The
same effect could have been achieved by using a more complex layout manager.

 The labeledSpinner method at c is perfect for putting your builder and clo-
sure knowledge to the test: Why is the extra swing. prefix needed? Because
labeledSpinner is a callback from the closure’s delegate (swing) to the enclosing
scope (our main script). But this raises a second question: How can swing then
ever add the label to the parent box, for example? Builders keep track of the cur-
rent parent in their internal state. So, swing still knows that we’re adding some-
thing to that box.

 There’s no point in going into too much detail about the actual plotting per-
formed in d. We figure out the current dimension because the user may have
resized the panel, fill it with the background color to erase any old function plot,
calculate scaling factors, and finally draw in an upside-down manner to cope for
Swing’s way of handling coordinates.

Show message
dialog

Once per
paint

For
each x

270 CHAPTER 8
Working with builders
Assessment
Even though we set out to produce a complete application example, and we
achieved a lot within a hundred lines of code, the application isn’t production
ready. We should have included exception handling for invalid scripts and those
that do not return a number, together with warnings and failure indications, in a
dialog or a status bar, for example.

 Allowing users to provide executable code can also be a security issue. This
topic will be examined in chapter 11.

 Performance could be improved by a number of means, such as:

■ Double buffering (plotting on an invisible canvas and toggling canvases
afterward)

■ Sweeping through the domain with a step size > 1 when plotting
■ Reparsing function text only when changed

If you liked this example and aim to improve your SwingBuilder skills, why not
extend the example with new features? Some useful additions could include:

■ Coordinate lines, tickmarks, and labels
■ History of plotted functions
■ Table of x/y values
■ Immediate repaint on focusGained, resize, and so forth.

There is much more about Swing that we haven’t mentioned: drag and drop, look
and feel, all kinds of *ModelListeners, renderers, editors and so on. Even so, we hope
we’ve piqued your curiosity about Swing and shown how Groovy’s SwingBuilder
provides a smooth introduction into the world of desktop applications.

 One thing that we particularly like about SwingBuilder is that it is instantly
available wherever there’s Groovy. Other scripting languages often require you to
additionally install a special GUI toolkit (tk, Gtk, Fox, and others), and you can
bet that when downloading a program, it requires the one toolkit you haven’t
installed on your current machine. SwingBuilder only relies on Swing, and that
comes with your Java installation.

 Having seen the merits of NodeBuilder, MarkupBuilder, AntBuilder, and now
SwingBuilder, it’s reasonable to ask whether you can use that concept for your
own kind of builder. You know the answer already, right? Of course you can—and
of course Groovy makes it easy. The next section gives the details.

Creating your own builder 271
8.6 Creating your own builder

The built-in builders are useful, but they aren’t tailored for your specific needs.
Given how frequently hierarchies are used within software development, it
wouldn’t be surprising to find that you had a domain-specific use for builders that
isn’t quite covered with NodeBuilder and its colleagues. Fortunately, Groovy makes
it easy to build your own builder (which isn’t as recursive as it sounds). We’ll give
you a few examples of why you might want to write your own builder and go
through the support Groovy gives you.

 Suppose you are creating an application that serves different user groups and
supplies each with a customized portal. You may want do specify the portal for
your business user group. Imagine a builder like

businessPortal = new PortalBuilder()
businessPortal.entry {
 corporateMessages (TOP)
 navigationBar (LEFT)
 content (CENTER) {
 keyAccounts()
 }
 advertisements (RIGHT)
 stockTicker (BOTTOM)
 meetingReminder (POPUP)
}

Such a builder would give you the opportunity to use your specification regard-
less of the underlying technology. It could be used for plain HTML, portlets, Rich
Internet Applications, and even for a Swing client. It’s only a matter of how to
implement the builder.

 Note that such a specification is more flexible than one that resides in a fixed
data-structure or in an XML file: You can use variables, constants, method calls,
and any other Groovy feature.

 A second idea: Suppose you have a technical application such as a persistence
framework with the feature to shield your users from SQL. Imagine building a
hypothetical query for customers named like Bill with invoices greater than
$1000, like this:

query = new QueryBuilder()
query.table(customer:'c', invoice:'i') {
 join (c:'invoice_id', i:'id')
 and {
 greater('i.total': 1000)
 like ('c.name' : '%Bill%')
 }
}

272 CHAPTER 8
Working with builders
The builder could map this specification to the SQL dialect you are using or to
special types of your persistence framework8 (such as selection criteria).

 Implementing these examples is beyond the scope of this book, but we hope
to give you all the builder knowledge you require in order to create them for
yourself. This section shows how well Groovy supports implementing builders,
taking you through an instructive example.

8.6.1 Subclassing BuilderSupport
All builders in the Groovy library are subclasses of groovy.util.BuilderSupport.
This class implements the general builder strategy: allowing you to pretend your
builder methods, to recursively process any attached closures, to relay method
calls in closures back to your builder, and to call your builder’s template methods.

 To implement your own builder, you subclass BuilderSupport and implement
the template methods as listed in table 8.8.

BuilderSupport follows this construction algorithm:

■ When hitting a builder method, call the appropriate createNode method.
■ Call setParent with the current parent and the node you’ve just created

(unless it’s a root node, which has no parent).

8 When this paragraph was first written, such builders were purely hypothetical. Now, Grails has such
builders for defining Hibernate criteria.

Table 8.8 List of template methods for builders

Info Returns Name Parameters Call triggered by

Abstract Object createNode Object name foo()

Abstract Object createNode Object name,
Object value

foo('x')

Abstract Object createNode Object name,
Map attributes

foo(a:1)

Abstract Object createNode Object name, Map
attributes, Object value

foo(a:1, 'x')

Abstract void setParent Object parent,
Object child

createNode finished

Empty void nodeCompleted Object parent,
Object node

Recursive closure
call finished

Creating your own builder 273
■ Process any attached closure (this is where recursion happens).
■ Call nodeCompleted with the current parent and the created node (even if

parent is null).

That means a code fragment like

builder = new MyBuilder()
builder.foo() {
 bar(a:1)
}

will result in method calls like (pseudocode; indentation indicates recursion depth)

builder = new MyBuilder()
foo = builder.createNode('foo')
// no setParent() call since we are a root node
 bar = builder.createNode('bar',[a:1])
 builder.setParent(foo, bar)
 // no closure to process for bar
 builder.nodeCompleted(foo, bar)
builder.nodeCompleted(null, foo)

Note that the foo and bar variables are not used inside the real builder. They are
used in this pseudocode only for illustrating identities.

 In terms of the implementation, nodeCompleted isn’t a template method in the
strict meaning of the word, because it is not declared abstract in BuilderSupport
but has an empty default implementation. However, it is added to table 8.8
because most builders need to override it anyway.

 Further methods of BuilderSupport are listed in table 8.9. See their API docu-
mentation for more details.

The next section puts all this together in a complete example.

Table 8.9 More BuilderSupport methods

Returns Name Parameters Use

Object getCurrent The node under construction, i.e.
the parent when processing a closure

Object getName String
methodName

Override to allow builder-specific
name conversions; default obeys
nameMappingClosure

Void setClosureDelegate Closure closure,
Object node

Override to allow a mix of builders

274 CHAPTER 8
Working with builders
8.6.2 The DebugBuilder example

Our example of how to implement a self-made builder is aimed at being as close
to the point as possible. It does little more than reveal how your builder methods
were called and is therefore named DebugBuilder.

 Despite looking like a textbook example, it is of practical relevance. Let’s
assume you write an automation script with AntBuilder that behaves unexpectedly.
You can then use DebugBuilder in place of AntBuilder to find out whether your
Ant tasks were called in the expected sequence with the expected values.

 Listing 8.14 contains the implementation of DebugBuilder as a subclass
of BuilderSupport with a trailing script that shows how to use it and asserts
its behavior.

 In the process of building, all relevant information about node creation is
appended to a result property whenever setParent is called. Because this
never happens for the root node, a check method recognizes the creation of the
root node.

 The nesting depth of recursive closure calls is reflected by indenting the
according lines when appending to the result. This depth is increased on any call
to createNode and decreased on nodeCompleted.

class DebugBuilder extends BuilderSupport {
 def result = ''<<''
 def indent = ' ' * 4
 int indentCount = -1

 def createNode(name){
 indentCount++
 return check(name)
 }
 def createNode(name, value){
 return check(createNode(name) << format(value))
 }
 def createNode(name, Map attributes){
 return check(createNode(name) << format(attributes))
 }
 def createNode(name, Map attributes, value){
 return check(createNode(name, attributes) << format(value))
 }
 void setParent(parent, child){
 result << "\n" << indent*indentCount << child.toString()
 }
 void nodeCompleted(parent, node) {

Listing 8.14 Using BuilderSupport for DebugBuilder

Empty
StringBuffer

Builder calls goes
through this method

Creating your own builder 275
 indentCount--
 }

 private check(descr){
 if (!current) result << descr
 return descr
 }
 private format(value) {
 return '(' << value.toString() << ')'
 }
 private format(Map attributes) {
 StringBuffer formatted = '' << '['
 attributes.each { key, value ->
 formatted << key << ':' << value << ', '
 }
 formatted.length = formatted.size() - 2
 formatted << ']'
 return formatted
 }
}

def builder = new DebugBuilder()
builder.foo(){
 bar()
 baz('x') { map(a:1) }
}
assert "\n" + builder.result == '''
foo
 bar
 baz(x)
 map[a:1]'''

The final assertion in listing 8.14 suggests that DebugBuilder can generally be
used to support unit-testing with builders. For example, by injecting a Debug-
Builder into code that expects a SwingBuilder, you can use such an assertion to
unit-test that code.

 DebugBuilder also supports duck typing with the result property. Because the
only operator that is ever applied to result is the << leftshift operator, the result
property can be set to an object of any type that supports that operator. The
default is a StringBuffer, but it can be set to an array, any collection, or even a
Writer. For example, to print the results to the console, use the following:

builder = new DebugBuilder(result: new PrintWriter(System.out))
…
builder.result.flush()

Special root
handling

276 CHAPTER 8
Working with builders
That’s all there is to implementing your own builder. We hope we’ve convinced
you of the simplicity of that task. At least the core steps of making your code work
as a builder are simple. It goes without saying that any specific builder can still be
as complex as any piece of code.

8.7 Summary

The way Groovy works with builders and the simplicity that it brings to defining
your own is one of Groovy’s genuine contributions to the open-source community.
In fact, it is so appealing that other well-established languages copied the con-
cept. This is fair enough, because Groovy has adopted many great features from
other languages.

 What makes builders special is their descriptive nature while still being ordi-
nary executable code. Together with Groovy’s feature of executing code dynami-
cally, this combination comes close to the ambition of Lisp: working as an
executable specification.

 Builders can be seen as a way of implementing domain specific languages (DSLs).
You have seen many domains in this chapter, from runtime structures (Node-
Builder) through text structures (MarkupBuilder), task automation (AntBuilder),
and desktop UIs (SwingBuilder), to ones we just dreamed up—business portals and
query abstraction. These are distinct domains, and making them easy to work with
is the job of a DSL. This notion is rapidly attracting mindshare at the moment.9

 With DSLs, it should be possible to express domain facts in a way that is more
flexible, more powerful, and easier to read than XML, but not as demanding as
full-blown programming languages. Groovy builders are an ideal vehicle to
achieve this. We look forward to seeing which domains will have Groovy builders
created for them. How about a workflow engine, for example? Animation? A new
way of considering threading, built from parallel pieces of logic? Who knows—
perhaps you will be the one to bring the Next Big Thing to Groovy. Whatever
domain you may choose to tackle, Groovy’s support for builders is likely to be
able to help you.

 Now that we have examined builders, it is time to revisit a topic we’ve fre-
quently mentioned in passing: the GDK, or Groovy’s way of extending the JDK.

9 http://www.martinfowler.com/bliki/DomainSpecificLanguage.html

Working with the GDK
Einstein argued that there must be simpli-
fied explanations of nature, because God is
not capricious or arbitrary. No such faith
comforts the software engineer.

—Fred Brooks
277

278 CHAPTER 9
Working with the GDK
Learning a new programming language is a twofold task: learning the syntax and
learning the standard library. Whereas learning the syntax is a matter of days and
getting proficient with new language idioms may require a matter of a few weeks,
working through a new library can easily take several months.

 Luckily, no Java programmer needs to go through this time-consuming activ-
ity when learning Groovy. They already know most of the Groovy Standard
Library, because that is the set of APIs that the Java Runtime provides. You can
work with Groovy by solely using objects and methods as provided by the Java
platform, although this approach doesn’t fully leverage the power of Groovy.

 Groovy extends (and in a few places modifies)
the JRE to make it more convenient to work with,
provide new dynamic features, and adapt the APIs
to Groovy language idioms. The total of these
extensions and modifications is called the GDK. Fig-
ure 9.1 gives the architectural overview.

 A big part of the GDK concerns the datatypes
that Groovy supports at the language level, such as
strings, numbers, lists, and maps. That part of the
GDK was covered in part 1 of this book.

 This chapter focuses on GDK capabilities that come from extending promi-
nent JDK concepts such as Object, File, Stream, Thread, Process, and text pro-
cessing with templates.

 Let’s start with Object, the most general and most important concept in the
JDK, and see how Groovy further extends the concept with features for explora-
tion and control.

9.1 Working with Objects

Java comes with a narrow API of 11 methods for its central abstraction
java.lang.Object. These methods deal with the object lifecycle (clone, finalize),
object equality (equals, hashCode), information (toString), self-reflection (get-
Class), and multithreading support (notify, notifyAll, three versions of wait).

 Groovy adds much to the self-reflective and informational aspects of the API to
better support live exploration of objects. It handles identity/equality differently
and therefore needs to extend the respective API. It adds convenience methods to
Object for the purpose of making these methods available anywhere in the code.
Finally, it adds collection-aware methods to Object that are useful when the object
can be seen as some kind of collection even though it is not necessarily of static

Figure 9.1 GDK’s place in the
Groovy architecture

Working with Objects 279
type java.util.Collection. This last category also includes the handling of
object arrays.

 We will go through these categories one by one, starting with self-reflective
and informational methods.

9.1.1 Interactive objects

When working on a program, you often need to inspect your objects, whether for
debugging, logging, or tracing purposes. In dynamic languages such as Groovy,
this need is even greater, because you may work with your programming lan-
guage in an interactive fashion, asking your objects about their state and capabil-
ities to subsequently send them messages.

Object information in strings

Often, the first task is to ask an object for some general information about itself:
toString() in Java parlance. Groovy adds two more methods of this kind:

■ dump returns a description of the object’s state, namely its fields and
their values.

■ inspect makes a best effort to return the object as it could appear in
Groovy source code, with lists and maps in the format of their literal decla-
ration. If it cannot do better, it falls back to toString.

Listing 9.1 shows these methods called on a string that contains a single new-
line character.

def newline = "\n"

assert newline.toString() == "\n"

assert newline.dump() ==
'''<java.lang.String@a value=[
] offset=0 count=1 hash=10>'''

assert newline.inspect() == /"\n"/

Note how inspect returns a string that is equivalent to newline’s literal declara-
tion: the characters backslash and n enclosed in double quotes (four characters

Listing 9.1 Usage of dump and inspect

280 CHAPTER 9
Working with the GDK
total), whereas toString returns only the newline character (one character). The
dump of a string object may yield different results in other JVMs.

 If these methods are not sufficient when working with Groovy interactively,
remember that you can fire up the graphical ObjectBrowser via

groovy.inspect.swingui.ObjectBrowser.inspect(obj)

You have seen the dump method reveal the object’s fields and their values. The
same and more can be done with the object’s properties.

Accessing properties
Remember that any Groovy object can be seen as a JavaBean, as you saw in sec-
tion 7.4. You have already seen that its properties can be inspected with the get-
Properties method or the properties property. The method returns a read-only
map of property names and their current values. During inspection, printing
the whole map of properties is as easy as

println properties

or

println someObj.properties

When doing so, you may see more properties than you expected, because
Groovy’s class-generation mechanism introduces accessors for that object’s class
and MetaClass properties behind the scenes.1

 Listing 9.2 shows property reflection in use. The example uses a class with a
first property and a second read-only property that returns a derived value and
is not backed by a field. A third property is only a field without accessor methods.
The listing shows how to list all keys of that object’s properties.

 Of course, you can ask the map of properties for the value of a property
either with the subscript operator or with the dot-propertyname syntax. This last
option looks exactly the same as directly asking the object for the value of a
property if its name is known at coding time. This raises the question of whether
you can ask an object directly for a property value if its name is only known at
runtime and resides in a variable. Listing 9.2 shows that you can do so by using
the subscript operator directly on the object without the need for redirection
over the properties map.

1 It is planned to remove the appearance of MetaClass at this point, which may have happened by the
time you read this. Listing 9.2 is also affected by this removal.

Working with Objects 281
 Because we know that the subscript operator is implemented via the getAt
method, it would be surprising if the putAt method for subscript-assignment
weren’t implemented in the same manner. Again, listing 9.2 shows that this works
and allows us to assign a value to a property whose name is derived dynamically.

class MyClass {
 def first = 1 // read-write property
 def getSecond() { first * 2 } // read-only property
 public third = 3 // public field property
}

obj = new MyClass()

keys = ['first','second','third',
 'class','metaClass']
assert obj.properties.keySet() == new HashSet(keys)

assert 1 == obj.properties['first']
assert 1 == obj.properties.first

assert 1 == obj.first
assert 1 == obj['first'] // getAt('first')

one = 'first'
two = 'second'
obj[one] = obj[two] // putAt(one)
assert obj.dump() =~ 'first=2'

At b and c, you see that objects implement the getAt and putAt methods by
default, such that the code appears to be accessing a map of properties as far as
the subscript operator is concerned.

 d shows a simple way of introspecting an object via the dump method. Because
the first property is backed by a field of the same name, this field and its current
value appear in the dump. Note that this field is private and wouldn’t be visible
otherwise. This trick is useful, especially in test cases.

NOTE When working with Groovy code, you may also come across Object’s
method getMetaPropertyValues. It is used internally with an object’s
meta information and returns a list of PropertyValue objects that encap-
sulate the name, type, and value of a property.

Listing 9.2 Reflecting on properties

Properties
map

Direct
access

b

Dynamic
assignment

c

Field introspectiond

282 CHAPTER 9
Working with the GDK
Working with properties means working on a higher level of abstraction than
working with methods or even fields directly. We will now take one step down and
look at dynamic method invocation.

Invoking methods dynamically

In the Java world, methods (and fields) belong to Class rather than to Object.
This is appropriate for most applications of reflection, and Groovy generally fol-
lows this approach. When you need information about an object’s methods and
fields, you can use the following GPath expressions:

obj.class.methods.name
obj.class.fields.name

This covers methods and fields as they appear in the bytecode. For dynamically
added methods like those of the GDK, Groovy’s MetaClass provides the information:

obj.metaClass.metaMethods.name

NOTE You can add a .unique or .sort to the preceding GPaths to narrow down
the list.

Groovy follows a slightly different approach than Java when it comes to invoking
these methods dynamically. You saw the invokeMethod functionality for Groovy-
Objects in section 7.1.2. The GDK makes this functionality ubiquitously available
on any (Java) object. In other words, a Groovy programmer can call

object.invokeMethod(name, params)

on any arbitrary object.

NOTE This simple call is much easier than JDK reflection, where you need to go
through the Class object to fetch a Method object from a list, invoke it by
passing it your object, and take care of handling numerous exceptions.

Dynamic method invocation is useful when the names of the method or its
parameters are not known before runtime.

 Consider this scenario: You implement a persistence layer with Data Access
Objects (DAOs), or objects that care for accessing persistent data. A Person DAO
may have methods like findAll, findByLastName, findByMaximum, and so on. This
DAO may be used in a web application setting as depicted in figure 9.2. It may
respond to HTTP requests with request parameters for the type of find action and

Working with Objects 283
additional parameters. This calls for a way to dispatch from the request parame-
ters to the method call.

 Such a dispatch can be achieved with if-else or switch constructions.
Listing 9.3 shows how dynamic method invocation2 makes this dispatching logic a
one-liner. Because this is only an illustrative example, we return the SQL state-
ment strings from the DAO methods, not the Person objects as we would probably
do in real DAOs.

class PersonDAO {
 String findAll() {
 'SELECT * FROM Person'
 }
 String findByLastname(name) {
 findAll() + " WHERE p.lastname = '$name'"
 }
 String findByMaximum(attribute) {
 findAll() + " WHERE $attribute = " +
 "SELECT maximum($attribute) FROM Person"
 }
}
dao = new PersonDAO()

2 In real-life applications, you need to consider certain security constraints. This kind of dispatch should
be used only when the user is allowed to safely use all available methods.

Listing 9.3 Dynamic method invocation in DAOs

Figure 9.2
Dispatching from HTTP request values to
method calls in a Data Access Object

284 CHAPTER 9
Working with the GDK
action = 'findAll' // some external input
params = [] as Object[]
assert dao.invokeMethod(action, params) == 'SELECT * FROM Person'

The action and params variables refer to external input, such as from an HTTP
request. Note that this example is characteristic for a variety of applications.
Almost every reasonably sophisticated client-server application has to deal with
this kind of dispatching and can thus benefit from dynamic method invocation.

 As a second example, an external configuration in plain-text files, tables, or
XML may specify what action to take under certain circumstances. Think about
domain specific languages (DSLs), the specification of a finite state machine, a work-
flow description, a rule engine, or a Struts configuration. Dynamic method invo-
cation can be used to trigger such actions.

 These scenarios are classically addressed with the Command pattern. In this
pattern, dynamic invocation can fully replace simple commands that only encap-
sulate actions (that is, they don’t encapsulate state or support additional function-
ality like undo).

 While we are on this topic, dynamic invocation can be applied not only to
methods but also to closures. In order to select a closure by name, you can store
such closures in properties. An idiomatic variant of listing 9.3 could thus be

class PersonDAO {
 public findAll = {
 'SELECT * FROM Person'
 }
 // more finder methods as Closure fields ...
}
dao = new PersonDAO()

action = 'findAll' // some external input
params = []
assert dao[action](*params) == 'SELECT * FROM Person'

Note that findAll is now a public field with a closure assigned to it, dynamically
accessed via dao[action]. This dynamically accessed closure can be called in var-
ious ways. We choose the shortest variant of putting parentheses after the refer-
ence, including any arguments. The * spread operator distributes the arguments
over the closure parameters (if—unlike findAll—the closure has any parameters).

 These variants differ slightly in size where the closure variant is a bit shorter
but may be less readable for the casual Groovy user. The closure variant addition-
ally offers the possibility of changing the closure at runtime by assigning a new

Working with Objects 285
closure to the respective field. This can be handy in combination with the State or
Strategy pattern.3

 To further make programming Groovy a satisfying experience, the GDK adds
numerous convenience methods to Object.

9.1.2 Convenient Object methods

How often have you typed System.out.println when programming Java? In
Groovy, you can achieve the same result with println, which is an abbreviation for
this.println; and because the GDK makes println available on Object, you can
use this anywhere in the code. This is what we call a convenience method.

 This section walks through the available convenience methods and their
usage, as listed in table 9.1.

Let’s go through the methods.
 Because Groovy uses the == operator for equality instead of identity check-

ing, you need a replacement for the Java meaning of ==. That is what the is
method provides.

 In Java:

if (a == b) { /* more code here */}

3 Erich Gamma et al, Design Patterns: Elements of Reusable Object-Oriented Software, (Addison-Wesley, 1995).

Table 9.1 Object convenience methods

Introduced Object method Meaning

is(other) Compare Object identities (references)

isCase(caseValue, switchValue) Default implementation: equality

obj.identity {closure} Call closure with object identity (delegate)

print(), print(value),
println(), println(value)

System.out.print…

printf(formatStr, value)
printf(formatStr, value[])

Java 5 printf…

sleep(millis)
sleep(millis) {onInterrupt}

static Thread.currentThread().
sleep(millis)

use(categoryClass) {closure}
use(categoryClassList) {closure}

Use meta-methods as defined in categoryClass
for the scope of the closure

286 CHAPTER 9
Working with the GDK
In Groovy:

if (a.is(b)) { /* more code here */}

The is method saves you the work of comparing the System.identityHash-
Code(obj) of a and b manually.

 The isCase method occurred often in the Groovy language description in
part 1. For Object, the GDK provides a default implementation that checks for
object equality. Note that this means you can use any (Java) object in a Groovy
grep or switch:

switch(new Date(0)){
 case new Date(0) : println 'dates are equal'
}

The identity method calls the attached closure with the receiver object as the
closure’s delegate. This has an effect similar to that of the WITH keyword in Visual
Basic. Use it when a piece of code deals primarily with only one object, like
the following:

new Date().identity {
 println "$date.$month.$year"
}

The properties date, month, and year will now be resolved against the current date.
Such a piece of code has by definition the smell of inappropriate intimacy.4 This calls
for making this closure a method on the receiver object (Date), which you can do
in Groovy with the use method as covered in section 7.5.3.

 The versions of print and println print to System.out by default, whereas
println emits an additional line feed. Of course, you can still call these methods on
any kind of PrintStream or PrintWriter to send your output in other directions.

 The same is true for the printf method. It is based on Java’s formatted print
support, which has been available since Java 5 and (currently) works only if you
run Groovy under Java 5 or higher. A RuntimeException is thrown otherwise. In
terms of supported formatting features, we cannot present the full list here. Have
a look at the Javadoc for class java.util.Formatter. The full description covers
about 1,800 lines.

 In Groovy, printf isn’t as crucial as in other languages, because GStrings
already provide excellent support at the language level and the string datatype
provides the most common features of left and right padding and centering text.

4 Fowler et al, Refactoring: Improving the Design of Existing Code (Addison-Wesley, 1999).

Working with Objects 287
However, there are times when formatted output is more convenient to achieve
with a format string, especially when the user should be able to configure the out-
put format to their preferences. The following line

printf('PI=%2.5f and E=%2.5f', Math.PI, Math.E) // with Java 5 only !

prints

PI=3.14159 and E=2.71828

Note that we have used printf with three arguments, but because a format string
may contain an arbitrary number of placeholders, printf supports an argument
list of arbitrary length. It goes without saying that the number of additional argu-
ments must match the number of placeholders in the format string, unless you
explicitly specify the argument number to use in the format string. You can also
provide a single argument of type list—for example, [Math.PI,Math.E].

 When working through the Formatter API documentation, you will notice
some advanced topics around printf:

■ Conversions apply when a placeholder and the corresponding argument are
of different types.

■ Placeholders can be prefixed with n$ to map the placeholder to the nth
argument in the list. This may get you in conflict with the GString meaning
of $. Therefore, it’s wise to use only single-quoted string literals as printf
format strings.

The last convenience method in our list is sleep, which suspends the current
thread for a given number of milliseconds. It enhances the JDK method
Thread.sleep by automatically handling interruptions such that sleep is re-called
until the given time has elapsed (as closely as the machine timer can tell). This
makes the effective sleep time more predictable.

 If you want to handle interruptions differently, you can attach a closure that is
called when sleep encounters an InterruptedException.

 With the sleep method, you can have some fun, as with the following example.
Run it from the Groovy shell or console after predicting its output. Did you guess
correctly what it does?

text = """
This text appears
slowly on the screen
as if someone would
tpye \b\b \b\b \b\b \bype it.
"""
for (c in text) {

288 CHAPTER 9
Working with the GDK
 sleep 100
 print c
}

These are all methods that the GDK adds to every object for convenience. How-
ever, objects frequently come in a crowd. For such cases, the GDK provides meth-
ods to select them one-by-one, as shown in the next section.

9.1.3 Iterative Object methods
In the Java world, any collection (in the general meaning of the word) of objects
can support inspection of its contained items by providing an Iterator, a sepa-
rate object that knows how to walk through that collection. Oh—wait, sometimes
an Enumeration is used instead. As a further inconsistency, Iterators are not
directly available on arrays and a lot of other common types.

 Even if you are lucky and found how to get an Iterator object in the API doc-
umentation, you cannot do much more with it than use it in a procedural way
like this:5

// Java !
for (Iterator collection.iterator(); iterator.hasNext();){
 MyClass obj = (MyClass) iterator.next();
 // do something with obj
}

Groovy instead provides a simple and consistent way of doing this:

collection.each { /* do something with it */}

Besides the simple each method, you can use any of the methods that are listed in
table 9.2.

5 Java 5 allows a simpler syntax, but it has chosen to use a symbol instead of introducing a keyword. We
end up with for (MyClass obj : collection). Better, but not ideal.

Table 9.2 Iterative Object methods

Return value Method

Boolean any {closure}

List collect {closure}

Collection collect(Collection collection) {closure}

(void) each {closure}

continued on next page

Working with Objects 289
What’s so useful about the methods in table 9.2 is that you can use them on any
object you fancy. The GDK makes these methods available on Object and yields
the respective items. As we described in section 6.3.2, this iteration strategy is also
used in Groovy’s for loop.

 Getting the items is done with a best-effort strategy for the candidate types
listed in table 9.3, where the first matching possibility is chosen.

(void) eachWithIndex {closure}

Boolean every {closure}

Object find {closure}

List findAll {closure}

Integer findIndexOf {closure}

List grep(Object filter)

Table 9.3 Priority of Object’s iteration strategy

No. Candidate Use with

1 java.util.Iterator Itself

2 org.w3c.dom.NodeList Iterator over Nodes

3 java.util.Enumeration Convert to iterator

4 java.util.regex.Matcher Iterator over matches

5 Responds to iterator method Call it

6 Collectable Collection.iterator()

7 java.util.Map Iterator over Map.Entry objects

8 Array Iterator over array items

9 MethodClosure Iterator over calls

10 java.lang.String Iterator over characters

11 java.io.File Iterator over lines

12 null Empty iterator

13 Otherwise Iterator that only contains the candidate

Table 9.2 Iterative Object methods (continued)

Return value Method

290 CHAPTER 9
Working with the GDK
This allows for flexible usages of Groovy’s iteration-aware methods. There is no
more need to care whether you work with an iterator, an enumeration, a collec-
tion, or whatever, for example within a GPath expression.

 The possible candidates in table 9.3 are fairly straightforward, but some back-
ground information certainly helps:

Candidate 2: A NodeList is used with a Document Object Model (DOM). Such a DOM
can be constructed from, for example, XML or HTML documents.
We will revisit this topic in chapter 12.

Candidate 5: A candidate object may provide its Iterator with the iterator
method. Instead of a single static interface, the availability of the
iterator method is used in the sense of duck-typing. An example
of such an object is groovy.util.Node.

Candidate 6: A candidate object is collectable if it can be coerced into an object of
type java.util.Collection.

Candidate 9: This is an unconventional way of providing an Iterator, but it’s
interesting because it puts our Groovy knowledge to the test.

Suppose you have a method that takes a closure as a parameter and calls the clo-
sure back with a single argument, multiple times, using a different argument each
time. This could be seen as successively passing arguments to a closure. Succes-
sively passing arguments is exactly what an Iterator does. To make this method
work as an iterator, refer to it as a MethodClosure, as described in section 5.3.3.

 As an example, imagine calculating sin(x) for sample domain values of x
between zero and 2p. A domain method can feed an arbitrary yield closure with
these x samples:

samples = 4

def domain(yield) {
 step = Math.PI * 2 / samples
 (0..samples).each { yield it*step }
}

Printing the x values would be as simple as invoking

domain { println it}

As the domain method successively passes objects to the given closure, it can be
used with the object-iteration methods—for example, with collect to get a list of
sine values for all samples from the domain. Use a reference to the domain
method: this.&domain, which makes it a MethodClosure.

this.&domain.collect { Math.sin(it) }

Working with files and I/O 291
Using a MethodClosure as an Iterator doesn’t seem to provide much advantage
other than reusing a method that possibly already exists. Our domain method
could have returned a list of x values. Things would have been easier to under-
stand that way. There also isn’t a performance or memory consumption gain,
because this list is constructed behind the scenes anyway when converting
the closure.

 However, it may be handy when the method does more than our simple exam-
ple. It could produce side-effects—for example, for statistical purposes. It could
get data from a live datafeed or some expensive resource with an elaborate cach-
ing strategy. Because references to MethodClosures can be held in variables, you
could change this strategy at runtime (Strategy pattern).6

 Those were the GDK methods for Object. There are more methods in the GDK
for arrays of objects. They make arrays usable as lists such that Groovy program-
mers can use them interchangeably. These methods were described in section 4.2.

 Not surprisingly, GDK’s object methods are about all-purpose functionality
such as revealing information about an object’s state and dynamically accessing
properties and invoking methods. Iterating over objects can be done regardless
of each object’s behavior.

 The next sections will cover GDK methods for more specialized but frequently
used JDK classes used for I/O, such as File.

9.2 Working with files and I/O

Hardly any script (let alone whole applications) can do without file access and
other input/output-related issues. The JDK addresses this need with its java.io
and java.net packages. It provides elaborate support with the File and URL
classes and numerous versions of streams, readers, and writers.

 However, the programmer is left with the repetitive, tedious, and error-prone
task of managing I/O resources, such as properly closing an opened file even if
exceptions occur while processing.

 This is where the GDK steps in and provides numerous methods that let you
focus on the task at hand rather than thinking about I/O boilerplate code. This
results in faster development, better readability of your code, and more stable
solutions, because resource leaks are less likely with centralized error-handling.
Having read chapter 5, you may correctly surmise that this is a job for closures.

6 Gamma et al.

292 CHAPTER 9
Working with the GDK
 In table 9.3, you saw that File objects work with Object’s iteration methods.
Listing 9.4 uses this approach to print itself to the console: The output is exactly
what you see as listing 9.4. Assertions are used to show the use of any, findAll,
and grep. Note that file.grep{it} returns only non-empty lines, because empty
strings evaluate to false.

file = new File('Listing_9_4_File_Iteration.groovy')
file.each{println it}
assert file.any {it =~ /File/}
assert 3 == file.findAll{it =~ /File/}.size()

assert 5 == file.grep{it}.size()

Additionally, the GDK defines numerous methods with overloaded variants on
File, URL, Reader, Writer, InputStream, and OutputStream. Table 9.4 gives an over-
view where the numbers reflect the number of available variants for each method.
Use this table by row or by column to find either all supported receiver classes for
a given method name or all GDK methods for a given I/0 class.

 The full list of all methods is in appendix C. We will present detailed explana-
tions and examples for at least one variant of every important or commonly used
method. The usage of the remaining methods/variants is analogous.

Listing 9.4 File’s object iteration method examples

Table 9.4 GDK file and I/0 methods overview

Method File
Input

stream
Reader URL

Output
stream

Buffered
reader

Buffered
writer

Object
input

stream
Writer

append 2

asWriteable 2

eachByte 1 1 1

eachDir 1

eachFile 1

eachFileMatch 1

eachFileRecurse 1

eachLine 1 1 1 1

continued on next page

Working with files and I/O 293
eachObject 1 1

filterLine 2 2 2

getText 2 2 1 2 1

leftShift << 1 3 1

newInputStream 1

newObjectInput-
Stream

1

newOutputStream 1

newPrintWriter 2

newReader 2 1

newWriter 4

readBytes 1

readLine 1 1

readLines 1 1 1

splitEachLine 1 1

transformChar 1

transformLine 1

withInputStream 1

withOutputStream 1

withPrintWriter 1

withReader 1 1 1 1

withStream 1 1

withWriter 2 2 1

withWriterAppend 1

write 2

writeLine 1

Table 9.4 GDK file and I/0 methods overview (continued)

Method File
Input

stream
Reader URL

Output
stream

Buffered
reader

Buffered
writer

Object
input

stream
Writer

294 CHAPTER 9
Working with the GDK
Obviously, some of the methods in table 9.4 are concerned with reading, others
with writing; we will explain them separately. There are also methods that
are specifically concerned with conversions. Their method names start with
transform or new. We will illustrate their use in a separate section. Finally, we will
cover the serialization support provided.

 The eachDir and eachFile methods stand out as dealing with aspects of the
filesystem rather than I/O operations. We will cover them first.

9.2.1 Traversing the filesystem

Groovy follows the Java approach of using the File class for both files and direc-
tories, where a File object represents a location (not content, contrary to a com-
mon misconception).

 Using a File object from Groovy often includes calling its JDK methods in a
property-style manner. For example, to display information about the current
directory, you can use

file = new File('.')
println file.name
println file.absolutePath
println file.canonicalPath
println file.directory

Listing 9.5 shows this in conjunction with the GDK methods eachDir, eachFile,
eachFileMatch, and eachFileRecurse. They all work with a closure that gets a File
object passed into it, disregarding the filesystem entries that represent the cur-
rent and parent dir (“.” and “..”). Whereas eachFile yields File objects that may
represent files or directories, eachDir yields only the latter.

 Filtering can be achieved with eachFileMatch, which applies the isCase method
of its filter argument on each filename. Like the name suggests, eachFileRecurse
runs recursively through all subdirectories.

 In listing 9.5, we investigate directories in a GROOY_HOME installation on the
top level and recursively in the documentation folder to find the number of
descendant directories. Groovy’s source tree is analyzed for files in its root and
groovy* directories.

homedir = new File('/java/groovy')
dirs = []
homedir.eachDir{dirs << it.name }
assert ['bin','conf','docs','embeddable','lib'] == dirs

Listing 9.5 File methods for traversing the filesystem

Closure recording
directory names

Working with files and I/O 295
cvsdir = new File('/cygwin/home/dierk/groovy')
files = []
cvsdir.eachFile{files << it.name}
assert files.contains('.cvsignore')
assert files.contains('CVS')

files = []
cvsdir.eachFileMatch(~/groovy.*/){files << it.name}
assert ['groovy-core', 'groovy-native'] == files

docsdir = new File('/java/groovy/docs')
count = 0
docsdir.eachFileRecurse{if (it.directory) count++}
assert 104 == count

Inside the preceding closures, we get access to a reference of type File. We will
further explore what we can do with such a reference.

9.2.2 Reading from input sources

Suppose we have a file example.txt in the data directory below our current one.
It contains

line one
line two
line three

One of the most common operations with such small text files is to read them
at once into a single string. Doing so and printing the contents to the console is
as easy as calling the file’s text property (similar to the getText method):

println new File('data/example.txt').text

What’s particularly nice about the text property is that it is available not only
on File, but also on Reader, InputStream, and even URL. Where applicable, you
can pass a Charset to the getText method. See the API documentation of
java.nio.charset.Charset for details of how to obtain a reference to a Charset.

BY THE WAY Groovy comes with a class groovy.util.CharsetToolkit that can be used
to guess the encoding. See its API documentation for details.

Listing 9.6 goes through some examples of file reading with more fine-grained
control. The readLines method returns a list of strings, each representing one
line in the input source with newline characters chopped.

Closure recording
filenames

Closure recording
filenames matching
a pattern

Closure counting
directories recursively

296 CHAPTER 9
Working with the GDK
example = new File('data/example.txt')

lines = ['line one','line two','line three']
assert lines == example.readLines()

example.eachLine {
 assert it.startsWith('line')
}

hex = []
example.eachByte { hex << it }
assert hex.size() == example.length()

example.splitEachLine(/\s/){
 assert 'line' == it[0]
}

example.withReader { reader ->
 assert 'line one' == reader.readLine()
}

example.withInputStream { is ->
 assert 'line one' == is.readLine()
}

The eachLine method works on files exactly like the iteration method each does.
The method is also available on Reader, InputStream, and URL. Input sources can
be read a byte at a time with eachByte, where an object of type java.lang.Byte
gets passed into the closure.

 When the input source is made of formatted lines, splitEachLine can be
handy. For every line, it yields a list of items to its closure determined by splitting
the line with the given regular expression.

 Generally, the with<Resource> methods pass the <Resource> into the closure,
handling resource management appropriately. So do the methods withReader
and withInputStream. The readLine method can then be used on such a given
Reader or InputStream.

 This file-reading code reads nicely because Groovy relieves us of all the
resource handling. You’d be disappointed if writing wasn’t equally straightfor-
ward…

Listing 9.6 File-reading examples

Working with files and I/O 297
9.2.3 Writing to output destinations

Listing 9.7 uses the corresponding methods for writing to an output destination.
Writing a whole file at once can be achieved with File’s write method; appending
is done with append. The with<Resource> methods work exactly as you would
expect. The use of withWriter and withWriterAppend is shown in the listing;
withPrintWriter and withOutputStream are analogous. The leftshift operator on
File has the meaning of append.

def outFile = new File('data/out.txt')

def lines = ['line one','line two','line three']

outFile.write(lines[0..1].join("\n"))
outFile.append("\n"+lines[2])

assert lines == outFile.readLines()

outFile.withWriter { writer ->
 writer.writeLine(lines[0])
}
outFile.withWriterAppend('ISO8859-1') { writer ->
 writer << lines[1] << "\n"
}
outFile << lines[2]

assert lines == outFile.readLines()

The example file in listing 9.7 has been opened and closed seven times: five
times for writing, two times for reading. You see no error-handling code for
properly closing the file in case of exceptions. File’s GDK methods handle that
on our behalf.

 Note the use of the writeLine and << leftshift methods. Other classes that are
enhanced by the GDK with the leftshift operator with the exact same meaning
are Process and Socket.

 The leftshift operator on Writer objects is a clever beast. It relays to Writer’s
write method, which in the GDK makes a best effort to write the argument. The
idea is to write a string representation with special support for arrays, maps, and
collections. For general objects, toString is used.

 If the argument is of type InputStream or Reader, its content is pumped into
the writer. Listing 9.8 shows this in action.

Listing 9.7 File-writing examples

Writing/appending with
simple method calls

Writing/appending
with closures

Appending with the
leftshift operator

298 CHAPTER 9
Working with the GDK
reader = new StringReader('abc')
writer = new StringWriter()

writer << "\nsome String" << "\n"
writer << [a:1, b:2] << "\n"
writer << [3,4] << "\n"
writer << new Date(0) << "\n"
writer << reader << "\n"

assert writer.toString() == '''
some String
["a":1, "b":2]
[3, 4]
Thu Jan 01 01:00:00 CET 1970
abc
'''

Note that connecting a reader with a writer is as simple as

writer << reader

It may seem like magic, but it is a straightforward application of operator over-
riding done by the GDK.

 Finally, the leftshift operator on Writer objects has special support for argu-
ments of type Writable. In general, a Writable is an object with a write method:
It knows how to write something. This makes a Writable applicable to

writer << writable

The Writable interface is newly introduced by the GDK and used with Groovy’s
template engines, as you will see in section 9.4. It is also used with filtering, as
shown in the next section.

9.2.4 Filters and conversions

There are times when ready-made resource handling as implemented by the
with<Resource> methods is not what you want. This is when you can use the meth-
ods newReader, newInputStream, newOutputStream, newWriter, and newPrintWriter
to convert from a File object to the type of resource you need.

 Two other conversions of this kind are from String and StringBuffer to their
respective Writers via

StringWriter writer = myString.createStringWriter()
StringBufferWriter sbw = myStringBuffer.createStringBufferWriter()

Listing 9.8 Using Writer’s smart leftshift operator

Working with files and I/O 299
A second kind of conversion is transformation of the content, either character by
character or line by line. Listing 9.9 shows how you can use transformChar and
transformLine for this task. They both take a closure argument that determines
the transformation result. Whatever that closure returns gets written to the
writer argument.

 Also shown is filtering with the filterLine method. Here, each line is relayed
to the writer if the closure returns true (see section 6.1).

reader = new StringReader('abc')
writer = new StringWriter()

reader.transformChar(writer) { it.next() }
assert 'bcd' == writer.toString()

reader = new File('data/example.txt').newReader()
writer = new StringWriter()

reader.transformLine(writer) { it - 'line' }
assert " one\r\n two\r\n three\r\n" == writer.toString()

input = new File('data/example.txt')
writer = new StringWriter()

input.filterLine(writer) { it =~ /one/ }
assert "line one\r\n" == writer.toString()

writer = new StringWriter()
writer << input.filterLine { it.size() > 8 }
assert "line three\r\n" == writer.toString()

Note that the last example of filterLine at b doesn’t take a writer argument but
returns a Writable that is then written to the writer with the leftshift operator.

NOTE The *Line methods use the newLine method of the according writer,
thus producing system-dependent line feeds. They also produce a line
feed after the last line, even if a source stream did not end with it.

Finally, a frequently used conversion is from binary data to strings with base-64
encoding, where binary data is represented only in printable characters, as spec-
ified in RFC 2045. This can be useful for sending binary coded data in an email,
for example. The name of this codec comes from it having 64 symbols in its

Listing 9.9 Transforming and filtering examples

Transform
‘abc’ to ‘bcd’

Chop ‘line’ from each
line of the example file

Read only lines
containing “one”

Read only
long lines

b

300 CHAPTER 9
Working with the GDK
“alphabet”,7 just as the decimal system is base 10 (10 symbols: 0–9) and binary is
base 2 (2 symbols: 0 and 1):

byte[] data = new byte[256]
for (i in 0..255) { data[i] = i }

store = data.encodeBase64().toString()

assert store.startsWith('AAECAwQFBg')
assert store.endsWith ('r7/P3+/w==')

restored = store.decodeBase64()

assert data.toList() == restored.toList()

An interesting feature of the encodeBase64 method is that it returns a Writable
and can thus be used with writers, whereas the returned object also implements
toString conveniently. This has saved us the work of pushing the Writable into
a StringWriter.

 Base-64 encoding works with arbitrary binary data with no meaning attached
to it. In order to encode objects instead, we need to venture into the world of seri-
alization, which is the topic of the next section.

9.2.5 Streaming serialized objects

Java comes with a serialization protocol that allows objects of type Serializable
to be stored in a format so that they can be restored in VM instances that are dis-
connected in either space or time (see http://java.sun.com/j2se/1.5.0/docs/api/
java/io/Serializable.html). Serialized objects can be written to ObjectOutput-
Streams and read from ObjectInputStreams. These streams allow making deep
copies of objects (with ByteArrayIn/OutputStream), sending objects across net-
works, and storing objects in files or databases.

 Listing 9.10 shows the special GDK support for reading serialized objects from
a file. First, an Integer, a String, and a Date are written to a file. They are then
restored with File’s new eachObject method. A final assertion checks whether the
restored objects are equal to the original.

7 One extra character is used for padding at the end of a block of data, but that isn’t relevant when con-
sidering the effective base of the codec.

Working with threads and processes 301
file = new File('data/objects.dta')
out = file.newOutputStream()
oos = new ObjectOutputStream(out)

objects = [1, "Hello Groovy!", new Date()]
objects.each {
 oos.writeObject(it)
}
oos.close()

retrieved = []
file.eachObject { retrieved << it }

assert retrieved == objects

As a variant,

file.eachObject

can be written as

file.newObjectInputStream().eachObject

That’s it for file access and I/O as far as the GDK is concerned. Daily work with
files and streams is a combination of using JDK, GDK, and often AntBuilder func-
tionality. Thanks to Groovy’s seamless integration, it still looks like a single
library, as you will see in the code examples in part 3.

9.3 Working with threads and processes

The only reason for time is so that everything doesn’t happen at once.

— Albert Einstein

One of Java’s merits is its great support for multithreading. The Java platform
provides various means for scheduling and executing threads of control
efficiently, whereas the Java language allows easy definition of Runnable objects
for multithreaded execution and control by wait/notify schemes and the
synchronized keyword.

 Threads are useful for organizing execution flow inside an application. Pro-
cesses, in contrast, deal with functionality outside your Java or Groovy applica-
tion. They cannot share objects but need to communicate via streams or other

Listing 9.10 Reading serialized objects from files

Serialize each object
in the list in turn

Deserialize each
object in turn

302 CHAPTER 9
Working with the GDK
external means. They often appear in Groovy automation scripts, because by
nature such scripts trigger machine-dependent functionality.

 The GDK supports working with threads and processes by introducing new
Groovy-friendly methods for these classes, as you will see in the following subsec-
tions. For the remainder of this section, it is assumed that you have some basic
understanding of Java’s multithreading. It is useful to look at the API documen-
tation of java.lang.Thread and java.lang.Process.

9.3.1 Groovy multithreading
The first and foremost Groovy feature for multithreading support is that Closure
implements Runnable. This allows simple thread definitions like

t = new Thread() { /* Closure body */ }
t.start()

This can even be simplified with two new static methods on the Thread class:

Thread.start { /* Closure body */ }

Java has the concept of a daemon thread, and therefore so does Groovy. The run-
time system handles such a thread differently than a non-daemon thread. Usu-
ally, a Java or Groovy application doesn’t exit as long as one of its threads is still
alive. This does not apply to daemon threads—they do not prevent the applica-
tion from exiting. A daemon thread can be started via

Thread.startDaemon { /* Closure body */ }

For a deferred start of a closure in its own thread, there is a new method
runAfter(milliseconds) on java.util.Timer. To start after a one-second delay,
use it like

new Timer().runAfter(1000){ /* Closure body */}

Let’s look at a listing showing the Groovy solution for the classical producer/con-
sumer problem. The producer pushes integer values on a stack, and the con-
sumer pops them when available. The push/pop actions are reported; the report
might look like the leftmost column of the listing. Additional columns (not gen-
erated by the code) show how over time the producer refills the storage that the
consumer has emptied:

 Producer Storage Consumer
push: 0 0 -> 0
push: 1 1 -> 01
push: 2 2 -> 012
pop : 2 01 -> 2
push: 3 3 -> 013
push: 4 4 -> 0134

Working with threads and processes 303
pop : 4 013 -> 4
push: 5 5 -> 0135
push: 6 6 -> 01356
pop : 6 0135 -> 6
push: 7 7 -> 01357
push: 8 8 -> 013578
pop : 8 01357 -> 8
push: 9 9 -> 013579
pop : 9 01357 -> 9
pop : 7 0135 -> 7
pop : 5 013 -> 5
pop : 3 01 -> 3
pop : 1 0 -> 1
pop : 0 -> 0

The actual sequence is not predictable (that’s part of the fun). We use closures for
running something (producing and consuming) in a separate thread and sleep to
slow down the consumer. We introduce a Storage class that holds our stack and
synchronizes access to it. If we try to pop from an empty stack, we will wait until
the producer has caught up.

 Listing 9.11 shows the code.

class Storage {
 List stack = []
 synchronized void leftShift(value){
 stack << value
 println "push: $value"
 notifyAll()
 }
 synchronized Object pop() {
 while (stack.isEmpty()) {
 try{ wait() }
 catch(InterruptedException e){}
 }
 def value = stack.pop()
 println "pop : $value"
 return value
 }
}
storage = new Storage()

Thread.start {
 for (i in 0..9) {
 storage << i
 sleep 100
 }
}

Listing 9.11 Using threads with synchronization for the producer/consumer problem

Override the
leftshift operator

Wake up any
listeners

Wait until a value
is available

Start a thread
producing 10 items

304 CHAPTER 9
Working with the GDK
Thread.start {
 10.times {
 sleep 200
 value = storage.pop()
 }
}

Try to run this code multiple times, and you will see varying output depending on
your system’s scheduler. It’s also fun to play with different sleep values.

 Note that Groovy obeys the synchronized method modifier just like Java does.
 Groovy makes concurrent programming syntactically easy, although the issue is

inherently tricky and can lead to subtle errors. If you set out to deeply dive into
the topic, get one the excellent books8 on the topic.

9.3.2 Integrating external processes

A process is an abstraction for concurrent execution that happens outside your
JVM. Control is relayed from the VM to the system’s runtime, the operating sys-
tem that also runs your VM. Such functionality provides access to your machine,
which can be both a blessing and a source of problems. It’s a blessing because you
can leverage the power of your machine, for example reformatting a hard disk
programmatically or doing something less intrusive such as calling shell scripts.
Problems occur when you try to use processes across platforms or when the need
for synchronization arises.

 In order to create a process, you need to work with a string whose value is the
command to execute. The GDK allows this with the execute method on strings
that returns the corresponding Process object:

Process proc = myCommandString.execute()

Instead of a string, the command can also be a list (or array) of strings. This is
useful when the command is made up of multiple entries that would require put-
ting arguments in quotes, which may also require character escaping (when the
argument contains quotes).

 Suppose you create a method that creates a process from Windows’s dir com-
mand. You may get passed a directory name that contains backslashes or
whitespace characters. The simplest way to deal with this is something like

8 For example, Doug Lea, Concurrent Programming in Java: Design Principles and Patterns, 2nd ed (Addi-
son Wesley, 1999).

Start a thread
consuming 10 items

Working with threads and processes 305
def dircmd = ['cmd','/c','dir']
def dir = /\Program Files/
def proc = (dircmd + dir).execute()

NOTE Depending on your system, you need a command processor to execute con-
sole commands. On Windows, that’s cmd.exe (command.com on Win98).
The /c option closes the console shell when the command has finished.

When creating a process, you can further define environment settings: Use the
so-called environment variables as a list (or array) of key=value strings and a File
object to specify the directory where the process is executed (null stays in the cur-
rent directory).

 For example, you can list the Windows settings for your process with the
set command:

def env = ['USERNAME=mittie']
def proc = 'cmd /c set'.execute(env, new File('/'))

You’ll notice that providing your own environment parameters also suppresses
the inheritance of current environment parameters to your child process (with the
possible exception of default parameters).

 Now that we have obtained a Process object, we would like to see the produced
output. The GDK adds the getText method to achieve this. In other words, the
text property gives you the output as a String:

println proc.text

More fine-grained control can be achieved by using the input, output, and error
streams of the process as available in the respective properties:

InputStream in = proc.in
InputStream err = proc.err
OutputStream out = proc.out

Note that the naming is from the Groovy/Java point of view as opposed to the
point of view of the external process. What’s the stdin for the external process is
proc.out on the Groovy/Java side. Figure 9.3 depicts the mapping.

Figure 9.3
How java.lang.Process streams map
to the streams from an external process

306 CHAPTER 9
Working with the GDK
Instead of appending to proc.out, you can also append to the process itself with
the same effect:

proc.out << "one\n"
proc << "two\n"

Finally, you never know whether your process might possibly hang forever. The
common way of dealing with this problem is to start a watchdog thread that waits
for a maximum time and destroys the process if it hasn’t finished by then. The
GDK provides the method waitForOrKill(millis) on Process:

proc.waitForOrKill(1000)

This gives us enough to start a little experiment.
 We wrote this book mostly in our spare time, on weekends and in the evening,

sometimes well after midnight. This is reflected in the creation dates of the exam-
ple listing files, for example. Let’s suppose we need to find out the earliest time of
day when such a listing was created and what file that was.

 Listing 9.12 shows how we can use a combination of command-line capabili-
ties and Groovy streams to achieve this. The dir command9 lists all Listing* files
with their creation date (/T:C), the find filter ensures that we only consider lines
containing a colon, and sort is performed starting at column 10 where the time
of day is located. These commands are chained together with the pipe sign (ver-
tical bar).

 We are interested in only the first line of the output, so we read only the first
line of the stream. The file we search for happens to be about MarkupBuilder and
was created six minutes after midnight.

command = 'cmd /c dir /T:C Listing* | find ":" | sort /+10'
line = command.execute().in.readLine()

assert line =~ /00:06 .* Listing_7_3_MarkupBuilderLogic/
println 'earliest file: '
println line

The observant reader (yes, that’s all of you!) will have recognized that although
the code is a slick solution, there also is a pure Groovy solution that is platform

9 This applies only to Windows shells. Shells on other systems have different commands, such as ls.

Listing 9.12 Finding the earliest listing via command-line processing

Working with threads and processes 307
independent. Coming up with a pure Groovy solution is left as an exercise to you.
This chapter should have given you all necessary means to do so.

 Of course, communicating with external processes can be much more elabo-
rate. Consider the following session at your command line (Windows).

 You ask the system for the current date

date /t

and it answers with, let’s say

The current date is: 12.10.06
Enter the new date: (dd-mm-yy)

You enter some bad input like

no-such-date

which causes the system to complain at you:

The system cannot accept the date entered.
Enter the new date: (dd-mm-yy)

You finally satisfy it by entering

12-10-06

End.
 That’s a small but representative transcript of working with an external pro-

cess. Listing 9.13 shows the same thing (including the initial failed attempt at set-
ting the date) where the human user is replaced by some Groovy logic. The
purpose of listing 9.13 is to show how to interact with the console programmati-
cally (not to show how the date can be set in the most efficient way).

 We additionally make sure that we enter today’s date to prevent screwing up
the date on our machine when we run all the listings.

today = 'cmd /c date /t'.execute().text.split(/\D/)

proc = 'cmd /c date'.execute()

Thread.start { System.out << proc.in }
Thread.start { System.err << proc.err }

proc << 'no-such-date' + "\n"
proc << today.join('-') + "\n"

proc.out.close()
proc.waitForOrKill(0)

Listing 9.13 Talking with a process programmatically

308 CHAPTER 9
Working with the GDK
Listing 9.13 nicely combines our knowledge about processes, threads, and
streams. Relaying the process streams to System.out/err needs to be done in two
extra threads. They get blocked when there is nothing to write, and thus the main
thread can proceed.

 The code reads almost absurdly simply. If you’re feeling masochistic, you may
want to try writing the equivalent code in Java. We don’t recommend it, though.

NOTE The code in listing 9.13 works on Windows only. For other environments
(such as cygwin, Solaris, Linux, or Mac OS), you can play with other com-
mands such as cat or echo. Leave out the leading cmd /c in this case.

Working with external processes is inherently platform-dependent. The differ-
ence is not only in what capabilities each platform provides, but also in how to call
such processes correctly from Java. For cross-platform scripting, things can get
really hairy.

 Luckily, we can follow the footsteps of pioneers. The Ant developers did all the
grunt work and captured it in the exec task. For example, to call the cvs10 execut-
able and capture the command output for later analysis, we can use AntBuilder:

ant = new AntBuilder()

ant.exec(
 dir : '.' ,
 executable : 'cvs.exe' ,
 outputproperty: 'cvsout' ,
 errorproperty : 'cvserror',
 resultproperty: 'cvsresult')
 {
 arg(line : ' checkout MyModule')
 }

println ant.project.properties.cvsresult

In trailing code, just refer to ant.project.properties.cvsout as a simple string.
 Traditionally, scripts have often been associated with running other processes

to perform the bulk of their work. Although Groovy brings the full power of the
Java platform (and then some!) to scripting, it doesn’t shy away from this situation.

10 There is also a specialized CVS task for Ant that we would use if the example was about connecting to
CVS rather than showing different means of talking to external processes.

Working with templates 309
Another common use of scripting languages is for processing text. Again, Groovy
is up to the task, as we show in the next section.

9.4 Working with templates

Groovy is a pragmatic language. Rather than following any dogma in language
and library design, it focuses on getting recurring tasks done. Working with tem-
plates is such a task.

 A template is essentially some text. Unlike fixed literal text, a template allows
predefined modifications. These modifications follow some structure; they do not
occur wildly.

 If you think about a web application, literal text would be a static HTML page.
The other end of the continuum are web application frameworks that create such
HTML solely by programming logic, such as Java Server Faces (JSF). In between are
approaches like Java Server Pages (JSP) and others that create the final HTML from
a template.

 The use of templating is not limited to web applications. It is equally useful for

■ Organizing database queries
■ Helping to connect to web services
■ Generating code
■ Transforming XML

■ Predefining PostScript documents
■ Standard emails

and much more, as you will see in the remainder of the book.
 We briefly describe what templates look like before launching into a full

example. We also examine some of the more advanced uses of templates. Under-
standing the content of this section is also important when we come to the next
topic, Groovlets.

9.4.1 Understanding the template format

The format of templates is inspired by the JSP syntax, the JSP Expression Language
(EL), the Velocity framework, and GStrings. The idea is to use placeholders inside
the running text. Table 9.5 lists the supported placeholders and their purpose. If
you have ever worked with JSP or a similar technology, it will feel familiar.

310 CHAPTER 9
Working with the GDK
The groovy.text package defines multiple template engines. These engines (the
name factory would better reveal their purpose) have createTemplate methods
that read the template’s raw text from an input source (String, Reader, File, or
URL) and return a Template object.

 Template objects can make a final text by replacing all the placeholders with
their respective values. A map of variable names and their respective values (the
binding) is therefore passed to template’s make method, which returns the final
text in terms of a Writable. Figure 9.4 shows how all this fits together.

Different Template classes provide different runtime characteristics. One imple-
mentation might fully read the raw text and cache it for the later make step; other
implementations might only store a reference to the source and merge it with the
binding at make time. The latter streaming scenario can use source Readers and
result Writers for optimized performance and scalability.

9.4.2 Templates in action

Suppose you have been asked to write a tool that sends out monthly email
reminders, and your boss wants it to support mail merge functionality (in other
words, personalized content). A sample mail may look like this with variable items
in bold:

Table 9.5 Template placeholders

Marker Purpose

$variable Insert the value of the variable into the text

${groovycode} Evaluate single-line groovycode, and insert the result into the text

<%=groovycode%> Evaluate the groovycode, and insert the result into the text

<%groovycode%> Evaluate the groovycode

Figure 9.4 Templates are created from a template engine and called with a
binding to make the final result.

Working with templates 311
Dear Mrs. Davis,
another month has passed and it's time for these
2 tasks:
- visit the Groovy in Action (GinA) page
- chat with GinA readers

your collaboration is very much appreciated.

First, we need to think about placeholders.
 Davis seems to be a last name, so we need a variable for that; we refer to it

as $lastname.
 Mrs. should get some extra handling, because not all people have a salutation

and we don’t want to have that extra space character when there is none. This
leads to a simple Groovy expression that we enclose in curly braces. The place-
holder becomes ${salutation?salutation+' ':''}

 For the tasks, we use a simple list of strings and ask for the list’s <%=tasks.
size()%>. Iteration is trickier, but listing 9.14 shows how to use <% %> to solve that.
Note that we can open the each closure in one placeholder and close it in a sec-
ond one. The text that is between these two is processed for each task. We can
even use the closure’s it reference.

 In listing 9.14, we use the SimpleTemplateEngine, which is the standard choice
when no specialized behavior is required.

mailReminder = '''
Dear ${salutation?salutation+' ':''}$lastname,
another month has passed and it's time for these
<%=tasks.size()%> tasks:
<% tasks.each { %>- $it
<% } %>
your collaboration is very much appreciated
'''

def engine = new groovy.text.SimpleTemplateEngine()
def template = engine.createTemplate(mailReminder)
def binding = [
 salutation: 'Mrs.',
 lastname : 'Davis',
 tasks : ['visit the Groovy in Action (GinA) page',
 'chat with GinA readers']
]

assert template.make(binding).toString() == '''
Dear Mrs. Davis,
another month has passed and it's time for these

Listing 9.14 Using a simple template engine for email text

Text of
template
containing
placeholders

Variables to
substitute in
the template

Evaluate the template
against the binding

312 CHAPTER 9
Working with the GDK
2 tasks:
- visit the Groovy in Action (GinA) page
- chat with GinA readers

your collaboration is very much appreciated
'''

If you’d prefer, you can construct the engine via SimpleTemplateEngine(true) to
make it print out additional information on how it works inside. You’ll see the fol-
lowing output:

-- script source --
/* Generated by SimpleTemplateEngine */
out.print("\n");
out.print("Dear ${salutation?salutation+' ':''}$lastname,\n");
out.print("another month has passed and it's time for these\n");
out.print("");out.print("${tasks.size()}");
out.print(" tasks:\n");
out.print(""); tasks.each { ;
out.print("- $it \n");
out.print(""); } ;
out.print(" \n");
out.print("your collaboration is very much appreciated\n");
out.print("");

-- script end --

That means the template is a Groovy script, generated from the template source
and invoked dynamically. All the $ and ${} placeholders work because they are
placed inside double quotes. The iteration logic (in bold) is literally inserted in
the script as it appears between <% %>.

 The log output is also useful in case of errors in the script. Error messages with
line and column indications relate to that generated script.

9.4.3 Advanced template issues

Also interesting is the out variable in the preceding output. It refers to a Writer
that is placed into the binding by default and is thus also available in template
placeholders. You can use it like

<%
 tasks.each { out.println('- '+it) }
%>

When working with templates, here are two points to consider.

Evaluate the template
against the binding

Working with templates 313
■ If you choose to declare the template’s raw text in a string (as in
listing 9.14), you should use single-quoted string literals, rather than
double-quoted ones, which may be transformed into GStrings. Using
GStrings would result in resolving $ and ${} placeholders at the time you
call createTemplate,11 not at make time. Sometimes this may be what
you want, but most of the time probably not.

■ Templates have no defined escaping: For the rare case when you need to
include %> in your template literally, you need a trick to make the engine
accept it. One way is to put the offending text in a variable, pass that into
the binding, and refer to it in the text via $variable.

The groovy.text package currently provides three template engines that all obey
the same format of placeholders but have different characteristics:

■ SimpleTemplateEngine produces the template in terms of a script as dis-
cussed previously. At make time, that script writes line-by-line to the output
destination. The script is cached.

■ GStringTemplateEngine holds the template in terms of a writable closure,
possibly providing better performance and scalability for large templates
and for stateless streaming scenarios. See section 12.2.2.

■ XmlTemplateEngine is optimized when the template’s raw text and the
resulting text are both valid XML. It operates on nodes in the DOM and
can thus provide a pretty-printed result. Unlike other engines, it produces
system-dependent line feeds.

For more details on these engines, see the respective API documentation pages.
 So far you have seen four ways to generate text dynamically: GStrings, Formatter

(with printf calls, for example), MarkupBuilder, and templates. Each has its own
sweet spot of applicability. GStrings and Formatter work best for simple in-code
purposes, MarkupBuilder for producing structured text with mostly dynamic con-
tent, and templates for mostly static text with few dynamic parts injected. Of
course, combinations are not only possible but normal in real-world applications.

 One obvious application where templates and markup go together is for web
applications. Our next section introduces Groovlets, Groovy’s built-in support for
simple yet powerful web applications.

11 Maybe even earlier; see section 13.2.5.

314 CHAPTER 9
Working with the GDK
9.5 Working with Groovlets

The Java platform is available in a standard edition (J2SE/JSE) and an enter-
prise edition (J2EE/JEE). So far, we have only worked with features of the stan-
dard edition; we will now look at a special capability that Groovy adds to the
enterprise edition.

 J2EE contains the Servlet API (see http://java.sun.com/products/servlet/) for
implementing web applications. For the remainder of this chapter, it is assumed
that you have some basic understanding of servlets.

 Groovlets are to Groovy what servlets are to Java: a basic, standardized way of
writing web applications. The pure usage of Groovlets is good for small and sim-
ple applications, whereas more demanding applications benefit from frameworks
such as Grails (see chapter 16).

 We’re going to start with a simple “hello world” program, which we use to
demonstrate installation. We will then move on to a guessing game that lets us
examine how data flows in Groovlets, before rewriting the same game using the
templating technology you saw in section 9.4.

9.5.1 Starting with “hello world”

What’s the bare minimum that we have to
do to see the greeting message shown in
figure 9.5?

 First, we have to get a J2EE-compliant
web server. There are lots of open-source
pure Java servers available for free, rang-
ing from Jetty (lightweight, in-process
capabilities) to Tomcat (feature rich) to JBoss (application server). If you have no
other preference, Tomcat is a good default choice.

 After installing the server, you will notice that it has a webapps directory. We
will go for the simplest possible configuration and develop our code right there.12

12 All server experts: Please forgive me. This section is about Groovlets and not about the best possible
server setup. An alternative is to configure your server such that it picks up your development direc-
tory: for example, for Tomcat, adding <Context path="/myGroovlets" docBase="path-to-
myGroovlet-dir"/> to the <Host> element of your config/server.xml.

Figure 9.5 “Hello world” as done with
Groovlets

Working with Groovlets 315
 Below the webapps dir, create the directory
structure shown in figure 9.6. It shows the struc-
ture for a web application named myGroovlets and
a sample Groovlet residing in Start.groovy. The
web.xml file is needed for configuration purposes
and the groovy-all-1.0.jar file for making the web
server groovy.

 Before we can create any Groovlets, we must
make the web server aware of this capability. In the
usual J2EE manner, we achieve this via the standard
web.xml file. Listing 9.15 contains a sample. The
symbolic name Groovy is mapped to the class
GroovyServlet. This class is able to load *.groovy
scripts to handle them as Groovlets.

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd" >

<web-app>
 <display-name>Groovlet Demonstrator</display-name>
 <description>
 Showing the use of Groovlets for Groovy in Action
 </description>

 <servlet>
 <servlet-name>Groovy</servlet-name>
 <servlet-class>groovy.servlet.GroovyServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>Groovy</servlet-name>
 <url-pattern>*</url-pattern>
 </servlet-mapping>

</web-app>

All requests (the URL pattern *) are dispatched to Groovy. All other entries, such
as display-name and description, are for documentation purposes only.

 With this configuration in place, we can start writing our first actual Groovlet.
Listing 9.16 implements it by using the default builder that is available under the

Listing 9.15 Sample web.xml file for configuring a web application for Groovlet use

Figure 9.6 Directory structure
for a sample Groovlet web
application below the
webapps dir

316 CHAPTER 9
Working with the GDK
name html in the Groovlets binding. You should save it as Start.groovy under the
webapps/myGroovlets directory, as shown in figure 9.6.

html.html{
 head {
 title 'Groovlet Demonstrator'
 }
 body { h1 'Welcome to the World of Groovlets' }
}

Pretty slick, eh? You can see its output by starting your web server and pointing
your browser to http://localhost:8080/myGroovlets/Start.groovy.13

 At this point, it is fun to play around with changing the Groovlet, saving the
file and reloading the page in the browser.

NOTE No server restart or application reload is needed to see changed output.
This makes for rapid application development!

A Groovlet is essentially an ordinary Groovy script that sends its output to your
browser. To understand what is achievable with Groovlets, you need to know what
information they can work on.

9.5.2 The Groovlet binding
Like all other Groovy scripts, Groovlets have a binding that contains information,
which can be accessed with the binding property. For Groovlets, this information
is provided by the GroovyServlet that handles the request. Listing 9.17 asks the
binding what is inside and puts it on your browser screen if you request http://
localhost:8080/myGroovlets/Inspect.groovy. Save the code in a file named Inspect.
groovy, and place it in your myGroovlets web application directory, right beside
the Start.groovy file.

html.html{
 head {
 title 'Groovlet Demonstrator'
 }

Listing 9.16 The “hello world” Groovlet using the HTML builder

13 This assumes the default values are used. If your server starts on a different port, you will have to adapt
the URL accordingly.

Listing 9.17 Inspect.groovy Groovlet reveals what’s in the Groovlet binding

Working with Groovlets 317
 body {
 h1 'Variables in the Binding:'
 table(summary:'binding') {
 tbody {
 binding.variables.each { key, value ->
 tr {
 td key.toString()
 td(value ? value.toString() : 'null')
} } } } } }

This little Groovlet gives us a valid HTML table. Note the summary attribute of the
table element and the nested tbody element. They are often forgotten because
browsers do not complain if they are missing. However, without them, the HTML
will not be fully compliant with recent HTML standards.

 Table 9.6 lists the output as produced by listing 9.17 and some additional
usage information.

The variables out, sout, and html are initialized lazily; they are null until the
Groovlet uses them the first time. This allows us to work on the response object
before the output stream is opened. For example, this can be necessary to set
response properties such as the contentType.

Table 9.6 Information available to Groovlets

Name Note Example usage

headers Map of HTTP request headers headers.host

params Map of HTTP request parameters params.myParam

session ServletSession, can be null session?.myParam

request HttpServletRequest request.remoteHost

response HttpServletResponse response.contentType=’text/xml’

context ServletContext context.myParam

application ServletContext
(same as context)

application.myParam

out response.writer Lazy init, not in binding

sout response.outputStream Lazy init, not in binding

html Builder initialized as
new MarkupBuilder(out)

Lazy init, not in binding

318 CHAPTER 9
Working with the GDK
 The session variable is null unless there is session information for the current
conversation. This allows optimization for stateless Groovlets that do not need
session information. To use session information in Groovlets, you typically start
like so:

if (!session) // error handling here if needed
session = request.session

BY THE WAY Session-related error handling may be needed if the Groovlet is to be
used only after some prework has been done that should have initialized
the session already. Think about an online shop where the user has put a
product in their shopping cart. This information is stored in the session.
When the user tries to check out but the session has expired, there will be
no item to pay for because the session is null.

A Groovlet is also evaluated with the use of the ServletCategory that adds the
methods get/set and getAt/putAt to the classes ServletContext, HttpSession,
ServletRequest, and PageContext.

 A small example will show how all this works
together. Figure 9.7 shows the user interface of a
little web game. It takes a random number
between 0 and 100 and lets the user guess it, giv-
ing indications whether the guess was too high
or too low.

 Listing 9.18 shows the Groovlet code that
implements the game. Save it to a file Number-
Guesser.groovy in your myGroovlets directory,
and point your browser to http://localhost:8080/
myGroovlets/NumberGuesser.groovy.

 The game needs to handle session data and
request parameters. The target number is stored as an Integer value in the ses-
sion under the symbolic name goal. It is initialized to a random number on first
use as well as when a new game is requested.

 The request parameter guess carries the last input value; restart is submitted
if the user clicks the New Game button. When dealing with request parameters,
you need to be aware that they can be null (if not submitted) or an empty string
(when submitted without value).

Figure 9.7 HTML user interface of
the HighLow game

Working with Groovlets 319
def session = request.session
def guess = params.guess
guess = guess ? guess.toInteger() : null
if (params.restart) guess = null

if (!session.goal || params.restart) {
 session.goal = (Math.random()*100).toInteger()
}
def goal = session.goal

html.html{ head { title 'Think of a Number' }
 body {
 h1 'Think of a Number'
 if (goal && guess) {
 div "Your guess $guess is "
 switch (guess) {
 case goal : div 'correct!'; break
 case {it < goal} : div 'too low' ; break
 case {it > goal} : div 'too high'; break
 }
 }
 p "What's your guess (0..100)?"
 form(action:'NumberGuesser.groovy'){
 input(type:'text', name:'guess', '')
 button(type:'submit', 'Guess')
 button(type:'submit', name:'restart', value:'true',
 'New Game')
} } }

The code is divided into two pieces. It starts with a controller part that cares about
the current state (the session) and requested actions (the parameters). The sec-
ond part is the HTML builder, which plays the role of the view, visualizing the cur-
rent state.

 So far, our Groovlets have built the view only through the HTML builder, but
there are more options.

9.5.3 Templating Groovlets

With the out writer available in the Groovlet binding, you can write directly to the
response object. That means you can do things like

out << '<HTML>'
 // more output here …
out << '</HTML>'

Listing 9.18 Groovlet code of the HighLow game

Generate a number to
guess, if necessary

Start a builder to
generate the HTML

Use a GString as a simple
template for text

Classify the guess
appropriately

Display a form posting
to the same page again

320 CHAPTER 9
Working with the GDK
or output the current date and time as GStrings like

out << "<HTML><BODY>${new Date().toGMTString()}</BODY></HTML>"

In section 9.4, you found that Groovy templates almost read like JSPs, so using
them in this scenario is an obvious choice. Listing 9.19 stores a HTML template
for the HighLow game that works with the goal and guess parameters.

<html>
 <head>
 <title>Think of a Number</title>
 </head>
 <body>
 <h1>Think of a Number</h1>
 Your guess $guess is <%
 switch (guess) {
 case goal : out << 'correct!'; break
 case {it < goal} : out << 'too low' ; break
 case {it > goal} : out << 'too high'; break
 }
 %>
 <p>What"s your guess (0..100)?</p>
 <form action='Templater.groovy'>
 <input type='text' name='guess'>
 <button type='submit'>Guess</button>
 <button type='submit' name='restart' value='true'>New Game
 </button>
 </form>
 </body>
</html>

Notice how the template contains a GString (the guess) and Groovy code inside
<%...%>. This template can be used from a controlling Groovlet like so:

def engine = new groovy.text.SimpleTemplateEngine()
def source = getClass().classLoader.
 getResource('/Number.template.html')
def template = engine.createTemplate(source)

out << template.make(goal:50, guess:49)

The template is evaluated appropriately, with the GString placeholder being
replaced and the embedded code being executed.

 A specialty of this approach is that the controlling Groovlet needs to read the
template source as a resource from the classpath, because it cannot know where

Listing 9.19 Number.template.html as a view for the HighLow game

Summary 321
the respective file would be located. To make this possible, the template file must
be stored in the classes directory of your web application.

 The organizational style of having a controller Groovlet and a view template
allows a practical division of labor. While the programmer can concentrate on
implementing the control flow, the business logic, and database access, the
designer can use their usual tools to work on the HTML templates.

 When the emphasis of the web application is on the templates rather than on
the controlling logic, Groovy also supports a full JSP-like approach sometimes
dubbed Groovy Server Pages (GSP). It works exactly like the preceding templates
with the same binding as for Groovlets.

 A special TemplateServlet acts in the role of the controlling Groovlet. Config-
ure it in your web.xml by adding this snippet:

<servlet>
 <servlet-name>template</servlet-name>
 <servlet-class>groovy.servlet.TemplateServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>template</servlet-name>
 <url-pattern>*.html</url-pattern>
</servlet-mapping>

All *.html requests will then be relayed to the appropriate template. Template-
Servlet will also care for properly caching each template. This gives better per-
formance than reconstructing the template for every request.

 Of course, there is more to implementing web applications than mastering the
basic technology. However, our focus here is only on the Groovy aspects, leaving
much room for more books to be written about how to implement full web appli-
cations with Groovy. We will give a more tutorial-style introduction into develop-
ing web applications with Groovy in chapter 16.

 For further pointers to Groovy-related web technologies, see http://
freshmeat.net/projects/gvtags, http://groovestry.sourceforge.net, and http://biscuit.
javanicus.com/biscuit/.

9.6 Summary

The GDK—the way that Groovy augments and enhances the JDK—provides key
devices for a wide range of programming tasks.

 The GDK makes I/O handling a breeze. It takes away low-level considerations in
common situations, dealing with resource management automatically. The differ-
ence is not only in terms of development speed when writing the program code

322 CHAPTER 9
Working with the GDK
initially. You may even be a little slower in the beginning, because you need some
time to adapt, and typing time is rarely the bottleneck of programming. The real
benefit comes from working on a slightly higher level of abstraction.

 Similarly, instead of teasing the programmer with how to properly walk
through an enumeration/iteration/collection/array, the GDK lets you focus on
what to achieve—for example, to find something using col.find{} regardless
of what col is.

 Working with threads and processes is equally easy in Groovy. Multithreading
is a tricky topic at the best of times, and again Groovy reduces the amount of scaf-
folding code required, making it easier to see what’s going on. Process handling
can be vital in a scripting language, and Groovy not only makes working with the
plain Java Process class straightforward, but also facilitates the executable han-
dling semantics from Ant using AntBuilder.

 Dynamically filling in templates can be important in a variety of applications,
and Groovy comes with an easy-to-grasp templating technology, using a syntax
that is familiar to most Java programmers.

 Although the standard JDK is important, the importance of J2EE cannot be
overstated. Groovy participates in this arena, too, providing Groovlets as yet
another web application framework. You will learn more about web applications
when we consider Grails in chapter 16.

 It may look like the Groovy language made much of this possible, but this is
only one side of the story. The Groovy language—and its Meta-Object Protocol
in particular—provides the means that the GDK employs. What the GDK does
with the JDK can be done with any library or API. That’s what some people call
language-oriented programming: lifting your code up to a level where it directly
expresses your concerns.

Database programming
with Groovy
As far as the laws of mathematics refer to
reality, they are not certain, and as far as
they are certain, they do not refer to reality.

—Albert Einstein
323

324 CHAPTER 10
Database programming with Groovy
Relational1 databases are data stores that are based on a relational model. It is this
model that makes them so powerful. Its mathematical foundation allows us to rea-
son about the results of operations and lets database engines perform appropri-
ate optimizations.

 Database access is also highly standardized, allowing multiple applications to
coordinate by sharing their data even if these applications are built with different
technologies. The standard that incorporates the relational algebra is the Struc-
tured Query Language (SQL).

 Because using SQL and connecting to relational databases is such an impor-
tant task, any programming language worth talking about provides a way of
doing it. Scripting languages—notably PHP, Python, and Ruby—provide simple
and immediate access, whereas Java comes with the Java Database Connectivity
(JDBC) API, which is not as simple.

 Now comes Groovy. The Groovy database connectivity support (Groovy SQL for
short) is plain JDBC with sugar from Groovy’s groovy.sql library package. It takes
only four classes of sugar (Sql, DataSet, GroovyResultSet, and GroovyRowResult) to
make database work short and sweet. Figure 10.1 shows where Groovy SQL fits into
the API stack.

 Groovy SQL lifts JDBC to a level of user-friendliness that is comparable to, and
in some respects better than, that offered by other scripting languages.

 But it also plays nicely at the object level. JDBC is often used with database-
related design patterns that evolved around it. In this chapter, you will see some
of them in the form of Data Transfer Objects (DTOs) and Data Access Objects (DAOs).
You will witness how Groovy SQL reduces the need for creating such extra classes,
sometimes eliminating the extra work.

1 For the purpose of this chapter, we use the term database for relational databases only, recognizing
that there are other valid databases as well, such as object databases, hierarchical databases, and even
XML databases.

Figure 10.1
Groovy SQL builds
on plain JDBC.

Basic database operations 325
Database systems and SQL make a topic of their own, and many books have been
written about them. You need this knowledge for our examples, but explaining it
here would exceed the scope of this book.2 In return for your understanding, we
keep the SQL examples reasonably basic.

 For the remainder of this chapter, it is assumed that you have some basic
knowledge about SQL and how to work with relational databases in Java.

 When you have finished this chapter, you will be able to work on your data-
bases through Groovy for any kind of administration task, automated or ad-hoc
reporting, persisting your business objects, and leveraging the power of the rela-
tional data model—all in a simple yet organized manner.

10.1 Basic database operations

Groovy follows the design guideline that simple tasks should be easy and
advanced tasks should be possible. This section is solely about simple tasks. That
means you can expect an easy introduction into the topic. We will go through:

■ Connecting to the database
■ Creating the database schema
■ Working with sample data

Working with data is done through four operations: create, read, update, and delete,
together called CRUD operations.

 Relational database systems also reveal information about themselves in so-
called metadata. This is “data about the data”—in its simplest terms, information
like the types and names of columns, tables, and so forth.

 At the end of this section, you will be able to do standard database work with
Groovy. The knowledge in this section will be sufficient to write whole applica-
tions that utilize databases. The remainder of the chapter will expand your
design choices to more elaborate solutions.

10.1.1 Setting up for database access

It’s fairly obvious that you cannot do anything before you have a database system
that you can use. Groovy has no database in its distribution. If you already have a
database system that comes with a JDBC driver, you can go with it. Everybody else

2 See An Introduction to Database Systems by C. J. Date (Addison Wesley, 2003) for a good introduction.

326 CHAPTER 10
Database programming with Groovy
has to install one, where install can mean totally different things for different
database products.

Installing a database
All the examples in this chapter work with the popular open-source Hypersonic
database system (HSQLDB), which you can download from http://hsqldb.org/
(use version 1.7 or higher). Installing it means putting the hsqldb.jar file on
your classpath when executing this chapter’s examples. See section 7.2.3 for
details of how to do that. Remember that you can drop a jar file into your
<user.home>/.groovy/lib directory to have it on your classpath whenever you
start the groovy interpreter.

 If you decide to use a different database system, follow its installation instruc-
tions. Typically, you will also have a jar file that needs to be added to the class-
path, because at least the product-specific driver class needs to be found there.

SIDE NOTE The JdbcOdbcDriver is on the classpath by default because it ships with
the JDK. It allows connections to database systems that implement the
Open DataBase Connectivity (ODBC) standard over the so-called JDBC-
ODBC bridge. Popular ODBC data sources are Microsoft Excel and Micro-
soft Access. This driver is not intended for production use, however. It’s
an easy way to explore a database exposed by ODBC, but a dedicated JDBC
driver is usually a more stable and better-performing long-term solution.

Database products also differ in the SQL they accept. Every system has its own
dialect.3 Because our examples use HSQLDB, the SQL that you’ll see in the exam-
ples is in HSQLDB dialect. See the manual of your database product for possi-
ble deviations.

First contact
Regardless of your technology, you must provide four pieces of information to
access a database:

■ The database uniform resource locator (URL)
■ Username
■ Password
■ Driver class name (which can sometimes be derived automatically)

3 “The wonderful thing about standards is: there are so many to choose from.”—Prof. Andrew Tennen-
baum.

Basic database operations 327
The database URL needs a short explanation. A database URL (a JDBC URL in
our context) is a platform-independent way of addressing a database. It always
starts with jdbc: followed by a vendor-specific subprotocol. You need to refer to
your database system’s documentation for possible subprotocols.

 Because we use HSQLDB, we have the choice of subprotocols listed in table 10.1.

When using the HSQLDB in-memory database, for example, our database URL
will be jdbc:hsqldb:mem:GinA. Changing to the server or file-based version is as
easy as changing the URL accordingly.

 We will use standard username/password settings: sa for sysadmin and an
empty password string. It goes without saying that this is acceptable only for
experimental purposes.

 The driver class name will be org.hsqldb.jdbcDriver. If you use a different
vendor, this name will also be different.

 Where do you put this information? In Groovy, you access the database
through an object of type groovy.sql.Sql.4 You get such an object through Sql’s
newInstance factory method, passing the preceding information as parameters:

import groovy.sql.Sql
db = Sql.newInstance(
 'jdbc:hsqldb:mem:GinA',
 'sa',
 '',
 'org.hsqldb.jdbcDriver')

Congratulations; you have successfully connected to the database!
 When you look into Sql’s API documentation, you will find more versions of

the newInstance factory method, but we will always use this one.

Table 10.1 HSQLDB subprotocols

URL pattern Purpose

jdbc:hsqldb:hsql://
server/dbname

Connects to a HSQLDB server process; use when multiple clients or
processes need to share the database

jdbc:hsqldb:file:/dir/
dbname

Connects to a single-client HSQLDB instance with file-based persis-
tence; multiple files starting with dbname will be created if the
database doesn’t yet exist

jdbc:hsqldb:mem:dbname Connects to a nonpersistent in-memory database

4 If you think this naming is questionable, we fully agree.

328 CHAPTER 10
Database programming with Groovy
DriverManager versus DataSource
If you look back to figure 10.1, you will notice two concepts below the JDBC API:
DriverManager and DataSource. The Sql.newInstance methods always go through the
DriverManager facility, which can be seen as the classical low-level way of connecting.
Since JDK 1.4, there has been a second way that uses the DataSource concept.

 Although the DriverManager facility is still supported for backward compati-
bility, using DataSource is generally preferable. In addition to providing a con-
nection to the database, it may optionally manage a connection pool and support
distributed transactions (not explained here). Because obtaining connections to a
database is a time-consuming operation, it’s common to reuse them. The pool is
the storage facility that provides you with a connection. You have to pass the con-
nection back after use so that others can reuse it. If you forget to return it, the
pool becomes pointless. In order to avoid that, Groovy SQL transparently returns
the connection for you.

 DataSources become even more important when running in a managed envi-
ronment such as within an application server. A managed environment provides
its applications with DataSource objects to make its special features (such as con-
nection pooling) available. In this scenario, DataSource objects are often retrieved
through the Java Naming and Directory Interface (JNDI).

 Now that you have heard about the merits of DataSources, how do you use
them in Groovy? Your database vendor provides its own implementation of the
javax.sql.DataSource interface. HSQLDB, for example, provides the class
org.hsqldb.jdbc.jdbcDataSource for that purpose. To obtain a Sql instance for
a DataSource, create it, optionally set its properties, and pass it to the
Sql constructor:

source = new org.hsqldb.jdbc.jdbcDataSource()
source.database = 'jdbc:hsqldb:mem:GinA'
source.user = 'sa'
source.password = ''
db = new groovy.sql.Sql(source)

NOTE If you are using an application server, you might retrieve the DataSource
using JNDI as previously mentioned. The advantage of this approach is
that it allows administration of the database to be more independent from
your program. Your program doesn’t need to mention specific database
drivers or DataSource classes, and you could migrate from one database to
another with reduced effort. But we did mention the dialect differences,
didn’t we?

Basic database operations 329
No matter whether you use a DataSource in the Sql constructor or the Driver-
Manager facility through Sql.newInstance, in the end you have a reference to a
Sql instance (as the value of the db variable). You can work with this reference
regardless of how it was constructed.

 These are the recommended ways of connecting to the database in Groovy. In
situations when you already have a database connection and you would like to
work on it through Groovy, you can use new Sql(connection). But beware that in
this case, Groovy SQL cannot manage that connection and you have to take care
of properly closing it yourself.

 Finally, if you have a Sql instance and you need a second one with the same
characteristics (a clone), you can use new Sql(db).

 Now that you have a Sql instance that represents your connection to the data-
base, you will use it to execute some SQL statements.

10.1.2 Executing SQL

Once you have a Sql instance in the db reference, executing a SQL statement on
the database is as easy as

db.execute(statement)

Groovy SQL carries out all the management work around that call: getting a con-
nection (possibly from the DataSource connection pool), constructing and config-
uring the statement, sending it, logging encountered exceptions, and closing
resources (statement and connection) properly even if exceptions have been
thrown. It even does a bit more, as you will see in the course of this chapter.

Creating the database schema
The first thing you can use the execute method for is creating the database
schema. Let’s assume we are going to store data about athletes and their perform-
ances. In order to identify an athlete, we need the first name, last name, and date
of birth. A first attempt might be

db.execute '''
 CREATE TABLE Athlete (
 firstname VARCHAR(64),
 lastname VARCHAR(64),
 dateOfBirth DATE
);
'''

This does the job but isn’t very realistic because we will need a primary key to look
up athletes and we didn’t define one. It’s obvious that none of these fields listed is

330 CHAPTER 10
Database programming with Groovy
unique in itself. A combination of all three is unlikely to have duplicates, but
such a compound key is always tricky to deal with and is still not guaranteed to
be unique.

 It’s conventional to use an artificial key (also known as a surrogate key) in such
cases, so we will introduce one. Because we are all lazy, we will let the database
figure out how to create one. For efficient lookup, we also put an index on the
artificial key:5

db.execute '''
 CREATE TABLE Athlete (
 athleteId INTEGER GENERATED BY DEFAULT AS IDENTITY,
 firstname VARCHAR(64),
 lastname VARCHAR(64),
 dateOfBirth DATE
);
 CREATE INDEX athleteIdx ON Athlete (athleteId);
'''

That’s the minimal schema we will start with. We will work with it in an agile way;
the schema will grow over time. Reconstructing the schema programmatically
every time we need it makes this agile database programming possible. But wait.
If we issue the preceding statement to a database instance that already has an
Athlete table (maybe from our last run), it will throw a SqlException. We need to
drop the old one, but only if an old one exists, and do the same with the index:

db.execute '''
 DROP INDEX athleteIdx IF EXISTS;
 DROP TABLE Athlete IF EXISTS;
 CREATE TABLE Athlete (
 athleteId INTEGER GENERATED BY DEFAULT AS IDENTITY,
 firstname VARCHAR(64),
 lastname VARCHAR(64),
 dateOfBirth DATE
);
 CREATE INDEX athleteIdx ON Athlete (athleteId);
'''

As the SQL boilerplate code grows, it starts to bury the interesting information.
We take note that this should be refactored into a template as soon as we find our-
selves writing it a second time.

5 Many databases, including HSQLDB, automatically create indexes for their primary keys. We have in-
cluded the index creation explicitly here for the sake of clarity.

Basic database operations 331
Inserting data
With the schema defined, we can start putting data in. We can use the execute
method for this purpose. Let’s add the world’s top marathon runners:6

db.execute '''
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES ('Paul', 'Tergat', '1969-06-17');
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES ('Khalid', 'Khannouchi', '1971-12-22');
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES ('Ronaldo', 'da Costa', '1970-06-07');
'''

We were once in a project where we used this approach to insert a thousand
records of carefully hand-managed test data. However, this approach is difficult
to read and manage, because it contains a lot of duplication. Therefore, you can
make the execute method produce what is called a prepared statement.

 A prepared statement is a SQL statement with occurrences of values replaced
by placeholders (question marks). You can reuse the same statement for a possibly
large sequence of calls with different values per call. The JDBC driver therefore
has to do its per-statement work only once instead of numerous times. The work
per statement includes parsing the SQL, validating, optimizing access paths, and
constructing an execution plan. The more complex the statement, the more time-
consuming this work becomes. In other words, using a prepared statement is
always a good move. In Java, prepared statements are represented using the
java.sql.PreparedStatement interface.

 The following example separates the SQL from the data used:

String athleteInsert = '''
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES (?, ?, ?);
'''
db.execute athleteInsert, ['Paul', 'Tergat', '1969-06-17']
db.execute athleteInsert, ['Khalid', 'Khannouchi', '1971-12-22']
db.execute athleteInsert, ['Ronaldo', 'da Costa', '1970-06-07']

The execute method is smart enough to know when it needs to work with a pre-
pared statement. The preceding construction also better supports reading the
list of fields from an external source such as a file and populating the database
with it.

6 It is possible that this distinguished list of runners may have changed by the time you read this.

332 CHAPTER 10
Database programming with Groovy
NOTE In SQL, string values are placed in single quotes like 'Paul'. But with a
prepared statement, these single quotes must not be used. They are not
present in the prepared statement, nor are they part of the string data
passed in the list of values. (In other words, the single quotes in those val-
ues are for Groovy, not for SQL.) Similarly, even though dates have been
represented here as strings, they really are dates in the database. We
could have passed an instance of java.util.Date to our execute
method, and in production code this would be more likely, but the sample
code in this chapter is clearer using simple string representations.

When the statement gets more complicated, the mapping between each question
mark and the corresponding list entry can become difficult to follow. In the
course of development, the statement or the list may change, and the task of
keeping both in sync is a likely source of errors.

 It would be nicer if we could use a placeholder that better reveals its purpose
and goes around the strong sequence constraint. Toward that end, execute can
also produce a prepared statement from a GString. We show this with a list that
holds each athlete’s data as a map (you could just as easily use a full-blown
Athlete object instead—with the additional work of creating an Athlete class to
start with, of course):

def athletes = [
 [first: 'Paul', last: 'Tergat', birth: '1969-06-17'],
 [first: 'Khalid', last: 'Khannouchi', birth: '1971-12-22'],
 [first: 'Ronaldo', last: 'da Costa', birth: '1970-06-07']
]
athletes.each { athlete ->
 db.execute """
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES (${athlete.first}, ${athlete.last}, ${athlete.birth});
 """
}

Pay attention to the tripled double quotes around the statement, and remember
that this construction produces a prepared statement and will therefore be just as
efficient on the database as the question-mark version.

 This might sound like magic to you and might leave some doubts, because after
all you cannot see whether we are telling the truth. But we can enable logging and
assess our claim. Use the following lines to see what happens behind the curtain:

import java.util.logging.*

Logger.getLogger('groovy.sql').level = Level.FINE
// your db.execute(GString)

Basic database operations 333
This produces

30.10.2005 19:08:27 groovy.sql.Sql execute
FINE:
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES (?, ?, ?);

It goes without saying that logging the SQL that is eventually executed is always a
good practice during development. Also note that because we have a real pre-
pared statement, the SQL expression uses no single quotes around the place-
holder. The special use of GStrings as SQL statements limits the use of
placeholders to places where a question mark would otherwise be allowed in a
prepared statement.

Updating and deleting data
The first important steps have been done: We connected to the database, created
the schema, and inserted some data. In other words, we have covered the C in
CRUD. Still missing are read, update, and delete.

 We will cover read separately in the next section because it is a topic of its own.
The update and delete operations work with the execute method in the same way
you have seen so far. The following is an example of a insert-update-delete cycle. We
insert a middle-of-the-pack marathon runner, update his first name because the
original spelling was incorrect, and finally delete him from the database because
he doesn’t belong to this fine circle. Just for the fun of it, we demonstrate all three
execute versions—a plain statement, the prepared statement with question
marks, and the same with GStrings:

db.execute '''
 DELETE FROM Athlete WHERE firstname = 'Dierk';
'''

db.execute '''
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES (?, ?, ?);
''', ['Dirk', 'Koenig', '1968-04-19']

String wrong = 'Dirk'
String right = 'Dierk'
db.execute """
 UPDATE Athlete SET firstname = $right WHERE firstname = $wrong;
"""

The execute method comes with a second version, executeUpdate, which works the
same way but provides a different return value. Whereas execute returns a Boolean
indicating whether the statement returned a ResultSet, executeUpdate returns the

334 CHAPTER 10
Database programming with Groovy
number of rows that were changed by the update. See the API documentation of
java.sql.PreparedStatement for details. Table 10.2 shows the summary.

Until now, we have created tables and inserted, updated, and deleted rows. These
are important basic operations, but the most frequently used operation is reading
data.7 Reading has different aspects, depending on whether you look for a single
row or multiple rows, what query information is available, and how you intend to
process the retrieved data.

 The next section leads you through the various ways of fetching data from
a database.

10.1.3 Fetching data

Reading from the database is done through Sql’s methods, as listed in table 10.3,
where the handling of prepared statements is the same as for execute.

Table 10.2 Versions of the execute method

Returns Method name Parameters

boolean execute String statement

boolean execute String prepStmt, List values

boolean execute GString prepStmt

int executeUpdate String statement

int executeUpdate String prepStmt, List values

int executeUpdate GString prepStmt

7 This is not necessarily true in all databases—when a database is used essentially for audit logging, for
instance, it may be read very rarely. However, most databases are more frequently read than changed.

Table 10.3 Methods for reading data from the database

Returns Method Parameters

void eachRow String statement { row -> code }

void eachRow String prepStmt, List values { row -> code }

void eachRow GString prepStmt { row -> code }

continued on next page

Basic database operations 335
The methods eachRow and query use a closure for processing the result. Whereas
query calls the given closure once and passes the full java.sql.ResultSet into it,
eachRow calls the closure for each row of the result, thus relieving the programmer
from the usual iteration work.

Fetching a row at a time with eachRow
Suppose we would like to print a report about all known athletes that should look
like this:

----- Athlete Info ------
Paul Tergat
born on 17. Jun 1969 (Tue)

Khalid Khannouchi
born on 22. Dec 1971 (Wed)

Ronaldo da Costa
born on 07. Jun 1970 (Sun)

We can achieve this by using eachRow and a simple selection statement. The row
that is passed into the closure is an interesting object. We can use the column
names as if they were property names of that object:

println ' Athlete Info '.center(25,'-')
def fmt = new java.text.SimpleDateFormat('dd. MMM yyyy (E)',
 Locale.US)
db.eachRow('SELECT * FROM Athlete'){ athlete ->
 println athlete.firstname + ' ' + athlete.lastname
 println 'born on '+ fmt.format(athlete.dateOfBirth)
 println '-' * 25
}

void query String statement { resultSet -> code }

void query String prepStmt, List values { resultSet -> code }

void query GString prepStmt { resultSet -> code }

List rows String statement

List rows String prepStmt, List values

Object firstRow String statement

Object firstRow String prepStmt, List values

Table 10.3 Methods for reading data from the database (continued)

Returns Method Parameters

336 CHAPTER 10
Database programming with Groovy
Note how we are using the row as if it were an Athlete object, which it isn’t. But we
can also use the row as if it were a list (which it isn’t either) and call the subscript
operator on it. In order to print

Paul Tergat
Khalid Khannouchi
Ronaldo da Costa

we could call

db.eachRow('SELECT firstname, lastname FROM Athlete'){ row ->
 println row[0] + ' ' + row[1]
}

NOTE When working with column indexes, it’s always safer to explicitly specify
the sequence of column names in the select statement. 'SELECT *' may
sometimes return the columns in the expected order (the order they were
defined in CREATE TABLE), but this is not guaranteed for all database man-
agement systems.

So what is that row object, after all? It’s of type groovy.sql.GroovyResultSet,
which is a decorator around the underlying java.sql.ResultSet. Being a Groovy
object, it can pretend to have properties and provide Groovy-friendly indexing
(starting from zero, allowing negative indexes that count from the end).

Fetching a ResultSet with query
The query method allows you to customize the iteration over the query results at
the expense of convenience, because you can only work with the good old
java.sql.ResultSet. Suppose we are only interested in the first athlete, and we
don’t want to go through all results for that purpose. We can use query like this:

db.query('SELECT firstname, lastname FROM Athlete'){ resultSet ->
 if(resultSet.next()){
 print resultSet.getString(1)
 print ' '
 println resultSet.getString('lastname')
 }
}

Just like the eachRow method, the query method manages your resources (the con-
nection and the statement). The downside is that the ResultSet that gets passed
into the closure is less convenient to work with. You need to call next to move the
cursor forward, you need to call type-specific getters (getString, getDate, and so
on), and—most annoyingly—indexes start at one instead of zero.

Basic database operations 337
Fetching all rows at once
As shown in table 10.3, it’s also possible to fetch all rows at once into a (possibly
long) list with the rows method. Each list item can be used with an index or a
property name (just like in eachRow). Suppose we need a simple usage, like print-
ing the following:

There are 3 Athletes:
Paul Tergat, Khalid Khannouchi, Ronaldo da Costa

We can use a simple database call like

List athletes = db.rows('SELECT firstname, lastname FROM Athlete')
println "There are ${athletes.size()} Athletes:"
println athletes.collect{"${it[0]} ${it.lastname}"}.join(", ")

Having the selection results in a list makes them eligible to be put in GPath
expressions. The example shows this with the collect method, but you can imag-
ine find, findAll, grep, any, every, and so forth in its place.

NOTE The list items are implemented as GroovyRowResult objects, the equiv-
alent of GroovyResultSet as used with eachRow.

Finally, the firstRow(stmt) method returns rows(stmt)[0].
 So far, you have seen methods to fetch data from the database when we had a

good idea what the statement will return. But there are times when you don’t
know. In this case, the metadata comes into play.

Fetching metadata
Consider writing a helper method that should dump the content of a given table.
The table name is provided as a method parameter. If we call the method as
dump('Athlete'), it should print

------- CONTENT OF TABLE Athlete -------
0: ATHLETEID 0
1: FIRSTNAME Paul
2: LASTNAME Tergat
3: DATEOFBIRTH 1969-06-17
--
0: ATHLETEID 1
1: FIRSTNAME Khalid
2: LASTNAME Khannouchi
3: DATEOFBIRTH 1971-12-22
--
0: ATHLETEID 2
1: FIRSTNAME Ronaldo

338 CHAPTER 10
Database programming with Groovy
2: LASTNAME da Costa
3: DATEOFBIRTH 1970-06-07
--

For proper display, we need some information about

■ How many columns we should display
■ What the column names are

Luckily, ResultSet (and thus also the GroovyResultSet) provides a method called
getMetaData that returns a ResultSetMetaData object. This contains all the neces-
sary information. See its API documentation for details.

def dump (tablename){
 println " CONTENT OF TABLE ${tablename} ".center(40,'-')
 db.query('SELECT * FROM '+tablename){ rs ->
 def meta = rs.metaData
 if (meta.columnCount <= 0) return
 for (i in 0..<meta.columnCount) {
 print "${i}: ${meta.getColumnLabel(i+1)}".padRight(20)
 print rs[i]?.toString()
 print "\n"
 }
 println '-' * 40
 }
}
dump('Athlete')

Like all the classes from the java.sql package, ResultSetMetaData works with
indexes starting at one. Therefore, we need to call getColumnLabel with (i+1). We
also use the safe dereferencing operator (see section 7.1.3) in case the value at the
given index is null.

 You have now seen all the CRUD operations in Groovy, some of them in vari-
ous versions. However, because database code tends to be verbose, you have only
seen snippets. The next section puts these snippets together.

10.1.4 Putting it all together

It’s time to assemble the presented operations into a full self-contained example
of database programming with Groovy. It starts with connecting to the database;
creating a schema; performing insert, update, and deletion of data; and reading
data in between all operations to assert the desired effect.

 Listing 10.1 shows how everything works in combination. Every type of oper-
ation is handled in its own method, and method parameters are used inside
GStrings to allow the use of prepared statements in a self-describing manner.

Basic database operations 339
// requires hsqldb.jar in classpath
import groovy.sql.Sql

dbHandle = null

def getDb() {
 if (dbHandle) return dbHandle
 def source = new org.hsqldb.jdbc.jdbcDataSource()
 source.database = 'jdbc:hsqldb:mem:GIA'
 source.user = 'sa'
 source.password = ''
 dbHandle = new Sql(source)
 return dbHandle
}
def reset() {
 db.execute '''
 DROP INDEX athleteIdx IF EXISTS;
 DROP TABLE Athlete IF EXISTS;
 CREATE TABLE Athlete (
 athleteId INTEGER GENERATED BY DEFAULT AS IDENTITY,
 firstname VARCHAR(64),
 lastname VARCHAR(64),
 dateOfBirth DATE
);
 CREATE INDEX athleteIdx ON Athlete (athleteId);
 '''
}
def create(firstname, lastname, dateOfBirth) {
 db.execute """
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES ($firstname,$lastname,$dateOfBirth);
 """
}
def findAll() {
 db.rows 'SELECT * FROM Athlete'
}
def updateFirstName(wrong, right) {
 db.execute """
 UPDATE Athlete
 SET firstname = $right WHERE firstname = $wrong;
 """
}
def delete(firstname) {
 db.execute "DELETE FROM Athlete WHERE firstname = $firstname;"
}

reset()
assert ! findAll(), 'we are initially empty'
create 'Dirk', 'Koenig', '1968-04-19'

Listing 10.1 CRUD operations with Groovy

Lazily init the
DataSource

Define the schema
programmatically

Create
operation

b

Read
operation

c

Update
operation

d

Delete
operation

e

340 CHAPTER 10
Database programming with Groovy
assert 'Dirk' == findAll()[0].firstname
updateFirstName 'Dirk', 'Dierk'
assert 'Dierk' == findAll()[0].firstname
delete 'Dierk'
assert ! findAll(), 'after delete, we are empty again'

The code in listing 10.1 seems at first glance like a mere collection of snip-
pets that were presented before, but sometimes “the whole is more than the
sum of its parts” (Aristotle, in Metaphysics). Two patterns loom from behind:
DTOs and DAOs.

 Data Transfer Objects encapsulate state without behavior. They transfer a set
of named values between the database and the client code. In listing 10.1, this is
the transfer from c to f as done transparently by the GroovyRowResult. In other
words, you can work as if you have a DTO without writing one!

 Data Access Objects encapsulate the knowledge of how a given type works with
the database. They implement the CRUD operations for this type. We haven’t
explicitly defined any specific type in listing 10.1, but b, c, d, and e make our
script almost work like a DAO for an Athlete type.

 You’ve seen how easy it is to execute SQL with Groovy. Wouldn’t it be nice not
to have to worry about the SQL at all? Unlikely as that concept sounds, it’s the
topic of our next section.

10.2 DataSets for SQL without SQL

We demanded that simple tasks should be easy. So far, you have seen simple SQL
and easy ways for sending it to the database. It’s hard to believe that database pro-
gramming can be any simpler, but it can.

 Groovy provides a basic way of working with the database that doesn’t even
work with SQL. This approach is based on the concept of a DataSet, and we will
look at each of the operations it supports:

■ Adding a row to a table
■ Working through all rows of a table or a view
■ Selecting rows of a table or a view by simple expressions

You cannot define a schema that way or use delete or update operations. However,
you can mix the use of DataSets with other Groovy SQL operations and use what-
ever seems most appropriate for the task at hand.

GroovyRowResult
as DTOf

DataSets for SQL without SQL 341
 A groovy.sql.DataSet is a subclass of
and a decorator around groovy.sql.Sql.
Figure 10.2 shows the UML class diagram.

 The conventional way of retrieving a
DataSet instance is to call Sql’s factory
method dataSet. You pass it the name of
the table that this DataSet should work
with. For more alternatives, see the API
documentation of Sql and DataSet:

// if db refers to an instance of Sql
athleteSet = db.dataSet('Athlete')

Let’s explore what you can do with such
an instance.

10.2.1 Using DataSet operations

With an instance of a DataSet, you can call its methods, as listed in figure 10.2. We
can add a new row to the Athlete table with

athleteSet.add(
 firstname: 'Paula',
 lastname: 'Radcliffe',
 dateOfBirth: '1973-12-17')

That’s all we need to do. A SQL insert statement will be created behind the scenes
and executed immediately. If we omit any of the fields, a null value will be
inserted instead.

 We can also use the athleteSet to work with what’s currently in the table. The
following lines

athleteSet.each {
 println it.firstname
}

print

Paul
Khalid
Ronaldo
Paula

This works analogously to the GroovyResultSet you saw before: You can use field-
names as if they were properties and use positive or negative indexes with it.

Figure 10.2 UML class diagram of
groovy.sql.DataSet decorating
groovy.sql.Sql

342 CHAPTER 10
Database programming with Groovy
 Now comes the findAll method, which looks simple at first but turns out to be
very sophisticated. Let’s start with trying

athleteSet.findAll{ it.dateOfBirth > '1970-1-1' }

This method call returns a new DataSet, which can in turn be used with the each
method to work over the filtered result:

youngsters = athleteSet.findAll{ it.dateOfBirth > '1970-1-1' }
youngsters.each { println it.firstname }

What is behind this construction? At first sight, you might guess that the findAll
method fetches all the rows from the table, applying the closure and adding rows
that pass the filter to a list internally. This would be far too time consuming for
large tables. Instead, findAll produces a SQL statement that reflects the expres-
sion within the closure. This generated statement is encapsulated in the returned
youngsters DataSet.

 It’s hard to believe that Groovy can do that,8 but proof is available. Any
DataSet encapsulates a statement in its sql property, and because that is the SQL of
a prepared statement, it also needs parameters, which are stored in the
parameters property. Let’s find out what these properties are for our sample code:

youngsters = athleteSet.findAll{ it.dateOfBirth > '1970-1-1' }
println youngsters.sql
println youngsters.parameters
youngsters.each { println it.firstname }

These lines print

select * from Athlete where dateOfBirth > ?
["1970-1-1"]
Khalid
Ronaldo
Paula

So take note:

■ findAll only creates a new DataSet (with the enclosed prepared statement).
■ findAll does not even access the database.
■ Only the trailing each triggers the database call.

8 It may be slightly easier to believe if you’ve looked at Microsoft’s LINQ project. Of course, Groovy has
been released, whereas LINQ certainly hasn’t at the time of writing.

DataSets for SQL without SQL 343
To prove this to yourself, you can add logging to the program in the same way we
did in section 10.1.2. Logging is useful during development to see when the data-
base is accessed, as well as how it is accessed.

 But the buck doesn’t stop here. Because the findAll method returns a DataSet
that can be interpreted as a filtered selection of the original DataSet (which was
the whole Athlete table in our example), it would be surprising if it weren’t pos-
sible to combine filters. And yes, you can. The following lines

youngsters = athleteSet.findAll{ it.dateOfBirth > '1970-1-1' }
paula = youngsters.findAll{ it.firstname == 'Paula' }
println paula.sql
println paula.parameters

print

select * from Athlete where dateOfBirth > ? and firstname = ?
[1970-1-1, Paula]

Interestingly enough, we can achieve the same effect by providing a combined fil-
ter expression in the findAll closure:

youngsters = athleteSet.findAll{
 it.dateOfBirth > '1970-1-1' && it.firstname == 'Paula'
}

You can legitimately ask how this could possibly work. Here is the answer: The
expression in the findAll closure is never executed! Instead, the DataSet imple-
mentation fetches Groovy’s internal representation of the closure’s code. This
internal representation is called the Abstract Syntax Tree (AST) and was gener-
ated by the Groovy parser. By walking over the AST (with a Visitor pattern), the
DataSet implementation emits the SQL equivalent of each AST node. The map-
ping is listed in table 10.4.

Table 10.4 Mapping of Groovy AST nodes to their SQL equivalents

AST node SQL equivalent

&& and

|| or

== =

Other operators Themselves, literally

it.propertyname propertyname

Constant expression ? (Expression is added to the parameters list)

344 CHAPTER 10
Database programming with Groovy
This also means that the following restrictions apply for expressions inside the
findAll closure:

■ They must be legal Groovy code (otherwise, the Groovy parser fails).
■ They must contain only expressions as listed in table 10.4, excluding vari-

ables and method calls.

These restrictions limit the possibilities of filtering DataSets. On the other hand,
this approach brings a new quality to database programming: using the parser of
your programming language for checking your selection expression at compile time.

 If you put syntactically invalid SQL into a string and pass it to Sql’s execute
method, you will not notice the error until the database is accessed and throws an
SqlException.

 If you put a syntactically invalid expression into a findAll closure and choose
to compile your code, the compiler fails without accessing the database. You also
get better error messages that way, because the compiler can point you to the
offending code. With good IDE support, your IDE can open the editor on such
failing code or even highlight the error while editing.

 Now might be a good time to have a cup of coffee. Let the last couple of pages
sink in. Read them again. Try a few example queries for yourself. This ability to
view the code within the closure as data and transform it into another type of code
(SQL) rather than a block to be executed may be one of the most important con-
cepts in ushering in a new era of database application development.

 So far, you have seen DataSets working on a single table only. We will next
explore how to use this concept more generally.

10.2.2 DataSets on database views
DataSets are a convenient way to work on a
single table. However, working on a single
table is usually not of much value in a rela-
tional model.

 Suppose our athletes have running per-
formances that we would like to keep track of.
This calls for another table, which we will call
Run. Each row in this table captures the dis-
tance the athlete went (in meters), how many
seconds it took, and when and where this happened. For relating such a row with
the according athlete, we refer to the athlete’s unique id, the athleteId, by the
foreign key fkAthlete. Figure 10.3 shows the relationship.

Figure 10.3 Entity-relationship diagram
of athletes and multiple runs

DataSets for SQL without SQL 345
 This results in the following SQL code for creating the Run table. Note that we
also introduce a runId9 to give this performance a unique handle, and we let the
database know that fkAthlete is a foreign key in the Athlete table by adding
the according constraint. We use ON DELETE CASCADE such that when deleting an
athlete from the Athlete table, all the athlete’s runs also get deleted automatically:

DROP TABLE Run IF EXISTS;
CREATE TABLE Run (
 runId INTEGER GENERATED BY DEFAULT AS IDENTITY,
 distance INTEGER, // in meters
 time INTEGER, // in seconds
 venue VARCHAR(64),
 when TIMESTAMP,
 fkAthlete INTEGER,
 CONSTRAINT fk FOREIGN KEY (fkAthlete)
 REFERENCES Athlete (athleteId) ON DELETE CASCADE
);

For filling the Run table with example data, we unfortunately cannot easily use a
DataSet; we would need to know the corresponding athleteId, which we cannot
foresee because it is dynamically generated by the database. The next best solu-
tion is to use a helper method that executes an insert statement to retrieve the
athleteId from a subselect. Here’s some sample code, which uses parameters for
most values but has a hard-coded distance for demonstration purposes. Likewise,
it assumes there will be only one athlete with a given last name—something we
would not do in real life code:

def insertRun(h, m, s, venue, date, lastname){
 def time = h*60*60 + m*60 + s
 db.execute """
 INSERT INTO Run (distance, time, venue, when, fkAthlete)
 SELECT 42195, $time, $venue, $date,
 athleteId FROM Athlete WHERE lastname=$lastname;
 """
}

We can now call the insertRun method with some example data:

insertRun(2,4,55, 'Berlin', '2003-09-28', 'Tergat')
insertRun(2,5,38, 'London', '2002-04-14', 'Khannouchi')
insertRun(2,5,42, 'Chicago', '1999-10-24', 'Khannouchi')
insertRun(2,6,05, 'Berlin', '1998-09-20', 'da Costa')

9 There is no pressing need for the runId. We introduce it because that is our usual working pattern
when creating tables.

346 CHAPTER 10
Database programming with Groovy
After this preparation, how can we use DataSets to list runs for an athlete name?
We need to join the information from that Run table with the information from
the Athlete table to retrieve the names.

 Of course, we could read both tables and do the join programmatically, but
that wouldn’t leverage the power of the relational model and wouldn’t perform
well because of the overhead of each database call.

 The trick is to create a database view that behaves like a read-only table made
up from an arbitrary selection.

 Here is how to create a view named AthleteRun that combines athletes with
their runs as if we has a combined table that contains both tables but only for ath-
letes for whom we have run information:

DROP VIEW AthleteRun IF EXISTS;
CREATE VIEW AthleteRun AS
 SELECT * FROM Athlete INNER JOIN Run
 ON fkAthlete=athleteId;

With this view, we can create a DataSet and work with it as if it were one big table.
To find where Khalid Knannouchi performed his runs, we can use

record = db.dataSet('AthleteRun').findAll{ it.firstname=='Khalid' }
record.each{ println it.lastname + ' ' + it.venue }

which prints

Khannouchi London
Khannouchi Chicago

What we have done here is remove SQL-specific knowledge, such as how to join
two tables, from the application. This makes the code more portable across
database vendors, as well as making it readable to developers who may not be
particularly skilled in SQL. This comes at the expense of putting it into the
infrastructure (the database setup code). This requires the database structure to
be under our control. In large organizations, where the database is maintained
by an entirely different set of people, the challenge is to get these administra-
tors on board for efficient collaboration and for leveraging their database
knowledge in your project.

 You now have the tools you need to access a database. Giving someone a chisel
doesn’t make them a carpenter, though—how the tools are used is as important as
the tools themselves.

Organizing database work 347
10.3 Organizing database work

Knowing the technical details of database programming is one thing, but orga-
nizing a whole application for database usage takes more than that. You have to
take care of design considerations such as separation of concerns, assigning
responsibility, and keeping the codebase manageable and maintainable—free
from duplication.

 This section will give you some insight into how Groovy SQL fits into the over-
all architecture of a database application. We will plan the architecture, define
what the application has to be capable of, and then implement the application in
a layered fashion, examining how Groovy makes things easier at every level. No
single and authoritative solution fits all needs. Instead, you need to use your
imagination and creativity to find out how to relate the presented rules, struc-
tures, and patterns to the situation at hand.

10.3.1 Architectural overview

Today’s architectural patterns usually call for a layered architecture, as depicted
in figure 10.4. The lowest layer is the infrastructure that shields all upper layers
from SQL specifics. It presents DAOs to the domain model layer above it. There
often is a one-to-one relationship between business objects in the domain model
layer and DAOs. Classically, DAOs and business objects pass DTOs back and forth
for communication.

 Above the domain model layer is the application layer, which makes use of the
business objects in its workflow and presents them within the user interface.

Figure 10.4 Layered architecture for database programming

348 CHAPTER 10
Database programming with Groovy
Layering also means that any layer may call the layer below it, but never the one
above. Strict layering also forbids calling layers deeper than the one directly
below; for example, calls from the application layer to the infrastructure would
be forbidden.

 With the advent of Groovy SQL, things can be done more easily. First, custom-
built DTOs become obsolete, due to the dynamic nature of Groovy’s classes.
There is no more need to create special classes for each DTO type. A DAO can
exchange information with transparent types—types that are independent of any
DAO or business object specifics. Good candidates for transparent DTOs are
GroovyRowResult, Map, List, and Expando. For DTOs that should encapsulate a col-
lection of business objects, a list of these DTOs or a DataSet may be used.

NOTE With layering as in figure 10.4, DAOs are not allowed to directly return
business objects, because calling their constructor would mean calling
into the upper domain model layer. As a trick, they can pass back a map
of properties and let the caller object do the construction, such as new
MyBusinessObject(map).

For simple read-only data, business objects can also be replaced by transparently
using a GroovyRowResult, a Map, or an Expando. Suppose the following line exists
in the application code:

out << athlete.firstname

To a reader of this code, everything looks like athlete is a business object. How-
ever, you cannot tell whether it is really of type Athlete. It could just as well be a
GroovyRowResult, a Map, or an Expando. From the code, it all looks the same.

 Of course, this works only in simple scenarios. If you go for domain driven
design,10 you will want to implement your business objects explicitly (most often
with the help of GroovyBeans).

 DAOs can sometimes be replaced by transparently using a DataSet, as you saw
in the previous section. There is a crucial point about DataSets that makes this
possible: the way they handle findAll. DAOs should not expose SQL specifics to
their caller, because that makes the infrastructure layer leaky. Conventional DAOs
often break this constraint by allowing the caller to pass parts of the WHERE clause;
or they end up with a plethora of methods like

findByFirstName(firstname)
findByLastName(lastname)

10 Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (Addison Wesley, 2003)

Organizing database work 349
findByFirstAndLastName(firstname, lastname)
findByBirthdateBefore(date)
…

You have also seen that DataSets can replace DAOs, which represent sophisticated
relations by providing the appropriate view in the database schema.

 All this is interesting in theory, but it’s what it looks like in practice that counts.
In the next section, we’ll examine some real code.

10.3.2 Specifying the application behavior

Thinking through the architecture is nice, but only the code tells the truth. So
let’s go for a full example of managing our athletes.

 We will use a layered architecture similar to figure 10.4, albeit not a strict ver-
sion. Our general approach is bottom-up. We begin at the infrastructure layer,
starting with helpers and deciding what DAOs we are going to provide. DTOs will
all be transparent. From our decisions about DAOs, the business objects will fall
into place almost automatically. Finally, we have to implement the application.
Because our current focus is on database programming, we will keep the user
interface and workflow basic and provide a small command-line interface.

 Here is how the application should work. The application should start by cre-
ating the database schema. With logging enabled, we should see the following
output when the application starts:

DROP INDEX athleteIdx IF EXISTS;
DROP TABLE Athlete IF EXISTS;
CREATE TABLE Athlete (
 athleteId INTEGER GENERATED BY DEFAULT AS IDENTITY,
 dateOfBirth DATE,
 firstname VARCHAR(64),
 lastname VARCHAR(64)
);
CREATE INDEX athleteIdx ON Athlete (athleteId);

Entering athletes should be like in this transcript (input in bold):

create Paul Tergat 1969-06-17
1 Athlete(s) in DB:
id firstname lastname dateOfBirth
0: Paul Tergat 1969-06-17
create Khalid Khannouchi
2 Athlete(s) in DB:
id firstname lastname dateOfBirth
0: Paul Tergat 1969-06-17
1: Khalid Khannouchi null

350 CHAPTER 10
Database programming with Groovy
Note that we use the create operation and pass parameters in a well-known
sequence. Missing parameters result in null values. The current list of athletes is
displayed after the operation, sorted by the automatically generated id.

 The update operation should work for a given id, field name, and new value:

update 1 dateOfBirth 1971-12-22
1 row(s) updated
2 Athlete(s) in DB:
id firstname lastname dateOfBirth
0: Paul Tergat 1969-06-17
1: Khalid Khannouchi 1971-12-22

The list of athletes should be sortable, where the sort is performed by the data-
base, not in the application code. It needs to support multiple-column sorts:

sort firstname
2 Athlete(s) in DB:
id firstname lastname dateOfBirth
1: Khalid Khannouchi 1971-12-22
0: Paul Tergat 1969-06-17

The delete operation should accept an id and delete the corresponding row:

delete 1
1 row(s) deleted
1 Athlete(s) in DB:
id firstname lastname dateOfBirth
0: Paul Tergat 1969-06-17

The application is to be terminated with the exit operation.
 No validation of user input needs to be implemented; we also don’t need to

gracefully handle database errors resulting from bad user input.
 Let’s see how to design and implement the infrastructure, domain model, and

application layer to make this functionality work.

10.3.3 Implementing the infrastructure

The infrastructure contains helpers and DAOs. For our example, we have a single
helper class DbHelper, an AthleteDAO, and a general abstract DataAccessObject as
depicted in figure 10.5.

 The DbHelper is responsible for providing access to an instance of groovy.
sql.Sql through its db property and setting it to a default value. The second
responsibility is to support automatic schema creation by executing the Data Def-
inition Language (DDL) for a given DataAccessObject.

 The DataAccessObject is a general implementation of the basic CRUD opera-
tions. The AthleteDAO is a specialization of a DataAccessObject providing the

Organizing database work 351
least possible information for accessing an Athlete table: the fieldnames and
their types.

 We will next go through the classes to see how they implement their respon-
sibilities.

Implementing DbHelper

The implementation of DbHelper as in listing 10.2 yields no surprises. It con-
tains the code for a database connection via the Sql class and the SQL tem-
plate for creating a table. Unlike in previously presented variants, we now use a
SimpleTemplateEngine for separation of concerns.

 The template contains the structure of a simple table definition in SQL, whereas
the DataAccessObject as passed into executeDdl is used for getting details about
the table name and other schema details, such as field names and their SQL types.

import groovy.sql.Sql
import groovy.text.SimpleTemplateEngine as STE

class DbHelper {
 Sql db

 DbHelper() {
 def source = new org.hsqldb.jdbc.jdbcDataSource()

Listing 10.2 Athlete example infrastructure: DbHelper

Figure 10.5 UML class diagram of the
athlete example’s infrastructure layer

352 CHAPTER 10
Database programming with Groovy
 source.database = 'jdbc:hsqldb:mem:GIA'
 source.user = 'sa'
 source.password = ''
 db = new Sql(source)
 }

 def simpleTemplate = new STE().createTemplate('''
DROP INDEX ${lowname}Idx IF EXISTS;
DROP TABLE $name IF EXISTS;
CREATE TABLE $name (
 ${lowname}Id INTEGER GENERATED BY DEFAULT AS IDENTITY,
$fields
);
CREATE INDEX ${lowname}Idx ON $name (${lowname}Id);''')

 def executeDdl(DataAccessObject dao) {
 def template = simpleTemplate
 def binding = [
 name: dao.tablename,
 lowname: dao.tablename.toLowerCase(),
 fields: dao.schema.collect{ key, val ->
 " ${key.padRight(12)} $val" }.join(",\n")
]
 def stmt = template.make(binding).toString()
 db.execute stmt
 }
}

At first glance, this may look like an oversimplification of SQL table definitions,
because we don’t have to deal with foreign keys or other constraints, views, joins,
and so forth. However, it would be easy to expand DbHelper to also cover those
scenarios by providing correspondingly amended templates.

 Because this class works in collaboration with a DataAccessObject, that’s the
next class to implement.

Implementing DataAccessObject

DAOs encapsulate the knowledge of how to do basic CRUD operations with the
database, and DataAccessObject is the general superclass that collects common
functionality for DAOs. With Groovy SQL, so many operations can be done gener-
ally that this superclass grows large in comparison to its subclasses.

 In addition to the CRUD operations, DataAccessObject uses the structural
information that its subclasses provide through their class names and the
getFields method to build the DAOs’ meta information in a general way.

Organizing database work 353
 Subclasses are expected to follow the naming convention of MyTableDAO for a
table of name MyTable. Their getFields method is expected to return a list of
strings, alternating between the field names and their SQL type descriptions.

 Listing 10.3 shows how DataAccessObject uses this information to expose the
table name, field names, schema, and so forth.

abstract class DataAccessObject {
 Sql db

 abstract List getFields()

 def dataSet() { db.dataSet(tablename) }
 def getIdField() { tablename.toLowerCase() + 'Id' }
 def getWhereId() { "WHERE $idField = ?"}

 String getTablename() {
 def name = this.getClass().name
 return name[name.lastIndexOf('.')+1..-4]
 }
 def create(List args) {
 Map argMap = [:]
 args.eachWithIndex { arg, i -> argMap[fieldNames[i]] = arg }
 dataSet().add argMap
 }
 Map getSchema() {
 Map result = [:]
 fieldNames.each {result[it] = fields[fields.indexOf(it)+1]}
 return result
 }
 List getFieldNames() {
 List result = []
 0.step(fields.size(),2) { result << fields[it] }
 return result
 }
 def update(field, newValue, id) {
 def stmt = "UPDATE $tablename SET $field = ? $whereId"
 db.executeUpdate stmt, [newValue, id]
 }
 def delete(id) {
 def stmt = "DELETE FROM $tablename $whereId"
 db.executeUpdate stmt, [id]
 }
 def all(sortField) {
 def selects = fieldNames + idField
 def result = []
 def stmt = "SELECT " + selects.join(',') +
 " FROM $tablename ORDER BY $sortField"

Listing 10.3 Athlete example infrastructure: DataAccessObject

Subclass implements
this to provide field list

b

Properties for use
in SQL statements

c

Create operationd

Sample read
operation

e

354 CHAPTER 10
Database programming with Groovy
 db.eachRow(stmt.toString()){ rs ->
 Map businessObject = [:]
 selects.each { businessObject[it] = rs[it] }
 result << businessObject
 }
 return result
 }
}

Note that the CRUD operations work with prepared statements. The update and
delete statements both use the id column to identify a row, obtaining the appro-
priate where clause using properties c. The creation operation at d takes a list
of values, which it converts into a map by assuming they are in the same order as
the field list provided by the subclass via the getFields method at b. A single
read operation e is provided, but because db is available as a property, callers
can provide their own queries easily enough. For this particular application, we
don’t need any other read operations anyway.

 The all method returns business objects transparently as maps.

Implementing AthleteDAO
With all the hard work already done in DataAccessObject, implementing the
AthleteDAO is a breeze. It’s hardly worth an object.

 Listing 10.4 shows how AthleteDAO needs to do nothing else but subclass
DataAccessObject and provide the field information.

class AthleteDAO extends DataAccessObject {

 List getFields() {
 return [
 'firstname', 'VARCHAR(64)',
 'lastname', 'VARCHAR(64)',
 'dateOfBirth', 'DATE'
]
 }
}

If you ever need specialized versions of CRUD operations or elaborate finder
methods, such a DAO provides the place to put it in.

Listing 10.4 Athlete example infrastructure: AthleteDAO

Organizing database work 355
10.3.4 Using a transparent domain model

Our application uses transparent business objects, implemented as maps. There
is no Athlete class as you might expect.

 Of course, if we ever needed one, we could easily create it like this:

class Athlete {
 def firstname
 def lastname
 def dateOfBirth
}

Inside the application, we could create these objects, for example from an
AthleteDAO call like

athletes = athleteDAO.all('firstname').collect{ new Athlete(it) }

The reason for not introducing such business objects is that they currently add no
value. All their information (the field names) is already available in the DAO.

 The point at which to start using such business objects is when they begin to
depend on other objects in the domain layer or when they provide additional
behavior, such as specialized methods.

 In the next section, you will see that simple applications are even easier when
using transparent business objects.

10.3.5 Implementing the application layer

The application layer consists of only one class: AthleteApplication. Listing 10.4
reveals that it does little more than call the infrastructure and display the trans-
parent business objects.

 The mainLoop method reads the user input from the console, interpreting the
first word as the operation and any additional input as parameters. It passes this
information to invokeMethod, which automatically dispatches to the according
method call. Each keyword is implemented by a method of the same name.

class AthleteApplication {
 def helper = new DbHelper()
 def athleteDAO = new AthleteDAO(db: helper.db)
 def sortBy = 'athleteId'

 def init() {
 helper.executeDdl(athleteDAO)
 }
 def exit() { System.exit(0) }

Listing 10.5 Athlete example application layer: AthleteApplication

Initializationb

356 CHAPTER 10
Database programming with Groovy
 def sort(field) {
 sortBy = field.join(',')
 list()
 }
 def create(List args) {
 athleteDAO.create(args)
 list()
 }
 def list() {
 def athletes = athleteDAO.all(sortBy)
 println athletes.size() + ' Athlete(s) in DB: '
 println 'id firstname lastname dateOfBirth'
 athletes.each { athlete ->
 println athlete.athleteId +': ' +
 athlete.firstname.padRight(10) + ' ' +
 athlete.lastname.padRight(12) + ' ' +
 athlete.dateOfBirth
 }
 }
 def update(id, field, newValue){
 def count = athleteDAO.update(field, newValue, id)
 println count +' row(s) updated'
 list()
 }
 def delete(id) {
 def count = athleteDAO.delete(*id)
 println count +' row(s) deleted'
 list()
 }
 def mainLoop() {
 while(true) {
 println 'commands: create list update delete sort exit'
 def input = System.in.readLine().tokenize()
 def method = input.remove(0)
 invokeMethod(method, input)
 }
 }
}

app = new AthleteApplication()
app.init()
app.mainLoop()

The script begins running with the code at the bottom of the listing, at d. This
initializes the application b and database before calling the main loop of the
class c—in some ways, the entry point of the main application logic. Because the
commands are provided as the method name followed by the arguments, we can
tokenize each line and treat it as a method call. Of course, we would have lots of

Entry point after
initialization

c

Commands are provided as
methods, then arguments

Real entry
point

d

Groovy and ORM 357
validation in a real system, but it’s amazing how a functional console interface can
be implemented with so little code.

 It wasn’t intended originally, but this little application effectively implements a
domain specific language: a simple line-oriented command language for manipu-
lating the Athlete table. This example provides a good way to learn Groovy SQL.
It’s worth playing with the given code and expanding it in multiple dimensions:
more DAOs, relationships between DAOs (one-to-one, one-to-many), views, more
operations, and a more sophisticated user interface.

 By now, you should have a good idea of how to possibly organize your code
around Groovy SQL. Before we close the door on database access, however, there
is one topic we wish to discuss further: Object-Relational Mapping.

10.4 Groovy and ORM

For some time now, language and library providers have been trying to make
databases easier to use. There have been many approaches, including several
along the lines of Object-Relational Mapping (ORM). In the most general terms,
ORM frameworks allow developers to describe their data models, including the
relationships, for use in an object-oriented language. The idea is to retrieve data
from the database as objects using an object-oriented search facility, manipulate
the objects, and then persist any changes back to the database. The ORM system
takes care of adding/deleting records in the right order to satisfy constraints,
datatype conversions, and similar concerns.

 This sounds wonderful, but reality is more complicated than theory, as always.
In particular, new databases can often be designed to be “ORM-friendly,” but
existing databases are sometimes significantly harder to work with. The situation
can become sufficiently complex that the author Ted Neward has referred to
ORM as “the Vietnam of computer science.”11

 There are many different approaches and libraries, both free and commercial,
for many different platforms. In the Java world, two of the best-known players in
the field are the Java Data Objects (JDO) specification and Hibernate. The latest
Enterprise Java Beans (EJB) specification includes ORM to allow implementation-
independent expression of relationships. It has yet to be seen how well this inde-
pendence will work in practice.

 As you’ve seen, Groovy provides more object-oriented database access than
good-old JDBC, but it does not implement a full-blown ORM solution. Of course,

11 http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx.

358 CHAPTER 10
Database programming with Groovy
because it integrates seamlessly with Java, any of the solutions available in Java
can be used in Groovy too.

 Even within the Groovy library, more can be done without crossing the line
into full ORM. We expect future versions of Groovy to ship with DataSets that sup-
port all CRUD operations, a general DAO implementation, and possibly ready-
made ActiveRecord support.

 Beyond the Groovy library are activities to come up with a special Groovy ORM
(GORM). This is an approach that builds on Hibernate but relieves the program-
mer of all the configuration work by relying on code and naming conventions.
GORM is developed as a part of the Grails project.

 Finally, we’d like to emphasize that it would be a misconception to see ORM as
the final solution to database programming and to dismiss all other approaches.
ORM is targeted at providing object persistence and transaction support. It tries
to shield you from the relational model (to some extent). When selecting an ORM
solution, make sure it allows you to exploit the relational model. Otherwise, you
are losing most of the power that you paid your database vendor for.

 We find the Groovy SQL approach appealing: It provides good means for
working with the relational model with an almost ORM-like feeling for the simple
cases while keeping all statements under programmatic control.

10.5 Summary

In this chapter, we have shown that Groovy has considerable support for database
programming within its standard library. Groovy SQL is available wherever
Groovy is. You don’t need to install any additional modules.

 Groovy SQL is made up from a small set of classes that build on JDBC and
make it Groovy-friendly. Important features are as follows:

■ Minimal setup for database access
■ Simple execution of SQL statements
■ Improved reliability through automatic, transparent resource handling

(DataSource, Connection, Statement, ResultSet)
■ Easy transparent usage of prepared statements with GStrings
■ Convenience with DataSets (adding, nested filtering with expressions)
■ Transparent DTOs
■ Optionally transparent DAOs and business objects

Summary 359
The filtering available in the DataSet class is particularly important in terms of
closures being understood not only as a block of code but also as an abstract syn-
tax tree. This can allow logic to be expressed in a manner familiar to the devel-
oper without the potentially huge inefficiency of retrieving all the data from the
database and filtering it within the application.

 You have seen how an example application can be written with the help of
Groovy SQL such that the code organization fits into architectural layers and
database programming patterns with little work.

 Although Groovy does not provide any true Object-Relational Mapping facil-
ities, it integrates well with existing solutions; and where the full complexities of
ORM are not required, the facilities provided above and beyond straight JDBC can
help tremendously.

Integrating Groovy
We build too many walls and not
enough bridges.

 —Isaac Newton
360

Getting ready to integrate 361
One of the biggest advantages of Groovy (even one of the reasons for its inception)
is the fact it integrates natively with Java because both languages run on the same
platform. It is important to understand what makes Groovy such an attractive
option when you need to embed a scripting language in your application.

 First of all, from a corporate perspective, it makes sense to build on the same
platform that most of your projects are already running on. This protects the
investment in skills, experience, and technology, mitigating risk and thus costs.

 Where Java isn’t a perfect fit as a language, Groovy’s expressiveness, brevity,
and power features may be more appropriate. Conversely, when Groovy falls
short because of the inevitable trade-off between agility and speed, performance-
critical code can be replaced with raw Java. These balancing decisions can be
made early or late with few repercussions due to the close links between the two
languages. Groovy provides you with a transparent integration mechanism that
permits a one-to-one mix-and-match of Java and Groovy classes. This is not
always the case with other scripting solutions, some of which just provide wrap-
pers or proxies that break the object hierarchy contract.

 This chapter will show you how to integrate Groovy with Java in various ways.
First we’ll examine three facilities provided by Groovy: GroovyShell, Groovy-
ScriptEngine, and GroovyClassLoader. We will then consider the scripting sup-
port provided by the Spring framework and Java 6, code-named Mustang.

 You will see that by integrating Groovy and Java, you can leverage the vast
libraries of available Java classes and also enjoy the benefits of the extremely agile
dynamic capabilities Groovy provides. All this can be done with seamless integra-
tion of the two languages.

11.1 Getting ready to integrate

The interplay between Groovy and Java means that it is easy to make them coop-
erate in various ways. The most obvious way is to make Groovy code call into Java
code, either using one of the command-line tools to load and run Groovy scripts
directly, or using groovyc to compile Groovy into normal Java class files. This
assumes that all the code is known before the application needs to be compiled. It
doesn’t allow for any just-in-time provision of code, whether that’s through users
entering expressions as they might into a graphing calculator or developers pro-
viding replacement scripts for just the bits of code that require frequent changes
within a live system.

 As an idea of how widely used this kind of facility can be, consider Visual Basic
(VB). We’re not in the business of judging its pros and cons, but it would be hard to

362 CHAPTER 11
Integrating Groovy
deny that VB is popular and has been for a long time. Although many developers
write whole applications in VB from scratch, far more use the capability of various
products to embed pieces of VB code in order to customize behavior in ways the
original developers may never have even considered.

 Now consider allowing that kind of flexibility in your application. Instead of
hearing people talking about writing VB in Microsoft Office, imagine those same
people talking about writing Groovy in your application. Imagine them using
your product in ways you never contemplated—making it more and more valu-
able for them.

 Before seeing how this can be done, we should step back and think about why
we would need to integrate Groovy in a Java application, the situations in which
it’s useful to do so, and the dependencies we need to set up before we get started.

11.1.1 Integrating appropriately

No-one can tell you what your application needs are or what is going to be suit-
able for your particular situation. You must look carefully at your requirements
and consider whether you will benefit from integrating Groovy at all. We can’t
make that decision for you—but we hope we can give a few ideas to guide you.

 First, it’s worth explicitly acknowledging that not all applications benefit from
integrating a scripting language such as Groovy. We can go as far as saying that
most don’t need that. If you’re writing an e-Commerce web site, a multimedia
player, or an FTP client, chances are that you won’t need a scripting language. But
now, suppose you were building an advanced word processor, a spreadsheet appli-
cation, or a complex risk-calculation module for an even more complicated bank
software suite that had to evolve quickly to follow the rapid changes of the market,
legislation, or new business rules. These applications might need an extension
point where end users can customize them to suit their needs. Figure 11.1 shows
one example of where you could integrate Groovy.

Figure 11.1
One example of an
integration solution.
Groovy code is entered
by the user in the user
interface layer and then
executed in the
business layer.

Getting ready to integrate 363
For instance, the banking application might require the definition of business
rules in a script that could be defined at runtime without requiring a new and
tedious development/test/qualification phase, reducing the time to market and
increasing the responsiveness to changes in financial practices. Another example
could be an office suite of applications offering a macro system to create reusable
functions that could be invoked with a keystroke. It becomes obvious that a dichot-
omy of the software world differentiates monolithic applications, which don’t need
to evolve over time and have a fixed functional scope, from more fluid applications
whose logic can be extended or modified during their lifespan to accommodate
context changes.

 Before considering using Groovy in your application, you need to analyze
whether you need to customize it, and see whether you want to customize, extend,
or amend the logic, and not just simple parameters. If parameterization will ful-
fill your needs, you may be better off with classic configuration mechanisms such
as an administration web interface through a set of web services; or, for more
advanced monitoring and action management, you may also consider exposing
JMX1 MBeans. Sometimes, even if the logic has to change, if the choice is between
a small and well-defined set of business rules that are known to begin with, you
can also embed all those rules within the application and decide through param-
eterization which one is to be used. Once you have examined your needs and
come to the conclusion that a scripting environment is what your application
requires, this chapter should provide you with all the information you need to
make your application extendable at runtime with logic written in Groovy.2

 In the following sections, you’ll learn how to use the GroovyShell class to eval-
uate simple expressions and scripts, as well as the GroovyClassLoader for further
loading of Groovy classes. In addition to the techniques provided by Groovy for
integrating your scripts in Java, you’ll discover alternatives for leveraging the
Spring framework and the scripting API within the upcoming Java 6 release.

11.1.2 Setting up dependencies

In order to use Groovy within your project, you will need to set it up to use the
Groovy libraries. This section covers the dependencies required for Groovy inte-
gration. The fact that it’s so short should be a source of comfort—there’s little

1 Find more information at http://java.sun.com/products/JavaManagement/.
2 Of course, we don’t wish to discourage you from reading the chapter even if you don’t have any inte-

gration needs right now. Gaining knowledge is a worthy pursuit in and of itself.

364 CHAPTER 11
Integrating Groovy
work to do to get up and running. However, problems can sometimes crop up
during integration that you wouldn’t see if you were using Groovy by itself. We
will discuss these potential issues and how to resolve them.

 The Groovy distribution comes with a directory containing all the core librar-
ies that form the Groovy runtime. The minimum for embedding Groovy consists
of the three jar files listed in table 11.1.

But these three dependencies may sometimes conflict with the other libraries
your project uses. In particular, if you are using Hibernate and/or Spring, which
both use ASM for generating proxies, you will not be able to use Groovy unless the
version of Hibernate or Spring you are using requires the same version of ASM.
However, there is a solution to this problem. The Groovy distribution also comes
with a specific Groovy jar file that embeds the dependencies in their own pack-
ages. This library is often called the embeddable jar file, because you can embed it
beside any other library without any conflict. You will find this jar file in the direc-
tory named embeddable of your Groovy installation: groovy-all-1.0.jar.

 Remember that if your project depends on ASM or Antlr, you can use this
“magic” jar file to solve your versioning issues between Groovy and your other
dependencies. Also, keep in mind that your project will have to run under a
JRE 1.4 or above, which is a requirement for Groovy.

 It’s not just Java applications that can benefit from the availability of a script-
ing engine: You can even integrate custom Groovy scripts and expressions from
an application written in Groovy! While explaining the various embedding mech-
anisms, we will show how the Groovy interpreters and classloaders can be
exploited from both sides of the language fence. Now that we have set up our
environment, we can look at the first of our three ways of directly integrating with
Groovy: GroovyShell.

Table 11.1 The minimal jar files required for integrating Groovy

File Purpose

groovy-1.0.jar Groovy core library

antlr-2.7.5.jar Grammar parser and generator

asm-2.2.jar Bytecode toolkit used to generate classes

Evaluating expressions and scripts with GroovyShell 365
11.2 Evaluating expressions and scripts
with GroovyShell

The first Groovy API we’ll examine is GroovyShell. This is in many ways the sim-
plest of the integration techniques, and if it covers your situation, it may well be
all you need. With all the libraries in place, we will start dynamically evaluating
expressions in a few simple lines of code. We will then move gradually into more
complex scenarios, passing data between the calling code and the dynamically
executing script, and then creating classes in the script for use outside. We exam-
ine different ways of executing scripts—precompiling them or executing them
just once—and the different types of scripts that can be run. Finally, we look at
ways you can tweak GroovyShell for more advanced uses. Don’t worry if it seems
there’s a lot to learn—in simple situations, simple solutions often suffice. Also,
much of the information presented here is relevant when looking at the other
APIs Groovy provides.

11.2.1 Starting simply

The simplest imaginable integration requirement evaluates an expression. For
example, some math applications may require users to input arbitrary expres-
sions in a form input field that can’t be hardwired at development time in a func-
tion or a closure—for instance, a spreadsheet application where formulas are
Groovy expressions. Those applications then ask the runtime to calculate the
entered formula. In such situations, the tool of choice for evaluating expressions
and scripts is the GroovyShell class. The usage of this class is straightforward and
is similar if you are using it from Java or from Groovy. A simple expression evalu-
ator can look like listing 11.1.3

def shell = new GroovyShell()
def result = shell.evaluate("12 + 23")
assert result == 35

Listing 11.1 A trivial example of expression evaluation in Groovy

3 You might wonder why we choose to integrate from Groovy to Groovy. Well, we would be more likely
to do it from Java, but using Groovy simplifies our examples. Doing so can be handy even from
Groovy, so that you can organize utility code in external scripts, run scripts with certain security poli-
cies in place, or execute user-provided input at runtime.

366 CHAPTER 11
Integrating Groovy
The equivalent full Java program is naturally somewhat longer due to the scaf-
folding code and imports required, but the core logic is exactly the same.
Listing 11.2 gives the complete Java code required to perform the evaluation,
albeit it with no error handling. Java examples later in the chapter have been cut
down to just the code involved in integration. Imports are usually shown only
when they are not clear from the context.

// Java
import groovy.lang.GroovyShell;

public class HelloIntegrationWorld {
 public static void main(String[] args) {
 GroovyShell shell = new GroovyShell();
 Object result = shell.evaluate("12+23");
 assert new Integer(35).equals(result);
 }
}

In both cases, we first instantiate an instance of groovy.lang.GroovyShell. On
this instance, we call the evaluate method, which takes a string as a parameter
containing the expression to evaluate. This evaluate method returns an object
holding the value of the expression. We won’t show the Java equivalent for all the
examples in this chapter, but we sometimes provide one, as much as anything to
remind you of how easy it is.4

 Among the evaluate overloaded methods present in GroovyShell, here are the
most interesting ones:

Object evaluate(File file)
Object evaluate(InputStream in)
Object evaluate(InputStream in, String fileName)
Object evaluate(String scriptText)
Object evaluate(String scriptText, String fileName)

You can evaluate expressions coming from a string, an input stream, or a file. The
additional filename parameter is used to specify the name of the class to be cre-
ated upon evaluation of the script—because Groovy always generates classes for
scripts, too.

Listing 11.2 The same trivial example from listing 11.1, in Java this time

4 It’s rarely quite as easy as the Groovy equivalent, but by now you should realize that this has nothing to
do with the features being shown and everything to do with Groovy making life easier in general.

Evaluating expressions and scripts with GroovyShell 367
 From Groovy scripts, a shortcut can be used: Scripts are classes extending the
Script class, which already has an evaluate method, too. In the context of a
script, our previous example can be shortened to the following:

assert evaluate("12 + 23") == 35

The string parameter passed to evaluate can be a full script with several lines of
code, not just a simple expression, as you see in listing 11.3.

def shell = new GroovyShell()
def kineticEnergy = shell.evaluate('''
 def mass = 22.3
 def velocity = 10.6
 mass * velocity**2 / 2
''')
assert kineticEnergy == 1252.814

Building on GroovyShell, the groovy.util.Eval class can save you the boilerplate
code of instantiating GroovyShell to evaluate simple expressions with zero to
three parameters. Listing 11.4 shows how to use Eval for each case from Groovy
(the same applies for Java, of course).

assert "Hello" == Eval.me("'Hello'")
assert 1 == Eval.x (1, "x")
assert 3 == Eval.xy (1, 2, "x+y")
assert 6 == Eval.xyz(1, 2, 3, "x+y+z")

The me method is used when no parameters are required. The other methods are
used for one, two, and three parameters, where the first, second, and third
parameters are made available as x, y, and z, respectively. This is handy when
your sole need is to evaluate some simple expressions or even mathematical func-
tions. Next, you will see how you can go further with parameterization of script
evaluation with GroovyShell.

11.2.2 Passing parameters within a binding
In listing 11.3, we used a multiline script defining two variables of mass and
velocity to compute the kinetic energy of an object of mass 22.3 kilograms with a
speed of 10.6 km/h. However, notice that this is of limited interest if we can’t
reuse the expression evaluator. Fortunately, it is possible to pass variables to the
evaluator with a groovy.lang.Binding object, as shown in listing 11.5.

Listing 11.3 Evaluating a multiline script with GroovyShell

Listing 11.4 Eval saves explicitly creating a GroovyShell for simple cases

368 CHAPTER 11
Integrating Groovy
def binding = new Binding()
binding.mass = 22.3
binding.velocity = 10.6

def shell = new GroovyShell(binding)
def expression = "mass * velocity ** 2 / 2"
assert shell.evaluate(expression) == 1252.814

binding.setVariable("mass", 25.4)
assert shell.evaluate(expression) == 1426.972

To begin with, a Binding object is instantiated. Because Binding extends
GroovyObjectSupport, we can directly set variables on it as if we were manipulating
properties: The mass and velocity variables have been defined in the binding b.
The GroovyShell constructor takes the binding as a parameter, and further on, all eval-
uations use variables from that binding as if they were global variables of the script c.
When we change the value of the mass variable, we see that the result of the equation
is different d. This line is particularly interesting because we have redefined the
mass variable thanks to the setVariable method on Binding. That is how we could set
or modify variables from Java; Java would not recognize binding.mass, because this
is a shortcut introduced in Groovy by Binding extending GroovyObjectSupport.

 You may have already guessed that if there is a setVariable method available,
then getVariable also exists. Whereas the former allows you to create or redefine
variables from the binding, the latter is used to retrieve the value of a variable
from the binding. The evaluate method can return only one value: the value of
the last expression of the evaluated script. When multiple values are needed in
the result, the script can use the binding to make them available to the calling
context. Listing 11.6 shows how a script can modify values of existing variables, or
it can create new variables in the binding that can be retrieved later.

def binding = new Binding(x: 6, y: 4)
def shell = new GroovyShell(binding)
shell.evaluate('''
 xSquare = x * x
 yCube = y * y * y
''')
assert binding.getVariable("xSquare") == 36
assert binding.yCube == 64

Listing 11.5 Making data available to a GroovyShell using a Binding

Listing 11.6 Data can flow out of the binding as well as into it

Create and populate
the binding

b

Evaluate the expression
using the binding

c

Change the binding
data and re-evaluate

d

Prepopulating the
binding datab

Setting binding data within
the evaluated script

c
Method access
to binding data

d

Groovy property access to binding datae

Evaluating expressions and scripts with GroovyShell 369
In this example, we create a binding instance to which we add two parameters x
and y by passing a map to the Binding constructor b. Our evaluated script cre-
ates two new variables in the binding by assigning a value to nondefined vari-
ables: xSquare and yCube c. We can retrieve the values of these variables with
getVariable from both Java and Groovy d, or we can use the property-like access
from Groovy e.

 Not all variables can be accessed with getVariable because Groovy makes a dis-
tinction in scripts between defined variables and undefined variables: If a variable is
defined with the def keyword or with a type, it will be a local variable, but if you are
not defining it and are assigning it a value without prior definition, a variable will be
created or assigned in the binding. Here, "localVariable" is not in the binding, and
the call to getVariable would throw a MissingPropertyException:

def binding = new Binding()
def shell = new GroovyShell(binding)
shell.evaluate('''
 def localVariable = "local variable"
 bindingVariable = "binding variable"
''')

assert binding.getVariable("bindingVariable") == "binding variable"

Anything can be put into or retrieved from the binding, and only one return
value can be returned as the evaluation of the last statement of the script. The
binding is the best way to pass your domain objects or instances of predefined or
prepopulated sessions or transactions to your scripts. Let’s examine a more cre-
ative way of returning a value from your script evaluation.

11.2.3 Generating dynamic classes at runtime

Using evaluate can also be handy for generating new dynamic classes on the fly.
For instance, you may need to generate classes for a web service at runtime, based
on XML elements from the WSDL for the service. A contrived example for evalu-
ating and returning a dummy class is shown in listing 11.7.

def shell = new GroovyShell()
def clazz = shell.evaluate('''
 class MyClass {
 def method() { "value" }
 }
 return MyClass

Listing 11.7 Defining a class in an evaluated script

Define a
new class

370 CHAPTER 11
Integrating Groovy
''')
assert clazz.name == "MyClass"
def instance = clazz.newInstance()
assert instance.method() == "value"

In all the examples you’ve seen so far, we have used the evaluate method, which
compiles and runs a script in one go. That’s fine for one-shot evaluations, but
other situations benefit from separating the compilation (parsing) from the exe-
cution, as you will see next.

11.2.4 Parsing scripts
The parse methods of GroovyShell return instances of Script so that you can
reuse scripts at will without re-evaluating them each time—hence without compil-
ing them all over again. (Remember our SwingBuilder plotter from chapter 8.)
This method is similar to evaluate, taking the same set of arguments; but rather
than executing the code, it generates an instance of the Script class. All scripts
you can write are always instances of Script.

 Let’s take a concrete example. Suppose we’re running a bank, and we have
customers asking for a loan to buy a house. We need to compute the monthly
amount they will have to pay back, knowing the total amount of the loan, the
interest rate, and the number of months to repay the loan. But of course, we want
to reuse this formula, and we are storing it in a database or elsewhere on the file-
system in case the formula evolves in the future.

 Let’s assume the variables of the algorithm are as follows:

■ amount: The total amount of the loan (the principle)
■ rate: The annual interest rate
■ numberOfMonths: The number of months to reimburse the loan

With these variables, we want to compute the monthly payment. The script in list-
ing 11.8 shows how we can reuse the formula to calculate this important figure.

def monthly = "amount*(rate/12) / (1-(1+rate/12)**-numberOfMonths)"

def shell = new GroovyShell()
def script = shell.parse(monthly)

script.binding.amount = 154000

Create an instance
of the class

Use the object as normal

Listing 11.8 Multiple uses of a monthly payment calculator

Parse formula into
reusable script

Access binding variable

Evaluating expressions and scripts with GroovyShell 371
script.rate = 3.75/100
script.numberOfMonths = 240

assert script.run() == 913.0480050387338

script.binding = new Binding(amount: 185000,
 rate: 3.50/100,
 numberOfMonths: 300)

assert script.run() == 926.1536089487843

After defining our formula, we parse it with GroovyShell.parse to retrieve an
instance of Script. We then set the variables of the script binding for our three
variables. Note how we can shorten script.binding.someVariable to script.
someVariable because Script implements GroovyObject and overrides its
setProperty method. Once the variables are set, we call the run method, which
executes the script and returns the value of the last statement: the monthly pay-
ment we wanted to calculate in the first place.

 To reuse this formula without having to recompile it, we can reuse the script
instance and call it with another set of values by defining a new binding, rather
than by modifying the original binding as in the first run.

11.2.5 Running scripts or classes

The run methods of GroovyShell can execute both scripts and classes. When a
class is parsed and recognized as extending GroovyTestCase, a text test runner
will run the test case.

 The three main run method signatures can take a String, a File, or an
InputStream to read and execute the script or class, a name for the script, and
an array of Strings for the arguments:

run(String script, String[] args)
run(File scriptFile, String scriptName, String[] args)
run(InputStream scriptStream, String scriptName, String[] args)

The execution of run is a bit different than that of evaluate. Whereas evaluate
evaluates only scripts, run can also execute classes with a main method as well as
unit tests. The following rules are applied:

■ If the class to be run has a main(Object[] args) or main(String[] args)
method, it will be run. Note that a script is a normal Java class that imple-
ments Runnable and whose run method is called by a main method.

Access binding variable
using shorthand

Create new
binding

372 CHAPTER 11
Integrating Groovy
■ If the class extends GroovyTestCase, a JUnit test runner executes it.
■ Otherwise, if the class implements Runnable, it is instantiated with a con-

structor taking a String array, or a default constructor, and the class is run
with its run method.

11.2.6 Further parameterization of GroovyShell

We used the Binding class to pass variables to scripts and to retrieve modified or
new variables defined during the evaluation of the script. We can further config-
ure our GroovyShell instance by passing two other objects in the constructor: a
parent ClassLoader and/or a CompilerConfiguration.

 For reference, here are the constructor signatures available in GroovyShell:

public GroovyShell()
public GroovyShell(Binding binding)
public GroovyShell(Binding binding,
 CompilerConfiguration config)
public GroovyShell(CompilerConfiguration config)
public GroovyShell(ClassLoader parent)
public GroovyShell(ClassLoader parent,
 Binding binding)
public GroovyShell(ClassLoader parent,
 Binding binding,
 CompilerConfiguration config)

Choosing a parent classloader
Groovy uses classloaders to load Groovy classes. The consequence is that you must
have a minimal understanding of how classloaders work when integrating Groovy.
Alas, mastering classloaders is not the most trivial task on a Java developer’s journey.
When you’re working with libraries generating classes or dynamic proxies at runtime
with bytecode instrumentation, or with a complex hierarchy of classloaders to make
critical code run in isolation in a secured sandbox, the task becomes even trickier. It
is important to understand how the hierarchy of classloaders is structured.

 A common use case is represented in figure 11.2.

Figure 11.2
Tree classloader structure

Evaluating expressions and scripts with GroovyShell 373
A class loaded by classloader B can’t be
seen by classloader C. The standard way
classloaders load classes is by first asking
the parent classloader if it knows the class,
before trying to load the class. Classes are
looked up by navigating up the classloader
hierarchy; however, a class loaded by C
won’t be able to see a class loaded by B,
because B is not a parent of C. Fortunately,
by cleverly setting the parent classloader of
C to be B, the problem is solved, as shown
in figure 11.3. This can be done by using
GroovyShell’s constructors, which permits
you to define a parent classloader for the
scripts being evaluated.

 To specify GroovyShell’s classloader, specify the parent classloader to flatten
your hierarchy:

def parentClassLoader = objectFromB.classloader
def shellForC = new GroovyShell(parentClassLoader)

If you have classloader issues, you will get a ClassNotFoundException or, worse still,
a NoClassDefFoundError. To debug these issues, the best thing to do is to print the
classloader for all affected classes and also print each classloader’s parent class-
loader, and so on up to the root of all classloaders. You’ll then have a good picture
of the whole classloader hierarchy in your application, and the final step will be to
set parent classloaders accordingly to flatten the hierarchy—even better, try to
make classes be loaded by the same classloaders if possible.

Configuring the compilation
In the list of constructors of the GroovyShell class, you will have noticed the
CompilerConfiguration parameter. An instance of this class can be passed to
GroovyShell to customize various options of the compilation process. You will
also see how to take advantage of this class with the GroovyClassLoader in a fol-
lowing section.

 Without studying all the options available, let’s review the most useful ones, as
shown in table 11.2.

 Of these methods, setScriptBaseClass is particularly worthy of note. If you
want all of your scripts to share a common set of methods, you can specify a base
class extending groovy.lang.Script that will host these methods and then be

Figure 11.3 Linear classloader structure

374 CHAPTER 11
Integrating Groovy
available inside the scripts. Sharing methods among scripts is a good technique
to inject hooks to your own framework services. Let’s consider a base script class
that extends Script and whose role will be to inject a global multiplication func-
tion5 into all scripts evaluated by GroovyShell:

abstract class BaseScript extends Script {
 def multiply(a, b) { a * b }
}

BaseScript extends Script, which is an abstract class, so the class must be
declared abstract, because the run method is abstract. When compiling or inter-
preting scripts, Groovy will extend this base script and will inject the script’s state-
ments in the run method.

 To make this class the base class of your scripts, you now need to pass a
org.codehaus.groovy.control.CompilerConfiguration instance to GroovyShell’s
constructor, as explained by the following Groovy example:

Table 11.2 The most useful methods in CompilerConfiguration

Method signature Description

setClasspath
(String path)

Define your own classpath used to look for classes, allow-
ing you to restrict the application classpath and/or enhance
it with other libraries

setDebug
(boolean debug)

Set to true to get full, unfiltered stacktraces when excep-
tions are written on the error stream

setOutput
(PrintWriter writer)

Set the writer compilation errors will be printed to

setScriptBaseClass
(String clazz)

Define a subclass of Script as the base class for script
instances

setSourceEncoding
(String enc)

Set the encoding of the scripts to evaluate, which is impor-
tant when parsing scripts from files or input streams that
use a different encoding than the platform default

setRecompileGroovySource
(boolean b)

Set to true to reload Groovy sources that have changed
after they have been compiled—by default, this flag is set
to false

setMinimumRecompilationInterval
(int millis)

Set the minimum amount of time to wait before checking if
the sources are more recent than the compiled classes

5 Multiplication is easy to demonstrate in a book, but real-world examples might include handling
transactional resources, configuration, and logging.

Evaluating expressions and scripts with GroovyShell 375
def conf = new CompilerConfiguration()
conf.setScriptBaseClass("BaseScript")
def shell = new GroovyShell(conf)
def value = shell.evaluate('''
 multiply(5, 6)
''')
assert value == 30

This is not the only way to inject functions in all your scripts. Another trick to
share functions between scripts is to store closures in the binding of GroovyShell
without needing to use CompilerConfiguration. This can be seen in listing 11.9.

def binding = new Binding(multiply: { a, b -> a * b })
def shell = new GroovyShell(binding)
def value = shell.evaluate('''
 multiply(5, 6)
''')
assert value == 30

However, you also need to be able to write the same code in Java, so we must be
able to create closures and put them in the binding. From Java, creating a closure
is not as neat as in Groovy. You must create a class that derives from groovy.
lang.Closure and implement an Object doCall(Object arguments) method. An
alternative technique is to create an instance of org.codehaus.groovy.runtime.
MethodClosure, which delegates the call to a multiplication method on a custom
multiplicator class instance:

// Java
MethodClosure mclos = new MethodClosure(multiplicator, "multiply");
Binding binding = new Binding();
binding.setVariable("multiply", mclos);
GroovyShell shell = new GroovyShell(binding);
shell.evaluate("multiply(5, 6)");

We have now fully covered how GroovyShell can be operated both from Java and
from Groovy to extend your application. GroovyShell is a nice utility class to cre-
ate extension points in your own code and to execute logic that can be external-
ized in scripts stored as strings, on the filesystem, or in a database. This class is
great for evaluating, parsing, or running scripts that represent a single and self-
contained unit of work, but it is less easy to use when your logic is spread across
dependent scripts. This is where the GroovyScriptEngine and GroovyClassLoader
can help. These are the topics of the next two sections.

Listing 11.9 Using the Binding to share functions between scripts

Create closure
within the
binding

Call the closure like
a normal method

376 CHAPTER 11
Integrating Groovy
11.3 Using the Groovy script engine

The GroovyShell class is ideal for standalone and isolated scripts, but it can be
less easy to use when your scripts are dependent on each other. The simplest solu-
tion at that point is to use GroovyScriptEngine. This class also provides the capa-
bility to reload scripts as they change, which enables your application to support
live modifications of your business logic. We will cover the basic uses of the script
engine and show you how to tell the engine where to find scripts.

11.3.1 Setting up the engine

The scripting engine has several constructors to choose from when you instanti-
ate it. You can pass different arguments to these constructors, such as an array of
paths or URLs where the engine will try to find the Groovy scripts, a classloader to
be used as the parent classloader, or a special ResourceConnector that provides
URLConnections. In our examples, we will assume that we are loading and running
scripts from the filesystem:

def engine = new GroovyScriptEngine(".")

or with an array of URLs or of strings representing URLs:

def engine = new GroovyScriptEngine([".", "../folder "])

The engine assumes that strings represent filesystem locations. If your scripts
are to be loaded from somewhere other than the filesystem, you should use
URLs instead:

def engine = new GroovyScriptEngine(
 ["file://.", "http://someUrl"]*.toURL() as URL[])

The engine will search the resource following each URL sequentially until it finds
the script.

 The various constructors can also take a classloader, which will then be used by
the engine for the parent classloader of the compiled classes:

def engine = new GroovyScriptEngine(".", parentCL)

The parent classloader can also be defined with the setParentClassLoader
method.

 Once you have instantiated the engine, you can eventually run your scripts.

Using the Groovy script engine 377
11.3.2 Running scripts

To run a script, the primary mechanism is the run method of GroovyScript-
Engine. This method takes two arguments: the name of the script to run as the rel-
ative path of the file and the binding to store the variables that the script will
need to operate. The method also returns the value of the last expression evalu-
ated by the script, as GroovyShell does.

 For instance, if you intend to run a file named MyScript.groovy situated in the
test folder relative to the current directory, you might run it as shown here:

def engine = new GroovyScriptEngine(".")
def value = engine.run("test/MyScript.groovy", new Binding())

Loaded scripts are automatically cached by the engine, and they are updated
whenever the resource is updated. The engine can also load script classes directly
with the loadScriptByName method; it returns a Class object representing the
class of the script, which is a derived class of groovy.lang.Script. There is a pit-
fall to watch out for with this method, however: It takes a script with a fully qual-
ified class name notation rather than the relative path of the file:

def engine = new GroovyScriptEngine(".")
def clazz = engine.loadScriptByName("test.MyScript")

This example returns the class of the myScript.groovy script situated in the test
folder. If you are not using the filesystem, you will be using URLs instead of files,
and in that case it is mandatory to use a special resource connector that is respon-
sible for loading the resources.

11.3.3 Defining a different resource connector

If you wish to load scripts from a particular location, you may want to provide
your own resource connector. This is done by passing it as an argument to the
constructor of GroovyScriptEngine, either with or without the specification of a
parent classloader. The following example shows both overloaded methods:

def myResourceConnector = getResourceConnector()
def engine = new GroovyScriptEngine(myResourceConnector)
def engine2 = new GroovyScriptEngine(myResourceConnector, parent)

To implement your own connector, you have to create a class implementing the
groovy.util.ResourceConnector interface, which contains only one method:

public URLConnection getResourceConnection(String name)
 throws ResourceException;

378 CHAPTER 11
Integrating Groovy
The getResourceConnection method takes a string parameter representing the
name of the resource to load, and it returns an instance of URLConnection. If you
are also creating your own URLConnection, at least three methods need to be
implemented properly (you could potentially leave the others aside and throw
UnsupportedOperationException or UnknownServiceException, like some JDK
classes from the java.net package do):

public long getLastModified()
public URL getURL()
public InputStream getInputStream() throws IOException

Although usually you’ll store your script on the filesystem or inside a database,
implementing your own ResourceConnector and URLConnection allows you to pro-
vide a handle on scripts coming from any location: from a database, a remote file
system, an XML document, or an object data store.

 GroovyScriptEngine is perfect for dealing with scripts, but it falls short for
more complex manipulation of classes. In fact, both GroovyShell and Groovy-
ScriptEngine rely on a single mechanism for loading scripts or classes: the
GroovyClassLoader. This special classloader is what we will discuss in the follow-
ing section.

11.4 Working with the GroovyClassLoader

The GroovyClassLoader is the Swiss-army knife with all possible tools for inte-
grating Groovy into an application, whether explicitly or via classes such as
GroovyShell. This class is a custom classloader, which is able to define and parse
Groovy classes and scripts as normal classes that can be used either from Groovy
or from Java. It is also able to compile all the required and dependent classes.
Let’s see how you can compile a Groovy class.

 This section will take you through how to use the GroovyClassLoader, from the
simplest uses to more involved situations. We examine how to get around circular
dependency issues, how to load scripts that are stored outside the local filesystem,
and finally how to make your integration environment safe and sandboxed, per-
mitting the scripts to perform only the operations you wish to allow.

11.4.1 Parsing and loading Groovy classes

Say we have a simple Groovy class Hello like the following:

class Hello {
 def greeting() { "Hello!" }
}

Working with the GroovyClassLoader 379
We want to parse and load this class with the GroovyClassLoader. In Groovy, we
can do it like so:

def gcl = new GroovyClassLoader()
Class greetingClass = gcl.parseClass(new File("Hello.groovy"))
assert "Hello!" == greetingClass.newInstance().greeting()

NOTE Instantiating GroovyClassLoader—In our example, we use the default con-
structor. But this class offers more constructors. GroovyClassLoader
(ClassLoader loader) lets you define a parent classloader to avoid
problems with a complex hierarchy, as we explained in the section about
GroovyShell. The constructor GroovyClassLoader(ClassLoader

loader, CompilerConfiguration config) gives you more control over
the behavior of the classloader, as explained in the section about Groovy-
Shell, thanks to the parameterization of CompilerConfiguration.

An instance of GroovyClassLoader is created, and its parseClass method is called
and passed our Hello.groovy file. The method returns a Class object that can then
be instantiated by using Class’s newInstance method, which invokes the default
constructor of Hello. Once Hello is instantiated, because Groovy supports duck
typing, we can directly call the greeting method defined in Hello. However, in a
strongly typed language, you could not directly call the method. So, from Java, to
invoke a method, you have to either use reflection explicitly—which is usually
pretty ugly—or rely on the fact that all Groovy classes automatically implement the
groovy.lang.GroovyObject interface, exposing the invokeMethod, getProperty, and
setProperty methods.

As coined by the dynamic language community, “If it walks like a duck
and quacks like a duck, it must be a duck.” Weakly typed languages usu-
ally let you call any method or access any property on an object, even if
you don’t know at compile-time or even at runtime that the object is of a
known type that contains that method or property. This means you know
the kind of objects you expect will have the relevant signature or prop-
erty. It’s an assumption. If you can call the method or access the property,
it must be the type you were expecting—hence, it’s a duck because it walks
and quacks like a duck!

Duck typing implies that as long as an object has a certain set of
method signatures, it is interchangeable with any other object that has
the same set of methods, regardless of whether the two have a related
inheritance hierarchy.

DUCK
TYPING

380 CHAPTER 11
Integrating Groovy
Whereas getProperty and setProperty are responsible for accessing properties of
your Groovy class from Java, invokeMethod allows you to call any method on
Groovy classes easily from Java:

// Java
GroovyClassLoader gcl = new GroovyClassLoader();
Class greetingClass = gcl.parseClass(new File("Hello.groovy"));
GroovyObject hello = (GroovyObject) greetingClass.newInstance();
Object[] args = {};
assert "Hello!".equals(hello.invokeMethod("greeting", args));

The invokeMethod method takes two parameters: The first one is the name of the
method to call, and the second corresponds to the parameters to pass to the
method we’re trying to call. If the method takes only one parameter, pass it
directly as an argument; otherwise, if several parameters are expected, they have
to be wrapped inside an array of Objects, which becomes the argument. For
instance, if you wish to call a method that adds two objects together with a signa-
ture like add(a,b), you call it like this:

a.invokeMethod("add", new Object[] {obj1, obj2}); // Java

However, if a method you want to call requires an array as its single parameter,
you also have to wrap it inside an array:

a.invokeMethod("takesAnArray", new Object[] {anArray}); // Java

Despite the fact that it is possible to call any method in a Groovy class from Java
with invokeMethod, doing so is not Java-friendly because the Java compiler will
not know these classes exist and will not let you use the greeting method
directly—unless you precompiled your Groovy classes and packed them up
inside a jar file. Fortunately, there is a workaround to circumvent this shortcom-
ing of javac. To make Java understand your Groovy classes, both Groovy and
Java have to find a common ground of agreement. This is what we call the
chicken and egg problem.

11.4.2 The chicken and egg dependency problem

Groovy and Java both have no problem accessing, extending, or implementing
compiled classes or interfaces from the other language. But at the source code
level, neither compiler is really aware of the other language’s source files. If you
want to work seamlessly between the two languages, the trick is to always compile
dependent classes using the appropriate compiler prior to compiling a class that
uses a dependent class.

Working with the GroovyClassLoader 381
 This sounds simple, but in practice, there are many tricky scenarios, such as
compiling a Java file that depends on a Groovy file that depends on a Java file.
Before you know it, you can quickly end up with intricate dependencies crossing
the boundaries of each language. In the best scenario, you may have to alternate
back and forth between the two language compilers until all the relevant classes
are compiled. A more likely scenario is that it will become difficult to determine
which compiler to call when. The worst case scenario—and it’s not uncommon—
occurs when you have circular dependencies. You will reach a deadlock where
neither language will compile because it needs the other language to be com-
piled first.

Example problem
This is the chicken and egg problem: Java classes depending on Groovy classes in
turn depending on Java classes! To solve this puzzle, you can rely on a simple
remedy: depending on Java base classes or interfaces.

 To illustrate the problem, consider the following Java application:

// Java
public class ShapeInfoMain {
 public static void main(String[] args) {
 Square s = new Square(7);
 Circle c = new Circle(4);
 new MaxAreaInfo().displayInfo(s, c);
 new MaxPerimeterInfo().displayInfo(s, c);
 }
}

Suppose that the Square and MaxPerimeterInfo classes are written in Java and the
Circle and MaxAreaInfo classes are written in Groovy. We might be tempted to try
using javac on all the *.java source files followed by groovyc on all the *.groovy
files. However, this won’t work because the displayInfo method in MaxPerimeter-
Info requires Circle to be compiled first. We can’t swap the order around, either,
because we will have the reverse problem with MaxAreaInfo if Square is not com-
piled first.

 The dependencies between the files are shown in figure 11.4.

Removing the dependency cycle
The trick is to first compile Square and Circle using their respective compilers.
Next, compile MaxAreaInfo and MaxPerimeterInfo. Finally, compile ShapeInfo-
Main. Usually, using an interface written in Java is the easiest way to make these
dependencies less cumbersome. In our example, Circle and Square should both

382 CHAPTER 11
Integrating Groovy
implement Shape, whereas MaxPerimeterInfo and MaxAreaInfo should implement
ShapeInfo. Adding these interfaces results in the dependencies illustrated in fig-
ure 11.5.

 Listing 11.10 shows what the Circle class might look like, implementing the
Shape interface.

import common.Shape

class Circle implements Shape {
 double radius
 Circle(double radius) { this.radius = radius }
 double area() { return Math.PI * radius ** 2 }
 double perimeter() { return 2 * Math.PI * radius }
}

Listing 11.10 Groovy class implementing a Java interface

Figure 11.4
Java class with a direct
dependency on Groovy classes

Java interface
implemented in Groovy

Implement the
methods of the
interface

Working with the GroovyClassLoader 383
The following is what MaxAreaInfo might look like. This time, we’re implement-
ing the ShapeInfo interface:

import common.Shape
import common.ShapeInfo

class MaxAreaInfo implements ShapeInfo {
 void displayInfo(Shape s1, Shape s2) {
 print "The shape with the biggest area is: "
 println s1.area() > s2.area() ? s1.class.name :
 s2.class.name
 }
}

Building the solution in phases
Once the work of decoupling the concrete types from their interfaces is done, the
Java compiler will be able to compile the Java classes first, and then groovyc will
be able to compile the Groovy classes. It is a good practice to divide such a code-
base into three modules: the Java code, the Groovy code, and the shared Java
interfaces. The shared interfaces need to be compiled first. After that, you can
javac the Java code and groovyc the Groovy code in either order.

 Until the Java compiler is aware of classes not yet compiled in other lan-
guages, you have to use intermediary interfaces or abstract classes in Java to make

Figure 11.5
Java classes and interfaces with Groovy
implementations of the interfaces

384 CHAPTER 11
Integrating Groovy
the interaction between Java and Groovy smoother during the compilation pro-
cess. Let’s hope some day the Java compilers will provide hooks for interacting
with foreign compilers of alternative languages for the JVM.

 In the meantime, we usually compile scripts and classes found on the filesys-
tem of our computer; your sources may lie on a different medium—that’s par-
ticularly true when you are embedding Groovy in your application. A common
scenario is when your sources are stored inside a database. In that case, you will
have to provide your own resource loader to the GroovyClassLoader in the form
of an instance of GroovyResourceLoader, as explained in the following section.

11.4.3 Providing a custom resource loader

The GroovyClassLoader has various methods to let you parse and load Groovy
classes from different origins: from a file, from an input stream, or from a string.
Here are a few of the methods to explicitly ask the classloader to load a given class:

public Class parseClass(File file)
 throws CompilationFailedException
public Class parseClass(String text, String fileName)
 throws CompilationFailedException
public Class parseClass(InputStream in, String fileName)
 throws CompilationFailedException

If you are storing your sources in a database, a possible solution is to retrieve them
as a String or as an InputStream. Then, you can use the classloader’s parseClass
methods to parse and load your classes. But rather than explicitly implementing
the plumbing and the lookup and parsing yourself, Groovy provides a better solu-
tion, in the form of a groovy.lang.GroovyResourceLoader. The resource loader is
an interface that you have to implement to specify where your sources are to be
found: Give it a name of a resource, and a URL is returned that points at the loca-
tion of the resource. This is done by a single method from that interface:

URL loadGroovySource(String filename) throws MalformedURLException

An implementation of the resource loader in Java will look something like the fol-
lowing class:

public class MyResourceLoader extends GroovyResourceLoader {
 public URL loadGroovySource(final String filename)
 throws MalformedURLException {
 URL url = ... // create the URL pointing at the resource
 return url;
 }
}

Working with the GroovyClassLoader 385
NOTE Extending URL and URLConnection—As was the case with GroovyScript-
Engine, if you are creating your own URL and URLConnection derived
classes, make sure your URL overrides its openConnection method, which
returns an instance of URLConnection; and make sure you also override
the getLastModified, getURL, and getInputStream methods of the
returned URLConnection.

Once you have defined this class, you have to register it in your classloader
before use:

GroovyClassLoader gcl = new GroovyClassLoader();
gcl.setResourceLoader(new MyResourceLoader());

Your classloader will now use your resource loader to find the resources it needs
from wherever you want! At this point, you may find that you have less control
than you like over what code is executed. You may need to lock down how much
access the code has to the rest of the system, depending on how much you know
about the code’s origins. This is where the Java and Groovy security model come
into play, as you’ll see in the next section.

11.4.4 Playing it safe in a secured sandbox

When packaging an application, you know all your source code is trusted. When
you open the doors for some dynamic code that might evolve over time, such as
changing business rules due to a legislation change, you have to be sure that this
code can be trusted too. Only trusted users should be able to change the
dynamic code by logging in and providing the relevant credentials. But even
with authentication and authorization in place, you’re never sheltered against
human mistakes. That is why Groovy provides a second level of confidence in
dynamic code in the form of a secured sandbox that you can set up to load this
foreign code.

 Modifying, loading, and executing dynamic code at runtime is a nice way to
extend your application in an agile way, lessening the time required to adapt it as
necessary. Long and tedious repackaging, requalifying, and redeployment sce-
narios can vanish in no time. This is not a subject to take lightly, and of course,
you will always have to hand over your application to the acceptance team and
pass the relevant integration tests; but embedding code from a scripting lan-
guage in your application can help you to be more versatile when the require-
ments are changing.

386 CHAPTER 11
Integrating Groovy
The Java security model
However cool embedding a scripting or dynamic language can be, and however
well designed your system is in terms of security, you can potentially add another
layer of trust by letting this code run in a secured sandbox. Java provides the
infrastructure for securing source code through its security model with the help of
a security manager and the associated policy that dictates what permissions are
granted to the code. For a simple example of what harm can happen to your
application, imagine a user uploads a script containing System.exit(1): Your
whole system could go down in a second if it’s not secured correctly! Fortunately,
with some setup, it is possible to protect yourself from such malicious code.

Covering the whole Java security model with its security managers, per-
missions, and policy files is beyond the scope of this chapter. We assume
that you are already familiar with these concepts. If this is not the case, we
recommend that you look at the online resources provided on Sun’s web
site to get an in-depth view of how security works on the Java platform.

In the Java security model, code sources are granted permissions according to
their code source. A code source is composed of a codebase in the form of a URL
from which the source code was loaded by the classloader, and potentially a cer-
tificate used to verify the code when it is obtained from a signed jar file.

 There are two cases you have to consider. If all your Groovy sources are com-
piled first into .class files and eventually bundled in a jar file, the standard secu-
rity mechanisms apply. Those classes are like normal Java compiled sources, so
you can always use the same security managers as normal. But when you are com-
piling Groovy sources on the fly, through the various integration means we have
studied so far, extra steps need to be followed.

GroovyCodeSource and the security manager
When scripts and classes are loaded from the filesystem, they are loaded by a
GroovyClassLoader, which searches the classpath for Groovy files and gives them a
code source constructed from a codebase built from the URL of the source file.
When Groovy sources are loaded from an input stream or from a string, no par-
ticular URL is associated with them. However, it is possible to associate a codebase
with Groovy sources to be compiled by specifying a GroovyCodeSource—as long as
the caller loading sources has the permission to specify the codebase. The code-
base you associate with the sources need not refer to a real physical location. Its
importance is to the security manager and policy, which allocate permissions
based on URLs.

JAVA
SECURITY

Working with the GroovyClassLoader 387
 A concrete example is always better than long explanations. Say we are run-
ning an application on a server, and this application loads Groovy scripts that
need to be sandboxed and should only be allowed to access the file.encoding
system property. The server application should have all possible permissions;
however, we have to restrict the loaded Groovy script reading the property. We
write a policy file explicitly indicating those rules:

grant codeBase "file:${server.home}/classes/-" {
 permission java.security.AllPermission;
};

grant codeBase "file:/restricted" {
 permission java.util.PropertyPermission "file.encoding", "read";
};

The first part grants all permissions to our server application, whereas the second
part only allows the scripts from the file:/restricted codebase to access the
file.encoding property in read-only mode. This policy file should be available in
the classpath of the application, and the system property java.security.policy
defining the policy file to use should be specified either on the command line
that launches the JVM or in code.

 A script requesting to read the system property would include code such as:

def encoding = System.getProperty("file.encoding")

Your server application will load and evaluate the script using GroovyShell,
using the methods that take a GroovyCodeSource to wrap the script and define its
code source:

def script = '''
 System.getProperty("file.encoding")
'''
def gcs = new GroovyCodeSource(script, "ScriptName", "/restricted")
def shell = new GroovyShell()
println shell.evaluate(gcs)

A GroovyCodeSource can be built in various ways depending on how you retrieve
the source code: from a string, a file, an input stream, or a URL. Here are the four
constructors that allow you to build a GroovyCodeSource:

public GroovyCodeSource(String script, String name, String codeBase)
public GroovyCodeSource(InputStream inputStream, String name,
 String codeBase)
public GroovyCodeSource(File file) throws FileNotFoundException
public GroovyCodeSource(URL url) throws IOException

In order for the calling application to be able to create a GroovyCodeSource with a
specific codebase, it must be granted permission by the policy. The specific

388 CHAPTER 11
Integrating Groovy
permission required is a groovy.security.GroovyCodeSourcePermission, which the
calling application implicitly has because the policy file granted it the java.security.
AllPermission, which grants all possible rights.

GroovyShell and GroovyClassLoader with GroovyCodeSource
Both GroovyShell and GroovyClassLoader allow you to specify GroovyCodeSources to
wrap scripts or classes that must be secured—but GroovyScriptEngine doesn’t at the
time of writing. If the Groovy source code is not wrapped inside a GroovyCodeSource,
the policy will not be enforced, thus letting untrusted code run within the application.

 In the sections related to GroovyShell and GroovyClassLoader, we enumerated
several methods that allow you to evaluate, parse, or run Groovy scripts and
classes. Let us mention now the methods that take a GroovyCodeSource, which you
can use to make integrating dynamic code safer.

 GroovyShell has two methods that take a GroovyCodeSource, one for evaluating
scripts, and the other for parsing scripts:

public Object evaluate(GroovyCodeSource codeSource)
 throws CompilationFailedException
public Script parse(GroovyCodeSource codeSource)
 throws CompilationFailedException

GroovyClassLoader also has two methods; both parse classes, but the latter also
provides an option to control whether the parsed class should be put in the class-
loader cache:

public Class parseClass(GroovyCodeSource codeSource)
 throws CompilationFailedException
public Class parseClass(GroovyCodeSource codeSource,
 boolean shouldCache)
 throws CompilationFailedException

Armed with different means of integrating Groovy securely in your application, you
can build extremely flexible applications. Of course, those mechanisms are specific
to Groovy. These aren’t the only means available, however. If you are using the
Spring framework as a common base for your application, or if you are living on
the edge and already using the pre-release builds of the next generation Java
platform (JDK 6.0—Mustang), you can use the mechanisms provided in these
platforms to load your dynamic code in a way that would make it easy to move
away from Groovy, should you ever wish to.6

6 Not that we can think of any reason why you’d want to, but we like the principle of avoiding vendor
lock-in where possible.

Spring integration 389
11.5 Spring integration

As it says on the tin, Spring is an innovative layered Java/J2EE application frame-
work and lightweight container invented by Rod Johnson, which matured while
Rod was writing the book Expert One-on-One J2EE Design and Development. Spring
generalized the concepts and patterns of Inversion of Control (IoC) and Dependency
Injection (DI) and is built from two main building blocks: its IoC container and its
Aspect Oriented Programming (AOP) system. The framework brings an additional
abstraction layer that wraps common APIs such as transactions, JDBC, or Hiber-
nate to help the developer focus on the core business tasks; gives access to AOP;
and even provides its own Model View Controller (MVC) technology. The Spring
framework can be used as a whole or piece by piece as needs arise.

 Spring lets you wire your application components through dependency injec-
tion by instantiating, configuring, and defining the relationships between your
objects in a central XML configuration file. Your objects are usually Plain Old Java
Objects (POJOs), but they can also be Plain Old Groovy Objects (POGOs) because
Groovy objects are also standard JavaBeans! This section explores how you can
inject Groovy dependencies in your application object model, with options for
letting beans refresh themselves automatically and specifying the bodies of scripts
directly in the configuration file.

 Spring 2.0 introduces support for integrating beans written in various script-
ing languages. Spring supports Groovy, BeanShell, and JRuby—some of the best
known and proven scripting languages for the JVM. With this support, any num-
ber of classes written in these languages can be wired and injected in your appli-
cation as transparently as if they were normal Java objects.

NOTE Spring Framework documentation—It is beyond the scope of this section to
explain how Spring can be installed, used, or configured. We are assum-
ing that the interested reader is already familiar with the framework. If
this is not the case, the creators of Spring have comprehensive and
detailed online documentation at http://www.springframework.org/doc-
umentation that should be ideal for discovering what it is all about.

We will explain how you can wire up POGOs in Spring, discuss reloading Groovy
source code on the fly, and finally cover how Groovy source can be specified
directly in the configuration file, where appropriate. Let’s start with the simplest
situation before working our way toward more complicated scenarios.

390 CHAPTER 11
Integrating Groovy
11.5.1 Wiring GroovyBeans

Let’s take the shape information classes from section 11.4 as an example.
 We are going to use Spring’s bean factory to create the Groovy objects that our

main program needs. All the definitions for our class are captured declaratively
in a Spring configuration file, sometimes referred to as a wiring XML file. This is
illustrated in figure 11.6.

 We would normally wire both Java and Groovy classes in the wiring file and
also indicate the dependencies between the different parts of our system in this
file. In this case, though, we are going to keep it simple. We are going to specify
simple definitions in the file to illustrate integration between Spring and Groovy.
For now, we assume that all of our Groovy files are precompiled.

 Here is what the Spring definition file, called beans.xml in our case, looks like:

<?xml version="1.0" encoding="UTF-8"?>
<beans>
 <bean id="circle" class="spring.groovy.Circle">
 <constructor-arg value="4"/>
 <property name="color" value="Black"/>
 </bean>
 <bean id="maxareainfo" class="spring.groovy.MaxAreaInfo"/>
</beans>

In our Groovy source file, we have the same constructor that we had previously,
and we have also added a color property to our Circle class. In the Spring defi-
nition file, the nested constructor element indicates the value to pass to the con-
structor during creation of our Circle. The property element indicates that the
color property should also be set as part of initialization. To make use of these
definitions, we need to change our main method in ShapeInfoMain to become

Figure 11.6
Spring’s BeanFactory reads an XML
configuration file and creates instances
of the JavaBeans and GroovyBeans
specified within it.

Spring integration 391
try {
 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("beans.xml");
 Shape s = new Square(7);
 Shape c = (Shape) ctx.getBean("circle");
 ShapeInfo info = (ShapeInfo) ctx.getBean("maxareainfo");
 info.displayInfo(s, c);
 new MaxPerimeterInfo().displayInfo(s, c);
} catch (Exception e) {
 e.printStackTrace();
}

Spring provides a number of mechanisms to create beans for you. In this
instance, we use what is called the application context. It has a getBean method that
allows us to ask for a bean by name.

 As we mentioned earlier, we are assuming here that all of our Groovy classes
are precompiled. So, what have we gained? We have begun the process of remov-
ing explicit dependencies from our codebase. Over time, we could start moving
more dependency information into the wiring file and allow our system to be con-
figured more readily. As a consequence, our design also becomes more flexible,
because we can swap our concrete implementations readily. This is particularly
important for unit testing, where we might replace concrete implementations
with mock implementations.

 There is more we can do, though: Spring supports dynamic compilation of
our Groovy scripts through a special Groovy factory class. Here is how we would
use it. We would extend our bean configuration file as follows:

…
<lang:groovy id="maxareainfo2"
 script-source="classpath:MaxAreaInfo.groovy">
 <lang:property name="prefix" value="Live Groovy says" />
</lang:groovy>
…

Spring 2.0 supports a number of dynamic scripting languages through special
language-specific factories. The namespace lang:groovy accesses the special
Groovy factory automatically. Now we can use maxareainfo2 as the name we pass
to the bean factory when creating our bean, and Spring will automatically com-
pile the necessary Groovy source files.

 Note that unlike the previous wiring file, which could mix setter and constructor-
based injection, at the time of writing, only setter-based injection is supported
when using the lang:groovy mechanisms.

392 CHAPTER 11
Integrating Groovy
11.5.2 Refreshable beans

Another feature that Spring provides is the ability to dynamically detect when
Groovy source files change and automatically compile and load the latest version
of any Groovy file during runtime. The concept is known as refreshable beans and is
enabled in our definition file using the refresh-check-delay attribute as follows
(in this case, setting the delay to five seconds):

…
<lang:groovy id="maxareainfo2"
 refresh-check-delay="5000"
 script-source="classpath:MaxAreaInfo.groovy">
 <lang:property name="prefix" value="Live Groovy says" />
</lang:groovy>
…

Refreshing beans on the fly can make development faster, but you should con-
sider disabling it again for production systems—restarting the system after a
change has been made tends to avoid confusing situations where for some period
of time (however brief) only part of the system has seen the refresh.

11.5.3 Inline scripts

Although it’s arguably a bad idea to put code inside Spring’s configuration file,
Spring offers another way to define scripted beans by inlining them—including
the source directly in the configuration file. The Spring documentation mentions
some scenarios for such a case, such as sketching and defining validators for
Spring MVC controllers or scripting controllers for quick prototyping or defining
logic flow.

 In listing 11.11, we inline a variation of MaxAreaInfo (we need to change our
factory getBean call to use maxareainfo3).

<lang:groovy id="maxareainfo3">
 <lang:inline-script>
 import spring.common.Shape
 import spring.common.ShapeInfo

 class SuffixMaxAreaInfo implements ShapeInfo {
 String suffix
 void displayInfo(Shape s1, Shape s2) {
 print "The shape with the biggest area is: "
 if (s1.area() > s2.area()) println s1 + ":" + suffix
 else println s2 + ":" + suffix
 }

Listing 11.11 Spring configuration with inline Groovy class

Tell Spring we’re using Groovy
Define the class we
want an instance of

Riding Mustang and JSR-223 393
 }
 </lang:inline-script>
 <lang:property name="suffix"
 value="Did you guess correctly?"/>
</lang:groovy>

In this case, because the content is hard-coded, setting the refreshable attribute
of the script factory doesn’t apply for those inline scripted beans. One last
remark: If your script contains a less-than sign (<), the XML Spring configura-
tion will be invalid, because the XML parser will think it is the start of a new
tag. To circumvent this problem, you should wrap the whole scripted bean in a
CDATA section.

 This has been a brief introduction to the scripting bean capabilities of
Spring 2.0. For further details and more in-depth explanations, we suggest you
refer to the project documentation available at http://www.springframework.org.

 Spring isn’t the only recent technology to embrace scripting, however. The fol-
lowing section looks forward to the next release of the Java platform and explores
what support will be provided for Groovy integration.

11.6 Riding Mustang and JSR-223

Scripting and dynamic languages are in fashion again thanks to Groovy, Asyn-
chronous JavaScript And XML (AJAX) as popularized by Google, and the Ruby on
Rails web framework. This frenzy led Sun to recognize that for certain tasks,
scripting languages can help to simplify the development of applications. New
Java Specification Requests have been accepted by the Java Community Process
to standardize languages such as Groovy and BeanShell, and to create a common
API allowing access to various scripting engines from your Java applications.

 This section guides you through running Groovy scripts in the new “Java stan-
dard” way, highlighting the features of the new API as well as some ways in which
it is unavoidably clunky.

11.6.1 Introducing JSR-223

JSR-223, titled “Scripting for the Java Platform,” provides a set of classes and
interfaces used to hold and register scripting engines and to represent scripts,
namespaces of key/value pairs available to scripts, or execution contexts. Like all
JSRs, JSR-223 provides three key deliverables: a specification document, a refer-
ence implementation (RI) implementing the specification, and a test compatibility

Specify a bean
property

394 CHAPTER 11
Integrating Groovy
kit that can be used to check that the specification is accurately and fully imple-
mented. The RI is already usable and can be downloaded from the dedicated web
site as long as you are using at least Java 5. It offers an elegant and simple API that
supports a few scripting languages—Groovy being one of them. Out of the box,
the RI doesn’t provide the runtime environments of those engines except for
Rhino’s JavaScript, so in order to use the Groovy engine, you will have to down-
load Groovy and its JSR-223 engine from http://scripting.dev.java.net. A disad-
vantage of the RI is that it might not always be in sync with Mustang’s scripting
APIs, so you will have to check the potential differences in the APIs. Here, we’ll
focus on the ones delivered by Mustang, rather than the RI. But if you need to use
the latest javax.script.* classes from Mustang, it will also mean you must
develop and deploy your applications with JDK 6, whereas the RI allows you to
use JDK 5.

 Before studying what JSR-223 brings to the table, we should mention that this
API is particularly important because it is included by default in Mustang, the next
version of the Java Platform—Java SE 6. This means that scripting finds its way in
the JDK and will certainly become the preferred way for integrating scripting lan-
guages in your applications. This is also why we haven’t covered the use of Apache
Bean Scripting Framework (BSF), because although it provides a similar API in
terms of functionality, it will progressively be abandoned in favor of JSR-223.

 Mustang already provides support for the new javax.script.* interfaces and
classes. It also distributes a new command-line tool called jrunscript to run
scripts, which is a bit like Groovy’s own groovy and groovysh commands. Here is
the usage of this new tool:

Usage: jrunscript [options] [arguments...]
where [options] include:
-classpath, -cp <path> Specify where to find user class files
-D<name>=<value> Set a system property
-J<flag> Pass <flag> directly to the runtime system
-l <language> Use specified scripting language
-e <script> Evaluate given script
-encoding <encoding> Specify character encoding used by script files
-f <script file> Evaluate given script file
-f - Interactive mode, read script from
 standard input
-q List all scripting engines available and exit

Although the command line enables you to execute Groovy through the new API
without writing any code to do so, if your application is going to embed Groovy,
you’ll be using the API directly rather than relying on the tool. Let’s meet the core
classes involved in running scripts through JSR-223.

Riding Mustang and JSR-223 395
11.6.2 The script engine manager and its script engines

The main entry point of the JSR-223 API is javax.script.ScriptEngineManager.
To get started, create an instance of this class from your Java application:

ScriptEngineManager manager = new ScriptEngineManager();

The manager is able to retrieve script engines through different lookup mecha-
nisms: by file extension, by mime type, or by name, with three dedicated methods:

ScriptEngine getEngineByExtension(java.lang.String extension)
ScriptEngine getEngineByMimeType (java.lang.String mimeType)
ScriptEngine getEngineByName (java.lang.String shortName)

So, if you want to retrieve the Groovy script engine supplied with the reference
implementation, you can look it up by name:

ScriptEngine gEngine = manager.getEngineByName("groovy");

With a ScriptEngine, you can evaluate Groovy expressions and scripts provided
through an instance of Reader or of a String with the set of eval methods, which
return an Object as the result of the evaluation. You can evaluate a simple expres-
sion as follows:

ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine gEngine = manager.getEngineByName("groovy");
String result = (String)gEngine.eval("'+-----' * 3 + '+'");

Here are the other eval methods available:

Object eval(java.io.Reader reader)
Object eval(java.io.Reader reader, Bindings b)
Object eval(java.io.Reader reader, ScriptContext context)
Object eval(java.lang.String script)
Object eval(java.lang.String script, Bindings b)
Object eval(java.lang.String script, ScriptContext context)

They can throw a ScriptException, which can contain a root exception cause, a
message, a filename, and even a line number and column number where an error
occurred, particularly when the error is a compilation error. The optional
ScriptContext parameters correspond to the environment within which a script is
evaluated, and a Bindings is a special map containing an association between a
key and an object you want to pass to your scripts. These affect what information
is available to your scripts and how different scripts can pass each other data. See
the detailed JSR-223 documentation for more information on this topic.

396 CHAPTER 11
Integrating Groovy
11.6.3 Compilable and invocable script engines

Beyond the basic script-evaluation capabilities, the Groovy engine also implements
two other interfaces: javax.script.Compilable and javax.script.Invocable. The
first lets you precompile and reuse scripts, and the latter lets you execute a
method, a unit of execution, rather than executing a whole script as you do with
the eval method. Implementing these interfaces is not mandatory, but the
Groovy engine provides this feature:

// Java
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine gEngine = manager.getEngineByName("groovy");
Compilable compilable = (Compilable)gEngine;
compilable.put("name", "Dierk");
CompiledScript script = compilable.compile("return name");
String dierksName = script.eval();
compilable.put("name", "Guillaume");
String guillaumesName = script.eval();

Once you’ve got a handle on the Compilable engine (by casting the engine to the
Compilable interface), you can call two compile methods that either take a reader
or a string containing the script to precompile. These methods return an instance
of CompiledScript, which holds a precompiled script that you can execute several
times at will without the need to reparse or recompile it. Then, the Compiled-
Script can be evaluated with three eval methods: one without any parameters,
one taking a Namespace, and the last taking a ScriptContext.

 Even after precompiling a script, you still can’t directly call methods declared
in that script. The javax.script.Invocable interface makes this possible in a
manner reminiscent of calling normal Java methods with reflection.

 Imagine we have a script whose role is to change a string parameter into its
uppercase representation:

// Java
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine gEngine = manager.getEngineByName("groovy");

Invocable invocable = (Invocable)gEngine;
invocable.eval("def upper(s) { s.toUpperCase() }");
Object s = invocable.invokeFunction("upper", "Groovy");

invocable.eval("def add(a, b) { a + b }");
invocable.invokeFunction("add", new Integer(1), new Integer(2));

assertTrue(invocable.invokeMethod(s, "endsWith", "Y"));

Riding Mustang and JSR-223 397
The script is evaluated and retained in the script-execution context; then, the
defined function can be called with the invokeFunction method, which takes the
name of the function to call and a vararg list of objects to pass to the underlying
scripted function as parameters. Be careful, though, because you can only invoke
functions defined in the last evaluated script. An invokeMethod method goes fur-
ther and lets you call arbitrary methods on objects resulting from the execution of
scripts. This is how we call the endsWith method on the string returned by the first
function invoked and pass it the letter Y as an argument.

 Of course, in the last case, we could have cast the return value of upper to
String directly. Although this may seem obvious, it’s possible because Groovy
plays nicely with Java, returning real and normal classes. Some other scripting
languages would return some kind of proxy or wrapper, making the integration
with Java trickier.

 Despite the convenience of being able to call any function defined in a script,
it is not yet as Java friendly as we might hope. Nevertheless, the Invocable inter-
face gives you another handy method for your toolbox: the getInterface
method. With this method, you can create a proxy of a given interface that will
delegate all method invocations to methods defined in the script.

 Say we have a Java interface representing a business service like the follow-
ing one:

// Java
interface BusinessService {
 void init();
 Object execute(Object[] parameters);
 void release();
}

We create a script that contains functions mapping the same signatures as the
ones provided in the BusinessService interface:

// Groovy
void init() { println "init" }
Object execute(Object[] objs) { println "execute" }
void release() { println "release" }

We can make such a script appear to implement the BusinessService interface by
calling the getInterface method of the invocable script engine:

// Java
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine gEngine = manager.getEngineByName("groovy");
Invocable invocable = (Invocable)gEngine;
invocable.eval(scriptAsAString);

398 CHAPTER 11
Integrating Groovy
BusinessService service =
 invocable.getInterface(BusinessService.class);

service.init();
Object result = service.execute(new Object[] {});
service.release();

First, we evaluate the script shown earlier, then we call the getInterface method
with the class of the implementation we want our script to implement, and then
we retrieve an instance implementing that interface. Our script doesn’t even have
to explicitly implement the BusinessService interface, but through the proxy
mechanism, it appears as if it were the case. With such a mechanism, you can
manipulate scripts as if they were normal Java beans, without having to call some
kind of invoke method.

 You now know about the native Groovy techniques to integrate Groovy in your
Java application and the more language-neutral solutions using Spring or
JSR-223. The great thing about this is that it presents you with a choice. The
downside is that you need to make a decision, so we provide some guidance in the
last section of this chapter.

11.7 Choosing an integration mechanism

This section is similar to the first one in the chapter, in that we can’t make any
decisions for you. Good guidance tends to be right more than it’s wrong, but
there will always be cases that appear to fit one pattern but that benefit more
from another after close examination. We don’t know what your needs are, so we
can’t make that close examination. All we can do is give suggestions and reasons
for them.

 To give a good rule of thumb, if your application is built on Spring, you
should prefer using the Spring integration. If you are able to use Java 6 and want
to be able to change or mix various scripting languages at the same time, or you
have the freedom to change at will, using the scripting integration of JSR-223
makes perfect sense. But if you want to do more advanced things or if you are
concerned about the potential security hole opened by dynamic code, you
should probably choose some of the standard Groovy mechanisms for embed-
ding and executing Groovy code with GroovyShell, GroovyScriptEngine, or the
almighty GroovyClassLoader. Table 11.3 shows a summary of the pros and cons
of each integration mechanism.

 The basis of Groovy’s integration is its excellent compatibility with Java. We’ve
listed the most common ways of integrating Groovy with Java, but anywhere that

Summary 399
Java can be integrated, Groovy can work too. Some databases allow stored proce-
dures to be written in Java, for instance—so Groovy can be used in the same way.
Additional integration mechanisms may well appear over time in various
guises—don’t assume that the options given here are exhaustive!

11.8 Summary

This chapter has given you glimpses into how you might allow your applications
to become more flexible, giving appropriate users the ability to customize
behavior in a way that may enable them to solve the exact problem they are fac-
ing, rather than the one that was as close as you could imagine when designing
the application.

 The means of integrating Groovy into your application broadly fall into two
camps: those provided directly by the Groovy libraries and those provided in a
language-neutral fashion by Spring and Java 6 through JSR-223. As is often the
case, the more specific solutions prove to be the most powerful ones, at the cost of
language neutrality.

Table 11.3 The sweet spots and limitations of the different integration mechanisms

Mechanism Sweet spot Limitations

GroovyShell Perfect for single-line user input and
small expressions

Supports reloading
Robust security available

Will not scale to dependent scripts

GroovyScriptEngine Nice for dependent scripts
Supports reloading

Does not support classes
Does not support security

GroovyClassLoader Most powerful integration mechanism
Supports reloading
Robust security available

Trickier to handle in the case of
a complex classloader hierarchy

Spring scripting support Integrates well with Spring
Lets you switch languages easily
Supports reloading

Requires Spring

JSR-223 Lets you switch languages easily Requires Java 6
Does not support security
Does not support reloading

Bean Scripting
Framework

Lets you switch languages easily
Doesn’t require Java 6

Does not support security
Does not support reloading
More limited capabilities than

JSR-223

400 CHAPTER 11
Integrating Groovy
 As bookends to the chapter, we discussed the kinds of applications that benefit
from this sort of integration and gave some guidance as to which integration
mechanism might be best for your situation.

 Scripting languages in one form or another have always been common on var-
ious systems, from DOS’s command shell to the widespread Perl on many Unix
and Linux systems. They give a good return on investment because of their ease
of use and because they do what you need them to do with less deployment over-
head and reduced boilerplate code. But they have often failed to become general-
purpose languages for building enterprise applications. With scripting languages
coming to a JVM near you, you can benefit from the advantages of both worlds:
You can build big and scalable enterprise applications while still using scripting
languages for the customization logic, allowing you to profit from their agility
through their expressiveness and advanced power features.

Working with XML
Perfection is achieved not when you have noth-
ing more to add, but when you have nothing
left to take away.

—Antoine de Saint-Exupery
401

402 CHAPTER 12
Working with XML
XML, the eXtensible Markup Language, is a reasonably young innovation. It’s just
becoming a teenager, but we use it so commonly these days that it’s hard to believe
there were times without it. The World Wide Web Consortium (W3C) standardized
the first version of XML in 1996.

 The widespread use of XML and worldwide adoption of Java took place at
about the same time. This may be one of the reasons why the Java platform devel-
oped such excellent support for working with XML. Not only are there the built-in
SAX and DOM APIs, but many other libraries have appeared over time for parsing
and creating XML and for working with it using standards such as XPath.

 The topic of XML has the unusual property of being simple and complex at
the same time. XML is straightforward until you bring in namespaces, entities,
and the like. Similarly, although it’s feasible to demonstrate one way of working
with XML fairly simply, giving a good overview of all (or even most) of the ways of
working with XML would require more space than we have in this book. We will
concentrate on the new capabilities that Groovy brings, as well as mention the
enhanced support for the DOM API. Even limiting ourselves to these topics
doesn’t let us explore every nook and cranny.

 This chapter is broadly divided into three parts. First, you’ll see the different
techniques available for parsing XML in Groovy. Second, you will learn some tricks
about processing and transforming XML. Finally, we will examine the Groovy sup-
port for web services—one of the most common uses of XML in business today.

 We assume you already have a reasonable understanding of XML. If you find
yourself struggling with any of the XML concepts we use in this chapter, please
refer to one of the many available XML books.1

 XML processing typically starts with reading an XML document, which is our
first topic.

12.1 Reading XML documents

When working with XML, we have to somehow read it to begin with. This sec-
tion will lead you through the many options available in Groovy for parsing
XML: the normal DOM route, enhanced by Groovy; Groovy’s own XmlParser
and XmlSlurper classes; SAX event-based parsing; and the recently introduced
StAX pull-parsers.

1 We recommend XML Made Simple by Deane and Henderson (Made Simple, 2003) as an introductory
text and XML 1.1 Bible by Elliotte Rusty Harold (Wiley, 2004) for more comprehensive coverage.

Reading XML documents 403
 Let’s suppose we have a little datastore in XML format for planning our
Groovy self-education activities. In this datastore, we capture how many hours per
week we can invest in this training, what tasks need to be done, and how many
hours each task will eat up in total. To keep track of our progress, we will also
store how many hours are “done” for each task.

 Listing 12.1 shows our XML datastore as it resides in a file named data/
plan.xml.

<plan>
 <week capacity="8">
 <task done="2" total="2" title="read XML chapter"/>
 <task done="3" total="3" title="try some reporting"/>
 <task done="1" total="2" title="use in current project"/>
 </week>
 <week capacity="8">
 <task done="0" total="1" title="re-read DB chapter"/>
 <task done="0" total="3" title="use DB/XML combination"/>
 </week>
</plan>

We plan for two weeks, with eight hours for education each week. Three tasks are
scheduled for the current week: reading this chapter (two hours for a quick
reader), playing with the newly acquired knowledge (three hours of real fun), and
using it in the real world (one hour done and one still left).

 This will be our running example for most of the chapter.
 For reading such a datastore, we will present several different approaches: first

using technologies built into the JRE, and then using the Groovy parsers. We’ll
start with the more familiar DOM parser.

12.1.1 Working with a DOM parser

Why do we bother with Java’s classic DOM parsers? Shouldn’t we restrict ourselves
to show only Groovy specifics here?

 Well, first of all, even in Groovy code, we sometimes need DOM objects for fur-
ther processing, for example when applying XPath expressions to an object as we
will explain in section 12.2.3. For that reason, we show the Groovy way of retriev-
ing the DOM representation of our datastore with the help of Java’s DOM parsers.
Second, there is basic Groovy support for dealing with DOM NodeLists, and
Groovy also provides extra helper classes to simplify common tasks within DOM.

Listing 12.1 The example datastore data/plan.xml

mailto:node.@attributeName

404 CHAPTER 12
Working with XML
Finally, it’s much easier to appreciate how slick the Groovy parsers are after hav-
ing seen the “old” way of reading XML.

 We start by loading a DOM tree into memory.

Getting the document
Not surprisingly, the Document Object Model is based around the central
abstraction of a document, realized as the Java interface org.w3c.dom.Document. An
object of this type will hold our datastore.

 The Java way of retrieving a document is through the parse method of a
DocumentBuilder (= parser). This method takes an InputStream to read the XML
from. So a first attempt of reading is

def doc = builder.parse(new FileInputStream('data/plan.xml'))

Now, where does builder come from? We are working slowly backward to find a
solution. The builder must be of type DocumentBuilder. Instances of this type are
delivered from a DocumentBuilderFactory, which has a factory method called
newDocumentBuilder:

def builder = fac.newDocumentBuilder()
def doc = builder.parse(new FileInputStream('data/plan.xml'))

Now, where does this factory come from? Here it is:

import javax.xml.parsers.DocumentBuilderFactory

def fac = DocumentBuilderFactory.newInstance()
def builder = fac.newDocumentBuilder()
def doc = builder.parse(new FileInputStream('data/plan.xml'))

Java’s XML handling API is designed with flexibility in mind.2 A downside of this
flexibility is that for our simple example, we have a few hoops to jump through in
order to retrieve our file. It’s not too bad, though, and now that we have it we can
dive into the document.

Walking the DOM
The document object is not yet the root of our datastore. In order to get the top-
level element, which is plan in our case, we have to ask the document for its
documentElement property:

def plan = doc.documentElement

2 The DocumentBuilderFactory can be augmented in several ways to deliver various DocumentBuilder
implementations. See its API documentation for details.

Reading XML documents 405
We can now work with the plan variable. It’s of type org.w3c.dom.Node and so it
can be asked for its nodeType and nodeName. The nodeType is Node.ELEMENT_NODE,
and nodeName is plan.

 The design of such DOM nodes is a bit strange (to put it mildly). Every node
has the same properties, such as nodeType, nodeName, nodeValue, childNodes, and
attributes (to name only a few; see the API documentation for the full list). How-
ever, what is stored in these properties and how they behave depends on the value
of the nodeType property.

 We will deal with types ELEMENT_NODE, ATTRIBUTE_NODE, and TEXT_NODE (see the
API documentation for the exhaustive list).

 It is not surprising that XML elements are stored in nodes of type
ELEMENT_NODE, but it is surprising that attributes are also stored in node objects (of
nodeType ATTRIBUTE_NODE). To make things even more complex, each value of an
attribute is stored in an extra node object (with nodeType TEXT_NODE). This com-
plexity is a large part of the reason why simpler APIs such as JDOM, dom4j, and
XOM have become popular.

 As an example, the nodes and their names, types, and values are depicted in
figure 12.1 for the first week element in the datastore.

Figure 12.1 Example of a DOM object model (excerpt) for element,
attribute, and text nodes

406 CHAPTER 12
Working with XML
The fact that node objects behave differently with respect to their nodeType leads
to code that needs to work with this distinction. For example, when reading infor-
mation from a node, we need a method such as this:

import org.w3c.dom.Node

String info(node) {
 switch (node.nodeType) {
 case Node.ELEMENT_NODE:
 return 'element: '+ node.nodeName
 case Node.ATTRIBUTE_NODE:
 return "attribute: ${node.nodeName}=${node.nodeValue}"
 case Node.TEXT_NODE:
 return 'text: '+ node.nodeValue
 }
 return 'some other type: '+ node.nodeType
}

With this helper method, we have almost everything we need to read information
from our datastore. Two pieces of information are not yet explained: the types of
the childNodes and attributes properties.

 The childNodes property is of type org.w3c.dom.NodeList. Unfortunately, it
doesn’t extend the java.util.List interface but provides its own methods,
getLength and item(index). This makes it inconvenient to work with. However, as
you saw in section 9.1.3, Groovy makes its object iteration methods (each, find,
findAll, and so on) available on that type.

 The attributes property is of type org.w3c.dom.NamedNodeMap, which doesn’t
extend java.util.Map either. We will use its getNamedItem(name) method.

 Listing 12.2 puts all this together and reads our plan from the XML datastore,
walking into the first task of the first week.

import javax.xml.parsers.DocumentBuilderFactory
import org.w3c.dom.Node

def fac = DocumentBuilderFactory.newInstance()
def builder = fac.newDocumentBuilder()
def doc = builder.parse(new FileInputStream('data/plan.xml'))
def plan = doc.documentElement

String info(node) {
 switch (node.nodeType) {
 case Node.ELEMENT_NODE:
 return 'element: '+ node.nodeName
 case Node.ATTRIBUTE_NODE:
 return "attribute: ${node.nodeName}=${node.nodeValue}"

Listing 12.2 Reading plan.xml with the classic DOM parser

Reading XML documents 407
 case Node.TEXT_NODE:
 return 'text: '+ node.nodeValue
 }
 return 'some other type: '+ node.nodeType
}

assert 'element: plan' == info(plan)

def week = plan.childNodes.find{'week' == it.nodeName}
assert 'element: week' == info(week)

def task = week.childNodes.item(1)
assert 'element: task' == info(task)

def title = task.attributes.getNamedItem('title')
assert 'attribute: title=read XML chapter' == info(title)

Note how we use the object iteration method find b to access the first week ele-
ment under plan. We use indexed access to the first task child node at c. But
why is the index one and not zero? Because in our XML document, there is a line
break between week and task. The DOM parser generates a text node contain-
ing this line break (and surrounding whitespace) and adds it as the first child
node of week (at index zero). The task node floats to the second position with
index one.

Making DOM groovier
Groovy wouldn’t be groovy without a convenience method for the lengthy pars-
ing prework:

def doc = groovy.xml.DOMBuilder.parse
 (new FileReader('data/plan.xml'))
def plan = doc.documentElement

NOTE The DOMBuilder is not only for convenient parsing. As the name sug-
gests, it is a builder and can be used like any other builder (see chapter 8).
It returns a tree of org.w3c.dom.Node objects just as if they’d been parsed
from an XML document. You can add it to another tree, write it to XML,
or query it using XPath (see section 12.2.3).

Dealing with child nodes and attributes as in listing 12.2 doesn’t feel groovy
either. Therefore, Groovy provides a DOMCategory that you can use for simplified
access. With this, you can index child nodes via the subscript operator or via their
node name. You can refer to attributes by getting the @attributeName property:

Object
iteration
method

b

Indexed
access

c

408 CHAPTER 12
Working with XML
use(groovy.xml.dom.DOMCategory){
 assert 'plan' == plan.nodeName
 assert 'week' == plan[1].nodeName
 assert 'week' == plan.week.nodeName
 assert '8' == plan[1].'@capacity'
}

Although not shown in the example, DOMCategory has recently been improved to
provide additional syntax shortcuts such as name, text, children, iterator,
parent, and attributes. We explain these shortcuts later in this chapter, because
they originated in Groovy’s purpose-built XML parsing classes. Consult the
online Groovy documentation for more details.

 This was a lot of work to get the DOM parser to read our data, and we had to
face some surprises along the way. We will now do the same task using the Groovy
parser with less effort and fewer surprises.

12.1.2 Reading with a Groovy parser

The Groovy way of reading the plan datastore is so simple, we’ll dive headfirst
into the solution as presented in listing 12.3.

def plan = new XmlParser().parse(new File('data/plan.xml'))

assert 'plan' == plan.name()
assert 'week' == plan.week[0].name()
assert 'task' == plan.week[0].task[0].name()
assert 'read XML chapter' == plan.week[0].task[0].'@title'

No fluff, just stuff. The parsing is only a one-liner. Because Groovy’s XmlParser
resides in package groovy.util, we don’t even need an import statement for that
class. The parser can work directly on File objects and other input sources, as you
will see in table 12.2. The parser returns a groovy.util.Node. You already came
across this type in section 8.2. That means we can easily use GPath expressions to
walk through the tree, as shown with the assert statements.

 Up to this point, you have seen that Groovy’s XmlParser provides all the func-
tionality you first saw with the DOM parser. But there is more to come. In addition
to the XmlParser, Groovy comes with the XmlSlurper. Let’s explore the common-
alities and differences between those two before considering more advanced
usages of each.

Listing 12.3 Reading plan.xml with Groovy’s XmlParser

Reading XML documents 409
Commonalities between XmlParser and XmlSlurper
Let’s start with the commonalities of XmlParser and XmlSlurper: They both reside
in package groovy.util and provide the constructors listed in table 12.1.

Besides sharing constructors with the same parameter lists, the types share pars-
ing methods with the same signatures. The only difference is that the parsing
methods of XmlParser return objects of type groovy.util.Node whereas XmlSlurper
returns GPathResult objects. Table 12.2 lists the uniform parse methods.

These are the most commonly used methods on XmlParser and XmlSlurper. The
description of additional methods (such as for using specialized DTD handlers
and entity resolvers) is in the API documentation.

 The result of the parse method is either a Node (for XmlParser) or a
GPathResult (for XmlSlurper). Table 12.3 lists the common available methods for

Table 12.1 Common constructors of XmlParser and XmlSlurper

Parameter list Note

() Parameterless constructor.

(boolean validating,
 boolean namespaceAware)

After parsing, the document can be validated against a declared
DTD, and namespace declarations shall be taken into account.

(XMLReader reader) If you already have a org.xml.sax.XMLReader available, it can
be reused.

(SAXParser parser) If you already have a javax.xml.parsers.SAXParser avail-
able, it can be reused.

Table 12.2 Parse methods common to XmlParser and XmlSlurper

Signature Note

parse(InputSource input) Reads from an org.xml.sax.InputSource

parse(File file) Reads from an java.io.File

parse(InputStream input) Reads from an java.io.InputStream

parse(Reader in) Reads from an java.io.Reader

parse(String uri) Reads the resource that the uri points to after connecting to it

parseText(String text) Uses the text as input

410 CHAPTER 12
Working with XML
both result types. Note that because both types understand the iterator method,
all object iteration methods are also instantly available.

 GPathResult and groovy.util.Node provide additional shortcuts for method
calls to the parent object and all descendent objects. Such shortcuts make reading
a GPath expression more like other declarative path expressions such as XPath or
Ant paths.3

Objects of type Node and GPathResult can access both child elements and
attributes as if they were properties of the current object. Table 12.4 shows the
syntax and how the leading @ sign distinguishes attribute names from nested ele-
ment names.

Table 12.3 Common methods of groovy.util.Node and GPathResult

Node method GPathResult method Shortcut

Object name() String name()

String text() String text()

String toString() String toString()

Node parent() GPathResult parent() '..'

List children() GPathResult children() '*'

Map attributes()a Map attributes()

Iterator iterator() Iterator iterator()

List depthFirst() Iterator depthFirst() '**'

List breadthFirst() Iterator breadthFirst()

a. Strictly speaking, attributes() is a method of NodeChild, not GPathResult, but this is transparent in most usages.

3 See http://ant.apache.org/manual/using.html#path.

Table 12.4 Element and attribute access in groovy.util.Node and GPathResult

Node (XmlParser) GPathResult (XmlSlurper) Meaning

['elementName'] ['elementName']
All child elements of that name

.elementName .elementName

continued on next page

Reading XML documents 411
Listing 12.4 plays with various method calls and uses GPath expressions to work
on objects of type Node and GPathResult alike. It uses XmlParser to return Node
objects and XmlSlurper to return a GPathResult. To make the similarities stand
out, listing 12.4 shows doubled lines, one using Node, one using GPathResult.

def node = new XmlParser().parse(new File('data/plan.xml'))
def path = new XmlSlurper().parse(new File('data/plan.xml'))

assert 'plan' == node.name()
assert 'plan' == path.name()

assert 2 == node.children().size()
assert 2 == path.children().size()

assert 5 == node.week.task.size()
assert 5 == path.week.task.size()

assert 6 == node.week.task.'@done'*.toInteger().sum()

assert path.week[1].task.every{ it.'@done' == '0' }

Note that the GPath expression node.week.task b first collects all child elements
named week, and then, for each of those, collects all their child elements named
task (compare the second row in table 12.4). In the case of node.week.task, we
have a list of task nodes that we can ask for its size. In the case of path.week.task,
we have a GPathResult that we can ask for its size. The interesting thing here is
that the GPathResult can determine the size without collecting intermediate
results (such as week and task nodes) in a temporary datastructure such as a list.
Instead, it stores whatever iteration logic is needed to determine the result and
then executes that logic and returns the result (the size in this example).

[index] [index] Child element by index

['@attributeName'] ['@attributeName']

The attribute value stored under
that name

.'@attributeName' .'@attributeName'

.@attributeName

Listing 12.4 Using common methods of groovy.util.Node and GPathResult

Table 12.4 Element and attribute access in groovy.util.Node and GPathResult (continued)

Node (XmlParser) GPathResult (XmlSlurper) Meaning

All tasksb
All hours
done

c

Second weekd

412 CHAPTER 12
Working with XML
 At c, you see that in GPath, attribute access has the same effect as access to
child elements; node.week.task.'@done' results in a list of all values of the done
attribute of all tasks of all weeks. We use the spread-dot operator (see section 7.5.1)
to apply the toInteger method to all strings in that list, returning a list of inte-
gers. We finally use the GDK method sum on that list.

 The line at d can be read as: “Assert that the done attribute in every task of
week[1] is '0'.” What’s new here is using indexed access and the object iteration
method every. Because indexing starts at zero, week[1] means the second week.

 This example should serve as an appetizer for your own experiences with
applying GPath expressions to XML documents.

 In addition to the convenient GPath notation, you might also wish to make
use of traversal methods; for example, we could add the following lines to
listing 12.4:

assert 'plan->week->week->task->task->task->task->task' ==
 node.breadthFirst()*.name().join('->')

assert 'plan->week->task->task->task->week->task->task' ==
 node.depthFirst()*.name().join('->')

So far, you have seen that XmlParser and XmlSlurper can be used in a similar fash-
ion to produce similar results. But there would be no need for two separate classes
if there wasn’t a difference. That’s what we cover next.

Differences between XmlParser and XmlSlurper
Despite the similarities between XmlParser and XmlSlurper when used for simple
reading purposes, there are differences when it comes to more advanced reading
tasks and when processing XML documents into other formats.

 XmlParser uses the groovy.util.Node type and its GPath expressions result
in lists of nodes. That makes working with XmlParser feel like there always is a
tangible object representation of elements—something that we can inspect via
toString, print, or change in-place. Because GPath expressions return lists of
such elements, we can apply all our knowledge of the list datatype (see section 4.2).

 This convenience comes at the expense of additional up-front processing and
extra memory consumption. The GPath expression node.week.task.'@done' gen-
erates three lists: a temporary list of weeks4 (two entries), a temporary list of tasks
(five entries), and a list of done attribute values (five strings) that is finally

4 This is short for: a list of references to objects of type groovy.util.Node with name()=='week'.

Reading XML documents 413
returned. This is reasonable for our small example but hampers processing large
or deeply nested XML documents.

 XmlSlurper in contrast does not store intermediate results when processing
information after a document has been parsed. It avoids the extra memory hit
when processing. Internally, XmlSlurper uses iterators instead of extra collections
to reflect every step in the GPath. With this construction, it is possible to defer
processing until the last possible moment.

NOTE This does not mean that XmlSlurper would work without storing the
parsed information in memory. It still does, and the memory consump-
tion rises with the size of the XML document. However, for processing that
stored information via GPath, XmlSlurper does not need extra memory.

Table 12.5 lists the methods unique to Node. When using XmlParser, you can use
these methods in your processing.

Table 12.6 lists the methods that are unique to or are optimized in GPathResult.
As an example, we could add the following line to listing 12.4 to use the optimized
findAll in GPathResult:

assert 2 == path.week.task.findAll{ it.'@title' =~ 'XML' }.size()

Additionally, some classes may only work on one type or the other; for example,
there is groovy.util.XmlNodePrinter with method print(Node) but no support
for GPathResult. Like the name suggests, XmlNodePrinter pretty-prints a Node tree
to a PrintStream in XML format.

Table 12.5 XmlParser: methods of groovy.util.Node not available in GPathResult

Method Note

Object value() Retrieves the payload of the node, either the children()
or the text()

void setValue(Object value) Changes the payload

Object attribute(Object key) Shortcut to attributes().get(key)

NodeList getAt(QName name) Provides namespace support for selecting child elements
by their groovy.xml.QName

void print(PrintWriter out) Pretty-printing with NodePrinter

414 CHAPTER 12
Working with XML
You have seen that there are a lot of similarities and some slight differences
when reading XML via XmlParser or XmlSlurper. The real, fundamental differ-
ences become apparent when processing the parsed information. Coming up in
section 12.2, we will look at these differences in more detail by exploring two
examples: processing with direct in-place data manipulation and processing in a
streaming scenario. However, first we are going to look at event style parsing and
how it can be used with Groovy. This will help us better position some of
Groovy’s powerful XML features in our forthcoming more-detailed examples.

12.1.3 Reading with a SAX parser
In addition to the original Java DOM parsing you saw earlier, Java also supports
what is known as event-based parsing. The original and most common form of
event-based parsing is called SAX. SAX is a push-style event-based parser because
the parser pushes events to your code.

 When using this style of processing, no memory structure is constructed to
store the parsed information; instead, the parser notifies a handler about parsing
events. We implement such a handler interface in our program to perform pro-
cessing relevant to our application’s needs whenever the parser notifies us.

 Let’s explore this for our simple plan example. Suppose we wish to display a
quick summary of the tasks that are underway and those that are upcoming; we
aren’t interested in completed activities for the moment. Listing 12.5 shows how
to receive start element events using SAX and perform our business logic of print-
ing out the tasks of interest.

Table 12.6 XmlSlurper: methods of GPathResult not available in groovy.util.Node

Method Note

GPathResult parents() Represents all parent elements on the path from
the current element up to the root

GPathResult declareNamespace
 (Map newNamespaceMapping)

Registers namespace prefixes and their URIs

List list() Converts a GPathResult into a list of
groovy.util.slurpersupport.Node objects
for list-friendly processing

int size() The number of result elements
(memory optimized implementation)

GPathResult find(Closure closure) Overrides the object iteration method find

GPathResult findAll(Closure closure) Overrides the object iteration method findAll

Reading XML documents 415
import javax.xml.parsers.SAXParserFactory
import org.xml.sax.*
import org.xml.sax.helpers.DefaultHandler

class PlanHandler extends DefaultHandler {
 def underway = []
 def upcoming = []
 void startElement(String namespace, String localName,
 String qName, Attributes atts) {
 if (qName != 'task') return
 def title = atts.getValue('title')
 def total = atts.getValue('total')
 switch (atts.getValue('done')) {
 case '0' : upcoming << title ; break
 case { it != total } : underway << title ; break
 }
 }
}

def handler = new PlanHandler()
def reader = SAXParserFactory.newInstance()
 .newSAXParser().xMLReader
reader.contentHandler = handler
def inputStream = new FileInputStream('data/plan.xml')
reader.parse(new InputSource(inputStream))
inputStream.close()

assert handler.underway == [
 'use in current project'
]
assert handler.upcoming == [
 're-read DB chapter',
 'use DB/XML combination'
]

Note that with this style of processing, we have more work to do. When our
startElement method is called, we are provided with SAX event information
including the name of the element (along with a namespace, if provided) and all
the attributes. It’s up to us to work out whether we need this information and pro-
cess or store it as required during this method call. The parser won’t do any fur-
ther storage for us. This minimizes memory overhead of the parser, but the
implication is that we won’t be able to do GPath-style processing and we aren’t in a
position to manipulate a tree-like data structure. We’ll have more to say about SAX
event information when we explore XmlSlurper in more detail in section 12.2.

Listing 12.5 Using a SAX parser with Groovy

Declare our
handler

Interested in
element start
events

Interested only
in task elements

Declare our SAX reader

416 CHAPTER 12
Working with XML
12.1.4 Reading with a StAX parser

In addition to the push-style SAX parsers supported by Java, a recent trend in
processing XML with Java is to use pull-style event-based parsers. The most com-
mon of these are called StAX-based parsers.5 With such a parser, you are still inter-
ested in events, but you ask the parser for events (you pull events as needed)
during processing6, instead of waiting to be informed by methods being called.

 Listing 12.6 shows how you can use StAX with Groovy. You will need a StAX
parser in your classpath to run this example. If you have already set up Groovy-
SOAP, which we explore further in section 12.3, you may already have everything
you need.

// requires stax.jar and stax-api.jar
import javax.xml.stream.*

def input = 'file:data/plan.xml'.toURL()
def underway = []
def upcoming = []

def eachStartElement(inputStream, Closure yield) {
 def token = XMLInputFactory.newInstance()
 .createXMLStreamReader(inputStream)
 try {
 while (token.hasNext()) {
 if (token.startElement) yield token
 token.next()
 }
 } finally {
 token?.close()
 inputStream?.close()
 }
}

class XMLStreamCategory {
 static Object get(XMLStreamReader self, String key) {
 return self.getAttributeValue(null, key)
 }
}

5 See http://www.xml.com/pub/a/2003/09/17/stax.html for a tutorial introduction.
6 This is the main event-based style supported by .NET and will also be included with Java 6.

Listing 12.6 Using a StAX parser with Groovy

Declare parser

Loop through events of interest

Category
for simple
attribute
access

Processing XML 417
use (XMLStreamCategory) {
 eachStartElement(input.openStream()) { element ->
 if (element.name.toString() != 'task') return
 switch (element.done) {
 case '0' :
 upcoming << element.title
 break
 case { it != element.total } :
 underway << element.title
 }
 }
}

assert underway == [
 'use in current project'
]
assert upcoming == [
 're-read DB chapter',
 'use DB/XML combination'
]

Note that this style of parsing is similar to SAX-style parsing except that we are
running the main control loop ourselves rather than having the parser do it. This
style has advantages for certain kinds of processing where the code becomes sim-
pler to write and understand.

 Suppose you have to respond to many parts of the document differently. With
push models, your code has to maintain extra state to know where you are and
how to react. With a pull model, you can decide what parts of the document to
process at any point within your business logic. The flow through the document is
easier to follow, and the code feels more natural.

 We have now explored the breadth of parsing options available in Groovy. Next
we explore the advantages of the Groovy-specific parsing options in more detail.

12.2 Processing XML

Many situations involving XML call for more than just reading the data and then
navigating to a specific element or node. XML documents often require transfor-
mation, modification, or complex querying. When we look at the characteristics
of XmlParser and XmlSlurper when processing XML data in these ways, we see the
biggest differences between the two. Let’s start with a simple but perhaps surpris-
ing analogy: heating water.

 There are essentially two ways of boiling water, as illustrated in figure 12.2. You
can pour water into a tank (called a boiler), heat it up, and get the hot water from

418 CHAPTER 12
Working with XML
the outlet. The second way of boiling is with the help of a continuous-flow heater,
which heats up the water while it streams from the cold-water inlet through the
heating coil until it reaches the outlet. The heating happens only when requested,
as indicated by opening the outlet tap.

 How does XML processing relate to boiling water? Well, processing XML
means you are not just using bits of the stored information, but retrieving it,
adding some new quality to it (making it hot in our analogy), and outputting
the whole thing. Just like boiling water, this can be done in two ways: by stor-
ing the information in memory and processing it in-place, or by retrieving
information from an input stream, processing it on the fly, and streaming it to
an output device.

 In general, processing XML with XmlParser (and groovy.util.Node) is more
like using a boiler, whereas XmlSlurper can serve as a source in a streaming sce-
nario analogous to continuous-flow heating.

 We’re going to start by looking at the “boiling” strategy of in-place modifica-
tion and processing and then proceed to explore streamed processing and com-
binations with XPath.

12.2.1 In-place processing

In-place processing is the conventional means of XML processing. It uses the
XmlParser to retrieve a tree of nodes. These nodes reside in memory and can be
rearranged, copied, or deleted, and their attributes can be changed. We will use
this approach to generate an HTML report for keeping track of our Groovy learn-
ing activities.

 Suppose the report should look like figure 12.3. You can see that new informa-
tion is derived from existing data: tasks and weeks have a new property that we
will call status with the possible values of scheduled, in progress, and finished.

Figure 12.2
Comparing the strategies of boiling
vs. continuous-flow heating

Processing XML 419
 For tasks, the value of the status property is
determined by looking at the done and total
attributes. If done is zero, the status is consid-
ered scheduled; if done is equal to or exceeds
total, the status is finished; otherwise, the sta-
tus is in progress.

 Weeks are finished when all contained tasks
are finished. They are in progress when at least
one contained task is in progress.

 This sounds like we are going to do lots of
number comparisons with the done and total
attributes. Unfortunately these attributes are
stored as strings, not numbers. These consider-
ations lead to a three-step “heating” process:

1 Convert all string attribute values to numbers where suitable.

2 Add a new attribute called status to all tasks, and determine the value.

3 Add a new attribute called status to all weeks, and determine the value.

With such an improved data representation, it is finally straightforward to use
MarkupBuilder to produce the HTML report.

 We have to produce HTML source like

<html>
 <head>
 <title>Current Groovy progress</title>
 <link href='style.css' type='text/css' rel='stylesheet' />
 </head>
 <body>
 <h1>Week No. 0: in progress</h1>
 <dl>
 <dt class='finished'>read XML chapter</dt>
 <dd>(2/2): finished</dd>
…
 </dl>
 </body>
</html>

where the stylesheet style.css contains the decision of how a task is finally
displayed according to its status. It can for example use the following lines for
that purpose:

dt { font-weight:bold }
dt.finished { font-weight:normal; text-decoration:line-through }

Figure 12.3 An HTML progress
report of Groovy learning activities

420 CHAPTER 12
Working with XML
Listing 12.7 contains the full solution. The numberfy method implements the
string-to-number conversion for those attributes that we expect to be of integer
content. It also shows how to work recursively through the node tree.

 The methods weekStatus and taskStatus make the new status attribute avail-
able on the corresponding node, where weekStatus calls taskStatus for all its
contained tasks to make sure it can work on their status inside GPath expressions.

 The final htmlReport method is the conventional way of building HTML.
Thanks to the “heating” prework, there is no logic needed in the report. The
report uses the status attribute to assign a stylesheet class of the same value.

void numberfy(node) {
 def atts = node.attributes()
 atts.keySet().grep(['capacity', 'total', 'done']).each {
 atts[it] = atts[it].toInteger()
 }
 node.each { numberfy(it) }
}
void taskStatus(task){
 def atts = task.attributes()
 switch (atts.done) {
 case 0 : atts.status = 'scheduled'; break
 case 1..<atts.total : atts.status = 'in progress'; break
 default: atts.status = 'finished';
 }
}
void weekStatus(week) {
 week.task.each{ taskStatus(it) }
 def atts = week.attributes()
 atts.status = 'scheduled'
 if (week.task.every{ it.'@status' == 'finished'})
 atts.status = 'finished'
 if (week.task.any{ it.'@status' == 'in progress'})
 atts.status = 'in progress'
}
void htmlReport(builder, plan) {
 builder.html {
 head {
 title('Current Groovy progress')
 link(rel:'stylesheet',
 type:'text/css',
 href:'style.css')
 }
 body {
 plan.week.eachWithIndex { week, i ->
 h1("Week No. $i: ${week.'@status'}")
 dl{

Listing 12.7 Generating an HTML report with in-memory data preparation

Convert strings
to numbers

Calculate and
assign task status

Calculate and assign
week status

Report
building logic

Processing XML 421
 week.task.each { task ->
 dt(class:task.'@status', task.'@title')
 dd(
 "(${task.'@done'}/${task.'@total'}): ${task.'@status'}")
} } } } } }

def node = new XmlParser().parse(new File('data/plan.xml'))
numberfy(node)
node.week.each{ weekStatus(it) }

new File('data/GroovyPlans.html').withWriter { writer ->
 def builder = new groovy.xml.MarkupBuilder(writer)
 htmlReport(builder, node)
}

After the careful prework, the code in listing 12.7 is not surprising. What’s a bit
unconventional is having a lot of closing braces on one line at the end of
htmlReport. This is not only for compact typesetting in the book. We also some-
times use this style in our everyday code. We find it nicely reveals what levels of
indentation are to be closed and still allows us to check brace-matching by col-
umn. It would be great to have IDE support for toggling between this and conven-
tional code layout.

 Now that you have seen how to use the in-memory “boiler,” let’s investigate
the streaming scenario.

12.2.2 Streaming processing

In order to demonstrate the use of streaming, let’s start with the simplest kind of
processing that we can think of: pumping out what comes in without any modifi-
cation. Even this simple example is hard to understand when you first encounter
it. We recommend that if you find it confusing, keep reading, but don’t worry too
much about the details. It’s definitely worth coming back later for a second try,
though—in many situations, the benefits of stream-based processing are well
worth the harder conceptual model.

Unmodified piping
You use XmlSlurper to parse the original XML. Because the final output format is
XML again, you need some device that can generate XML in a streaming fash-
ion. The groovy.xml.StreamingMarkupBuilder class is specialized for outputting
markup on demand—in other words, when an information sink requests it. Such a
sink is an operation that requests a Writable—for example, the leftshift operator

Prepare data
for reporting

422 CHAPTER 12
Working with XML
call on streams or the evaluation of GStrings. The trick that StreamingMarkup-
Builder uses to achieve this effect is similar to the approach of template engines.
StreamingMarkupBuilder provides a bind method that returns a WritableClosure.
This object is a Writable and a closure at the same time. Because it is a Writable,
you can use it wherever the final markup is requested. Because it is a closure, the
generation of this markup can be done lazily on-the-fly, without storing interme-
diate results.

 Listing 12.8 shows this in action. The bind method also needs the information
about what logic is to be applied to produce the final markup. Wherever logic is
needed, closures are the first candidate, and so it is with bind. We pass a closure to
the bind method that describes the markup logic.

 For our initial example of pumping the path through, we use a special feature
of StreamingMarkupBuilder that allows us to yield the markup generation logic to
a Buildable, an object that knows how to build itself. It happens that a
GPathResult (and thus path) is buildable. In order to yield the building logic to it,
we use the yield method. However, we cannot use it unqualified because we
would produce a <yield/> markup if we did. The special symbol mkp marks our
method call as belonging to the namespace of markup keywords.

import groovy.xml.StreamingMarkupBuilder

def path = new XmlSlurper().parse(new File('data/plan.xml'))

def builder = new StreamingMarkupBuilder()
def copier = builder.bind{ mkp.yield(path) }
def result = "$copier"

assert result.startsWith('<plan><week ')
assert result.endsWith('</week></plan>')

There is a lot going on in only a few lines of code. The result variable for exam-
ple refers to a GString with one value: a reference to copier. Note that we didn’t
call it “copy” because it is not a thing but an actor.

 When we call the startsWith method on result, the string representation of
the GString is requested, and because the one GString value copier is a Writable,
its writeTo method is called. The copier was constructed by the builder such that
writeTo relays to path.build().

 Figure 12.4 summarizes this streaming behavior.

Listing 12.8 Pumping an XML stream without modification

Processing XML 423
Note how in figure 12.4, the processing doesn’t start before the values are
requested. Only after the GString’s toString method is called does the copier
start running and is the path iterated upon. Until then, the path isn’t touched! No
memory representation has been created for the purpose of markup or iteration.
This is a simplification of what is going on. XmlSlurper does have memory
requirements. It stores the SAX event information you saw in section 12.1.3 but
doesn’t process or store it in the processing-friendly Node objects.

 Calling startsWith is like opening the outlet tap to draw the markup from the
copier, which in turn draws its source information from the path inlet. Any code
before that point is only the plumbing.

 As a variant of listing 12.8, you can also directly write the markup onto the
console. Use the following:

System.out << copier

Remember that System.out is an OutputStream that understands the leftshift
operator with a Writable argument.

Figure 12.4 UML sequence diagram for streamed building

424 CHAPTER 12
Working with XML
 For this simple example, we could have used the SAX or StAX approaches you
saw earlier. They would be even more streamlined solutions. Not only would they
not need to process and store the tree-like data structures that XmlParser creates
for you, but they also wouldn’t need to store the SAX event information. The same
isn’t true for the more complicated scenarios that follow. As is common in many
XML processing scenarios, the remaining examples have processing require-
ments that span multiple elements. Such scenarios benefit greatly from the ability
to use GPath-style expressions.

Heating up to HTML
Until now, we copied only the “cold” input. It’s time to light our heater. The goal
is to produce the same GUI as in figure 12.3.

 We start with the basis of listing 12.8 but enhance the markup closure that gets
bound to the builder. In listing 12.9, building looks almost the same as in the
“boiling” example of listing 12.7; only the evaluation of the week and task status
needs to be adapted. We do not calculate the status in advance and store it for
later reference, but do the classification on-the-fly when the builder lazily
requests it.

def taskStatus(task){
 switch (task.'@done'.toInteger()) {
 case 0 : return 'scheduled'
 case 1..<task.'@total'.toInteger() : return 'in progress'
 default: return 'finished'
 }
}
def weekStatus(week) {
 if (week.task.every{ taskStatus(it) == 'finished'})
 return 'finished'
 if (week.task.any{ taskStatus(it) == 'in progress'})
 return 'in progress'
 return 'scheduled'
}

def plan = new XmlSlurper().parse(new File('data/plan.xml'))

Closure markup = {
 html {
 head {
 title('Current Groovy progress')
 link(rel:'stylesheet',
 type:'text/css',

Listing 12.9 Streamed heating from XML to HTML

Calculate task status

Calculate
week status

“Slurp” in
the XML

Express the processing
as a closure

Processing XML 425
 href:'style.css')
 }
 body {
 plan.week.eachWithIndex { week, i ->
 h1("Week No. $i: ${owner.weekStatus(week)}")
 dl{
 week.task.each { task ->
 def status = owner.taskStatus(task)
 dt(class:status, task.'@title')
 dd(
 "(${task.'@done'}/${task.'@total'}): $status")
} } } } } }

def heater = new groovy.xml.StreamingMarkupBuilder().bind(markup)

new File('data/StreamedGroovyPlans.html').
 withWriter{ it << heater }

The cool thing here is that at first glance it looks similar to listing 12.7, but it
works very differently:

■ All evaluation is done lazily.
■ Memory consumption for GPath operations is minimized.
■ No in-memory assembly of HTML representation is built before outputting.

This allows us to produce lots of output, because it is not assembled in memory
but directly streamed to the output as the building logic demands. However,
because of the storage of SAX event information on the input, this approach will
not allow input documents as large as would be possible with SAX or StAX.

 Figure 12.5 sketches the differences between both processing approaches with
respect to processing requirements and memory usage. The process goes from left
to right either in the top row (for “boiling”) or in the bottom row (for “streaming”).
Either process encompasses parsing, evaluating, building, and serializing to HTML,
where evaluating and building are not necessarily in strict sequence. This is also where
the differences are: working on intermediate data structures (trees of lists and
nodes) or on lightweight objects that encapsulate logic (iterators and closures).

 That’s it for the basics of processing XML with the structures provided by the
Groovy XML parsers.

 In section 12.1.1, you saw that classic Java DOM parsers return objects of type
org.w3c.dom.Node, which differs from what the Groovy parsers return. The Java
way of processing such nodes is with the help of XPath. The next section shows
how Java XPath and Groovy XML processing can be used in combination.

Bind the parsed XML to
the processing logic

Write out the
result to a file

426 CHAPTER 12
Working with XML
12.2.3 Combining with XPath

XPath is for XML what SQL select statements are for relational databases or what
regular expressions are for plain text. It’s a means to select parts of the whole doc-
ument and to do so in a descriptive manner.

Understanding XPath
An XPath is an expression that appears in Java or Groovy as a string (exactly like
regex patterns or SQL statements do). A full introduction to XPath is beyond the
scope of this book, but here is a short introduction from a Groovy programmer’s
point of view.7

 Just like a GPath, an XPath selects nodes. Where GPath uses dots, XPath uses
slashes. For example

/plan/week/task

selects all task nodes of all weeks below plan. The leading slash indicates that the
selection starts at the root element. In this expression, plan, week, and task are
each called a node test. Each node test may be preceded with an axis specifier from
table 12.7 and a double colon.

Figure 12.5 Memory usage characteristics for the “boiling” vs. “streaming”
strategies

7 For a full description of the standard, see http://www.w3.org/TR/xpath; and for a tutorial, see
http://www.w3schools.com/xpath/.

Processing XML 427
With these specifiers, you can select all task elements via

/descendant-or-self::task

With the shortcut syntax, you can select all total attribute nodes of all tasks via

//task/@total

A node test can have a trailing predicate in square brackets to constrain the result.
A predicate is an expression made up from path expressions, functions, and oper-
ators for the datatypes node-set, string, number, and boolean. Table 12.8 lists
what’s possible.8

 Table 12.9 shows some examples.
 The next obvious question is how to use such XPath expressions in Groovy code.

Table 12.7 XPath axis specifiers

Axis Selects nodes Shortcut

child Directly below nothing or *

parent Directly above ..

self The node itself (use for further references) .

ancestor All above

ancestor-or-self All above including self

descendant All below

descendant-or-self All below including self //

following All on the same level trailing in the XML document

following-sibling All with the same parent trailing in the XML document

preceding All on the same level preceding in the XML document

preceding-sibling All with the same parent preceding in the XML document

attribute The attribute node @

namespace The namespace node

8 This covers only XPath 1.0 because XPath 2.0 is not yet finalized at the time of writing.

428 CHAPTER 12
Working with XML
Using the XPath API
Groovy comes with all the support you need for using XPath expressions in your
code. This is because of the xml-apis*.jar and xerces*.jar files in your
GROOVY_HOME/lib dir. In case you are running Groovy in an embedded sce-
nario, make sure these jars are on your classpath.

Table 12.8 XPath predicate expression cheat sheet

Category Appearance Note

Path operators /, //, @, [], *, .., . As above

Union operator | Union of two node-sets

Boolean operators and, or, not() not() is a function

Arithmetic operators +, -, *, div, mod

Comparison operators =, !=, <, >, <=, >=

String functions concat(), substring(), contains(),
substring-before(), substring-
after(), translate(), normalize-
space(), string-length()

See the docs for exact
meanings and parameters

Number functions sum(), round(), floor(), ceiling()

Node functions name(), local-name(), namespace-uri()

Context functions position(), last() [n] is short for
[position()=n]

Conversion functions string(), number(), boolean()

Table 12.9 XPath examples

XPath Meaning and notes Note

/plan/week[1] Firsta week node Indexing starts at one

//task[@done<@total] All unfinished tasks Auto-conversion to a number

//task[@done<@total][@done>0] All tasks in progress Implicit and between brackets

sum(//week[1]/task/@total) Total hours in the first week Returns a number

a. More specifically: the week node at position 1 below plan.

Processing XML 429
 We will use XPath through the convenience methods in org.apache.xpath.
XPathAPI. This class provides lot of static helper methods that are easy to use even
though the implementation is not always efficient.9 We will use

Node selectSingleNode(Node contextNode, String xpath)
NodeList selectNodeList (Node contextNode, String xpath)
XObject eval (Node contextNode, String xpath)

where XObject wraps the XPath datatype that eval returns. For converting it into a
Groovy datatype, we can use the methods num, bool, str, and nodelist.

 In practice, we may want to do something with all weeks. We select the appropri-
ate list of nodes via XPathAPI.selectNodeList(plan,'week'). Because this returns a
NodeList, we can use the object iteration methods on it to get hold of each week:

XPathAPI.selectNodeList(plan, 'week').eachWithIndex{ week, i ->
 // do something with week
}

For each week, we want to print the sum of the total and done attributes with
the help of XPath. Each week node becomes the new context node for the XPath
evaluation:

XPathAPI.selectNodeList(plan, 'week').eachWithIndex{ week, i ->
 println "\nWeek No. $i\n"
 println XPathAPI.eval(week, 'sum(task/@total)').num()
 println XPathAPI.eval(week, 'sum(task/@done)').num()
}

Listing 12.10 puts all this together with a little reporting functionality that pro-
duces a text report for each week, stating the capacity, the total hours planned,
and the progress in hours done.

// requires xalan.jar, xml-apis.jar
import org.apache.xpath.XPathAPI
import groovy.xml.DOMBuilder
import groovy.xml.dom.DOMCategory

def doc = DOMBuilder.parse(new FileReader('data/plan.xml'))
def plan = doc.documentElement

def out = new StringBuffer()
use(DOMCategory) {
 XPathAPI.selectNodeList(plan, 'week').eachWithIndex{ week, i ->

9 When performance is crucial, consider using the Jaxen XPath library which is used by JDOM,
dom4j,and XOM for their processing needs as well as being useful on its own.

Listing 12.10 XPath to text reporting

Selection via
XPath, retrieving
index and value

b
Use DOMCategory for
simple attribute access

430 CHAPTER 12
Working with XML
 out << "\nWeek No. $i\n"
 int total = XPathAPI.eval(week, 'sum(task/@total)').num()
 int done = XPathAPI.eval(week, 'sum(task/@done)').num()
 out << " planned $total of ${week.'@capacity'}\n"
 out << " done $done of $total"
 }
}
assert out.toString() == '''
Week No. 0
 planned 7 of 8
 done 6 of 7
Week No. 1
 planned 4 of 8
 done 0 of 4'''

XPath is used in two ways here—the querying capability is used to select all the
week elements b, and then attributes total and done are extracted with the eval
method c. We mix and match ways of accessing attributes, using DOMCategory to
access the capacity attribute with the node.@attributeName syntax d.

 Such a text report is fine to start with, but it
would certainly be nicer to show the progress in
a chart. Figure 12.6 suggests an HTML solution.
In a normal situation, we would use colors in
such a report, but they would not be visible
in the print of this book. Therefore, we use only
a simple box representation of the numbers.

 Each box is made from the border of a
styled div element. The style also determines
the width of each box.

 This kind of HTML production task calls for
a templating approach, because there are mul-
tiple recurring patterns for HTML fragments:
for the boxes, for each attribute row, and for
each week. We will use template engines, GPath, and XPath in combination to
make this happen.

 Listing 12.11 presents the template that we are going to use. It is a simple tem-
plate as introduced in section 9.4. It assumes the presence of two variables in the
binding: a scale, which is needed to make visible box sizes from the attribute val-
ues, and weeks, which is a list of week maps. Each week map contains the keys
'capacity', 'total', and 'done' with integer values.

Evalua-
tion
using
XPath

c

Evaluation using
DOM attributes

directly d

Figure 12.6 Screenshot of an HTML
based reporting

Processing XML 431
 The template resides in a separate file. We like to name such files with the
word template in the name and ending in the usual file extension for the format
they produce. For example, the name GroovyPlans.template.html reveals the
nature of the file, and we can still use it with an HTML editor.

<html>
 <head>
 <title>Current Groovy progress</title>
 </head>
 <body>
 <% weeks.eachWithIndex{ week, i -> %>
 <h1>Week No. $i</h1>
 <table cellspacing="5" >
 <tbody>
 <% ['capacity','total','done'].each{ attr -> %>
 <tr>
 <td>$attr</td>
 <td>${week[attr]}</td>
 <td>
 <div style=
"border: thin solid #000000; width: ${week[attr]*scale}px">
 </div>
 </td>
 </tr>
 <% } // end of attribute %>
 </tbody>
 </table>
 <% } // end of week %>
 </body>
</html>

This template looks like a JSP file, but it isn’t. The contained logic is expressed in
Groovy, not plain Java. Instead of being processed by a JSP engine, it will be eval-
uated by Groovy’s SimpleTemplateEngine as shown in listing 12.12. We use XPath
expressions to prepare the values for binding. A special application of GPath
comes into play when calculating the scaling factor.

 Scaling is required so that the longest capacity bar is of length 200, so we have
to find the maximum capacity for the calculation. Because we have already put
these values in the binding, we can use a GPath to get a list of those and play our
GDK tricks with it (calling max).

Listing 12.11 HTML reporting layout in data/GroovyPlans.template.html

432 CHAPTER 12
Working with XML
// requires xalan.jar, xml-apis.jar
import org.apache.xpath.XPathAPI
import groovy.xml.DOMBuilder
import groovy.xml.dom.DOMCategory
import groovy.text.SimpleTemplateEngine as STE

def doc = DOMBuilder.parse(new FileReader('data/plan.xml'))
def plan = doc.documentElement

def binding = [scale:1, weeks:[]]
use(DOMCategory) {
 XPathAPI.selectNodeList(plan, 'week').each{ week ->
 binding.weeks << [
 total: (int) XPathAPI.eval(week, 'sum(task/@total)').num(),
 done: (int) XPathAPI.eval(week, 'sum(task/@done)').num(),
 capacity: week.'@capacity'.toInteger()
]
 }
}
def max = binding.weeks.capacity.max()
if (max > 0) binding.scale = 200.intdiv(max)

def templateFile = new File('data/GroovyPlans.template.html')
def template = new STE().createTemplate(templateFile)

new File('data/XPathGroovyPlans.html').withWriter {
 it << template.make(binding)
}

The code did not change dramatically between the text reporting in listing 12.10
and the HTML reporting in listing 12.12. However, listing 12.12 provides a more
general solution, because we can also get a text report from it solely by changing
the template.

 The kind of transformation from XML to HTML that we achieve with
listing 12.12 is classically addressed with XML Stylesheet Transformation (XSLT),
which is a powerful technology. It uses stylesheets in XML format to describe a
transformation mapping, also using XPath and templates. Its logical means are
equivalent to those of a functional programming language.

 Although XSLT is suitable for mapping tree structures, we often find it easier
to use the Groovy approach when the logic is the least bit complex. XPath, tem-
plates, builders, and the Groovy language make a unique combination that allows
for elegant and concise solutions. There may be people who are able to look at

Listing 12.12 Using XPath, GPath, and templating in combination for HTML reporting

XPath on
DOM nodes

GPath on
binding

Templating

Processing XML 433
significant amounts of XSLT for more than a few minutes at a time without risking
their mental stability, but they are few and far between. Using the technologies
you’ve encountered, you can play to your strengths of understanding Groovy
instead of using a different language with a fundamentally different paradigm.

Leveraging additional Java XML processing technologies

Before wrapping up our introduction of processing XML with Groovy, we should
mention that although we think that you will find Groovy’s built-in XML features
are suitable for many of your processing needs, you are not locked into using just
those APIs. Because of Groovy’s Java heritage, many libraries and technologies
are available for you to consider. We have already mentioned StAX and Jaxen.
Here are a few more of our favorites:10

■ Although XmlParser, XmlSlurper, and of course the Java DOM and SAX should
meet most of your needs, you can always consider JDOM, dom4j, or XOM.

■ If you need to compare two XML fragments for differences, consider
XMLUnit.

■ If you wish to process XML using XQuery, consider Saxon.
■ If you need to persist your XML, consider JAXB or XmlBeans.
■ If you need to do high-performance streaming, consider Nux.

Our introduction to Groovy XML could finish at this point, because you have
seen all the basics of XML manipulation. You should now be able to write
Groovy programs that read, process, and write XML in a basic way. You will need
more detailed documentation when the need arises to deal with more advanced
issues such as namespaces, resolving entities, and handling DTDs in a custom-
ized way.

 The final section of this chapter deals not with the details of XML but with one
of its most important modern applications: exchanging data between systems,
and talking to web services in particular.

10 More information is available at: http://xmlbeans.apache.org/, http://saxon.sourceforge.net/,
http://dsd.lbl.gov/nux/, http://xmlunit.sourceforge.net/, and http://java.sun.com/webservices/jaxb/.

434 CHAPTER 12
Working with XML
12.3 Distributed processing with XML

XML describes data in a system-independent way. This makes it an obvious can-
didate for exchanging data across a network. Interconnected systems can be het-
erogeneous. They may be written in different languages, run on different
platforms (think .NET vs. Java), use different operating systems, and run on dif-
ferent hardware architectures. But no matter how different these systems are, they
can exchange data through XML, so long as both sides have some idea of how to
interpret the XML they are given.

 At a simple level, sharing data happens every time you surf the Web. With the
help of your browser, you request a URL. The server responds with an HTML docu-
ment that your browser knows how to display. The server and the browser are
interconnected through the Hypertext Transfer Protocol (HTTP) that implements
the request-response model, and they use HTML as the data-exchange format.

 Now imagine a program that surfs the Web on your behalf. Such a program
could visit a list of URLs to check for updates, browse a list of news providers for
new information about your favorite topics (we suggest “Groovy”), access a stock
ticker to see whether your shares have exceeded the target price, and check the
local weather service to warn you about upcoming thunderstorms.

 Such a program would have significant difficulties to overcome if it had to find
the requested information in the HTML of each web site. The HTML describes
not only what the data is, but also how it should broadly be presented. A change
to the presentation aspect of the HTML could easily break the program that was
trying to understand the data. Instead of dealing with the two aspects together, it
would be more reliable if there were an XML description of the pure content. This
is what web services are about.

 A full description of all web service formats and protocols is beyond the scope
of this book, but we will show how you can use some of them with Groovy. We cover
reading XML resources via RSS and ATOM, followed by using REST and Groovy’s
special XML-RPC support on the client and server side, and finally request SOAP
services from Groovy as well as writing a simple web service using Groovy.

 In case REST and SOAP make it sound like we’re talking about having a bath
instead of accessing web services, you’ll be pleased to hear we’re starting with a
brief description of some of these protocols and conventions.

Distributed processing with XML 435
12.3.1 An overview of web services

Web service solutions cover a spectrum of approaches from the simple to what
some regard as extremely complex. Perhaps the simplest approach is to use the
stateless HTTP protocol to request a resource via a URL. This is the basis of
the Representational State Transfer (REST) architecture. The term REST has also
been used more widely as a synonym for any mechanism for exposing content on
the Web via simple XML.

 The REST architecture is popular for making content of weblogs available.
Two of the most commonly used formats in this area are Really Simple Syndication11

(RSS) and ATOM (RFC-4287). The next logical extension from using a URL to request
a resource is to use simple XML embodied within a normal HTTP POST request.
This also can be regarded as a REST solution. We will examine an XML API of this
nature as part of our REST tour.

 When the focus is not on the remote resource but on triggering an operation
on the remote system, the XML Remote Procedure Call (XML-RPC) can be used.
XML-RPC uses HTTP but adds context, which makes it a stateful protocol (as
opposed to REST).

 The SOAP12 protocol extends the concept of XML-RPC to support not only
remote operations but even remote objects. Web service enterprise features that
build upon SOAP provide other functionality such as security, transactions, and
reliable messaging, to name a few of the many advanced features available.

 Now that you have your bearings, let’s look at how Groovy can access two of
the most popular web service formats in use today.

12.3.2 Reading RSS and ATOM

Let’s start our day by reading the news. The BBC broadcasts its latest news on an
RSS channel. Because we are busy programmers, we are interested only in the top
three headlines. A little Groovy program fetches them and prints them to the
console. What we would like to see is the headline, a short description, and a URL
pointing to the full article in case a headline catches our interest.

 Here is some sample output:

The top three news items today:
Three Britons kidnapped in Gaza

11 Also called Rich Site Summary (RSS 0.9x) or Resource Description Framework (RDF) Site Summary (RSS 1.0).
12 SOAP used to stand for Simple Object Access Protocol, but this meaning has been dropped since version 1.2

because SOAP does more than access objects and the word simple was questionable from the start.

436 CHAPTER 12
Working with XML
http://news.bbc.co.uk/go/rss/-/1/hi/world/middle_east/4564586.stm
Three British citizens have been kidnapped by unidentified gunmen in southern

Gaza, police say.

Geldof defends Tory adviser role
http://news.bbc.co.uk/go/rss/-/1/hi/uk_politics/4564130.stm
Bob Geldof promises to stay politically "non-partisan" after agreeing to

advise the Tories on global poverty.

Glitter 'pays money to accusers'
http://news.bbc.co.uk/go/rss/-/1/hi/world/asia-pacific/4563542.stm
Former singer Gary Glitter paid his alleged victims' families "for co-

operation", his Vietnamese lawyer says.

Listing 12.13 implements this newsreader. It requests the web resource that con-
tains the news as XML. It finds the resource by its URL. Passing the URL to the
parse method implicitly fetches it from the Web. The remainder of the code can
directly work on the node tree using GPath expressions.

def base = 'http://news.bbc.co.uk/rss/newsonline_uk_edition/'
def url = base +'front_page/rss091.xml'

println 'The top three news items today:'
def items = new XmlParser().parse(url).channel[0].item
for (item in items[0..2]) {
 println item.title.text()
 println item.link.text()
 println item.description.text()
 println '----'
}

Of course, for writing such code, we need to know what elements and attributes
are available in the RSS format. In listing 12.13, we assumed that at least the fol-
lowing structure is available:

<rss …>
 <channel>
 …
 <item>
 <title>… </title>
 <description>…</description>
 <link>… </link>
 …

Listing 12.13 A simple RSS newsreader

Distributed processing with XML 437
This is only a small subset of the full information. You can find a full description of
the RSS and ATOM formats and their various versions in RSS and ATOM in Action.13

 Reading an ATOM feed is equally easy, as shown in listing 12.14. It reads the
weblog of David M. Johnson, one of the fathers of the weblog movement. At the
time of writing this chapter, it prints

Sun portal 7 to include JSPWiki, hey what about LGPL?
ApacheCon Tuesday
ApacheCon Tuesday: Tim Bray's keynote
…

One thing that’s new in listing 12.14 is the use of XML namespaces. The ATOM
format makes use of namespaces like so:

<feed xmlns="http://www.w3.org/2005/Atom">
 ...
 <entry>
 <title>Sun portal ...</title>
 ...

In order to traverse nodes that are bound to namespaces with GPath expressions,
qualified names (QName objects) are used. A QName object can be retrieved from a
Namespace object by requesting the property of the corresponding element name.

import groovy.xml.Namespace

def url = 'http://rollerweblogger.org/atom/roller?catname=/Java'

def atom = new Namespace('http://www.w3.org/2005/Atom')
def titles = new XmlParser().parse(url)[atom.entry][atom.title]

println titles*.text().join("\n")

That was all fairly easy, right? The next topic, REST, will be more elaborate but
covers a wider area of applicability, because it is a more general approach.

12.3.3 Using a REST-based API

Although most web services are bound to a standard, REST is an open concept
rather than a standard. The common denominator of REST services is that

13 Dave Johnson, RSS and ATOM in Action (Manning, 2006).

Listing 12.14 Reading an ATOM feed

438 CHAPTER 12
Working with XML
■ XML is used for exchanging data between client and server.
■ Communication is done on a stateless request/response model over HTTP(S).
■ Resources or services are addressed by a URL.

No binding standard describes the structure of the XML that is sent around. You
need to look into the documentation of each REST service to find out what infor-
mation is requested and provided.

 For an example, we will look into the REST services of the BackPack web appli-
cation. BackPack is an online authoring system based on the Wiki14 concept: It
publishes web pages that the author can edit through the browser. You can find it
at http://www.backpackit.com. If you want to run the examples from this section,
you need to create a free account. You will receive a user-id and a 40-character
token for identification. In the following examples, we will use the user-id user
and *** as the token. When trying the examples, you need to replace these place-
holders with your personal values.

 Occasionally, it’s helpful to update the published information programmati-
cally through the REST API. Suppose you have published information about your
favorite books’ selling rank, your corporate web site’s Alexa15 rating, or your cur-
rent project’s tracking status. With the REST API, you can update such informa-
tion automatically.

 BackPack describes its REST API under http://www.backpackit.com/api. You
will find 32 operations together with the XML structure they expect in the request
and the XML they respond with.

 For example, the create new page operation is available under the URL

http://user.backpackit.com/ws/pages/new

It expects this XML in the request:

<request>
 <token>***</token>
 <page>
 <title>new page title</title>
 <description>initial page body</description>
 </page>
</request>

14 Bo Leuf and Ward Cunningham, The Wiki Way: Quick Collaboration on the Web (Addision-Wesley Pro-
fessional, 2001).

15 www.alexa.com is a rating service for the popularity of web sites.

Distributed processing with XML 439
If the operation is successful, it returns

<response success='true'>
 <page title='new page title' id='1234' />
</response>

Now, how do you get this running from Groovy? You need some way to connect to
the URL and send the request XML. You can do this with a UrlConnection and the
POST method. The API additionally demands that you set the request header
'X-POST_DATA_FORMAT' to 'xml'. It would be nice to put all the infrastructure code
in one place and provide your own little Groovy-friendly API.

 To use this API to create a new page, update the content, and finally delete it,
the code should be as simple as in Listing 12.15.

def bp = new BackPack(account:"user", key:"***")

def response = bp.newPage("Page Title", "Page Description")
def pageId = response.page.@id
println "created page $pageId"

response = bp.updateBody(pageId, "new Body")
println "updating body ok: ${response.@success}"

response = bp.destroyPage(pageId)
println "destroying page ok: ${response.@success}"

When every operation succeeds (and when you have the appropriate API in
place), listing 12.15 prints

created page 383655
updating body ok: true
destroying page ok: true

The infrastructure class BackPack that implements the Groovy API to the Back-
Pack REST API was written by John Wilson, the grandmaster of Groovy XML, and
the full version is available at http://www.wilson.co.uk/Groovy/BackpackAPI.txt.

 Listing 12.16 shows a stripped-down version of the original, not covering all
operations and without proper error handling. This implementation makes
the code in listing 12.15 run, shows the infrastructure code needed for using the
HTTP POST method, uses the typical Groovy trick of overriding invokeMethod to
make a nice API, and is another compelling example of using builders and pars-
ers with streams.

Listing 12.15 BackPack page manipulation through the Groovy REST API

440 CHAPTER 12
Working with XML
import groovy.xml.StreamingMarkupBuilder

class BackPack {
 def account
 def key
 def slurper = new XmlSlurper()
 def builder = new StreamingMarkupBuilder()
 def methods = [
 newPage: { title, description ->
 makeRemoteCall("pages/new",
 { it.page {
 it.title(title); it.description(description)
 } }) },
 destroyPage: { pageNumber ->
 makeRemoteCall("page/${pageNumber}/destroy", "")
 },
 updateBody: { pageNumber, description ->
 makeRemoteCall("page/${pageNumber}/update_body",
 { it.page { it.description(description) } })
 },
]

 def makeRemoteCall(typeOfRequest, body) {
 def url="http://${account}.backpackit.com/ws/$typeOfRequest"
 def httpConnection = new URL(url).openConnection()
 httpConnection.addRequestProperty("X-POST_DATA_FORMAT","xml")
 httpConnection.requestMethod = "POST"
 httpConnection.doOutput = true
 httpConnection.outputStream.withWriter("ASCII") {
 it << builder.bind {
 request { token key; delegate.mkp.yield body }
 }
 }
 if (httpConnection.responseCode == httpConnection.HTTP_OK) {
 return slurper.parse(httpConnection.inputStream)
 }
 def msg = "Operation failed: ${httpConnection.responseCode}"
 throw new GroovyRuntimeException(msg)
 }

 public invokeMethod(String name, params) {
 def method = methods[name]
 return method(*params.toList())
 }
}

Listing 12.16 BackPack infrastructure class that implements the Groovy REST API

Map method names
to closures

b

Empty
bodyc

Build and
send XML
request

d

Parse the XML response
into a GPathResult

When a method is
invoked, use the
closure map

Distributed processing with XML 441
A call to bp.newPage will be handled by invokeMethod, which looks up the name
newPage in the methods map declared at b. The methods map stores a closure
under that name, which invokeMethod immediately calls d, relaying all parame-
ters (title and description) to it.

 The closure calls the makeRemoteCall method, providing the distinctive part of
the URL that locates the service and a markup closure that is used at c to build the
request XML.

 When using a REST API, it is often beneficial to create an infrastructure class
like BackPack in listing 12.16. It is hardly possible to provide a more general
solution that can be used with every REST service, because there is no standard
that you can build upon.

 You will see how useful such a standard is when we look into XML-RPC in the
next section.

12.3.4 Using XML-RPC

The XML-RPC specification is almost as old as XML. It is extremely simple and
concise. See http://www.xmlrpc.com for all details.

 Thanks to this specification, Groovy can provide a general implementation for
many of the infrastructure details that you have to write for REST. This general
implementation comes with the Groovy distribution.16 There is nothing extra you
have to do or install to make this easy distributed processing environment work.

 Perhaps the best way to convince you of its merits is by example. Suppose you
have a simple XML-RPC server running on your local machine on port 8080 that
exposes an echo operation that returns whatever it receives. Using this service
from a Groovy client is as simple as

import groovy.net.xmlrpc.XMLRPCServerProxy as Proxy

def remote = new Proxy('http://localhost:8080/')

assert 'Hello world!' == remote.echo('Hello world!')

Installing a server that implements the echo operation is equally easy. Create a
server instance, and assign a closure to its echo property:

import groovy.net.xmlrpc.XMLRPCServer as Server

def server = new Server()

server.echo = { return it }

16 It’s not in groovy-all-*.jar but in the GROOVY_HOME/lib directory.

442 CHAPTER 12
Working with XML
Finally, the server must be started on a ServerSocket before the client can call it,
and it must be stopped afterward. Listing 12.17 installs the echo server, starts
it, requests the echo operation, and stops it at the end.

// requires groovy-xmlrpc-0.3.jar in classpath
import groovy.net.xmlrpc.XMLRPCServerProxy as Proxy
import groovy.net.xmlrpc.XMLRPCServer as Server
import java.net.ServerSocket

def server = new Server()
server.echo = { return it }

def socket = new ServerSocket(8080)
server.startServer(socket)

remote = new Proxy("http://localhost:8080/")
assert 'Hello world!' == remote.echo('Hello world!')

server.stopServer()

Having client and server together as shown in listing 12.17 is useful for testing pur-
poses, but in production these two parts usually run on different systems.

 XML-RPC also defines fault handling, which in Groovy XML-RPC is available
through the XMLRPCCallFailureException with the properties faultString and
faultCode.

 The areas of applicability for XML-RPC are so wide that any list we could come
up with would be necessarily incomplete. It is used for reading and posting to
blogs, connecting to instant messaging systems (over the Jabber protocol for sys-
tems such as GoogleTalk17), news feeds, search engines, continuous integration
servers, bug-tracking systems, and so on.

 It’s appealing because it is powerful and simple at the same time. Let’s for
example find out information about the projects managed at Codehaus.18 Code-
haus provides the JIRA19 bug-tracking system for its hosted projects.

Listing 12.17 Self-contained XML-RPC server and client for the echo operation

17 See Guillaume’s excellent article on how to use GoogleTalk through Groovy at http://glaforge.free.fr/
weblog/index.php?itemid=142.

18 www.codehaus.org is the open source platform that hosts popular open source projects such as Groovy
and Maven.

19 Find information about the JIRA XML-RPC methods at http://confluence.atlassian.com/display/JIRA/
JIRA+XML-RPC+Overview.

Client
code

Distributed processing with XML 443
 Printing all project names can be done easily with the following code:

import groovy.net.xmlrpc.XMLRPCServerProxy as Proxy

def remote = new Proxy('http://jira.codehaus.org/rpc/xmlrpc')

def loginToken = remote.jira1.login('user','***')
def projects = remote.jira1.getProjects(loginToken)
projects.each { println it.name }

It’s conventional for operations exposed via XML-RPC to have a dot-notation like
jira1.login. Groovy’s XML-RPC support can deal with that.

 However, if you call a lot of methods, using remote.jira1. gets in the way of
readability. It would be nicer to avoid that. Listing 12.18 has a solution. Calls to
proxy methods can always optionally take a closure. Inside that closure, method
names are resolved against the proxy. We extend this behavior with a specialized
JiraProxy that prefixes method calls with jira1..

 To make things a bit more interesting this time, we print some information
about the Groovy project in the Codehaus JIRA.

import groovy.net.xmlrpc.XMLRPCServerProxy as Proxy

class JiraProxy extends Proxy {
 JiraProxy (url) { super (url) }
 Object invokeMethod(String methodname, args) {
 super.invokeMethod('jira1.'+methodname, args)
 }
}

def jira = new JiraProxy('http://jira.codehaus.org/rpc/xmlrpc')

jira.login('user','***') { loginToken ->
 def projects = getProjects(loginToken)
 def groovy = projects.find { it.name == 'groovy' }
 println groovy.key
 println groovy.description
 println groovy.lead
}

This prints

GROOVY
Groovy JVM language.
guillaume

Listing 12.18 Using the JIRA XML-RPC API on the Groovy project

444 CHAPTER 12
Working with XML
Note the simplicity of the code. Unlike with REST, you don’t need to work on XML
nodes, either in the request or in the response. You can just use Groovy datatypes
such as strings (user), lists (projects), and maps (groovy). Who can ask for more?

 There would be a book’s worth more to say about XML-RPC and its Groovy
module, especially about implementing the server side. But this book has only so
many pages, and you need to refer to the online documentation for more details
and usage scenarios.

 You now have the basic information to start your work with XML-RPC. Try it!
Of all the distributed processing approaches, this is the one that feels the most
groovy to us.

 We will close our tour through the various options for distributed processing
with the all-embracing solution: SOAP.

12.3.5 Applying SOAP

SOAP is the successor of XML-RPC and follows the approach of providing a
binding standard. This standard is maintained by the W3C; see http://www.w3.org/
TR/soap/.

 The SOAP standard extends the XML-RPC standard in multiple dimensions.
One extension is datatypes. Where XML-RPC allows only a small fixed set of
datatypes, SOAP provides means to define new service-specific datatypes. Other
frameworks, including CORBA, DCOM, and Java RMI, provide functionality simi-
lar to that of SOAP, but SOAP messages are written entirely in XML and are there-
fore platform and language independent. The general approach of SOAP is to
allow a web service to describe its public API: where it is located, what operations are
available, and the request and response formats (called messages). A SOAP service
makes this information available via the Web Services Definition Language (WSDL).

 SOAP has been widely adopted by the industry, and numerous free services are
available, ranging from online shops through financial data, maps, music, pay-
ment systems, online auctions, order tracking, blogs, news, picture galleries,
weather services, credit card validation—the list is endless.

 Numerous programming languages and platforms provide excellent support
for SOAP. Popular SOAP stack implementations on the Java platform include
Jakarta Axis (http://ws.apache.org/axis/) and XFire (http://xfire.codehaus.org/).
Built-in SOAP support for Groovy is still in its infancy, but it’s already in use for
production projects. First, we will explore how you can use SOAP with pure
Groovy in an effective yet concise manner.

Distributed processing with XML 445
Doing SOAP with plain Groovy
Our example uses a web service at http://www.webservicex.net, which provides a
lot of interesting public web services. First, we fetch the service description for its
currency converter like so:

import groovy.xml.Namespace

def url = 'http://www.webservicex.net/CurrencyConvertor.asmx?WSDL'

def wsdl = new Namespace('http://schemas.xmlsoap.org/wsdl/','wsdl')
def doc = new XmlParser().parse(url)

println doc[wsdl.portType][wsdl.operation].'@name'

This prints the available operations:

["ConversionRate", "ConversionRate", "ConversionRate"]

The service exposes three operations named ConversionRate with different char-
acteristics.20 We are interested in one that takes FromCurrency and ToCurrency as
input parameters and returns the current conversion rate. Currencies can be
expressed using a format like 'USD' or 'EUR'.

 SOAP uses something called an envelope format for the request. The details are
beyond the scope of this chapter—see the specifications for details. Our envelope
looks like this:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ConversionRate xmlns="http://www.webserviceX.NET/">
 <FromCurrency>${from}</FromCurrency>
 <ToCurrency>${to}</ToCurrency>
 </ConversionRate>
 </soap:Body>
</soap:Envelope>

As you see from the ${} notation, this envelope is a template that we can use with
a Groovy template engine.

 Listing 12.19 reads this template, fills it with parameters for US dollar to euro
conversion, and adds it to a POST request to the service URL. The request needs
some additional request headers—for example, the SOAPAction to make the

20 For advice on how to read a WSDL service description, refer to http://www.w3.org/TR/wsdl.

446 CHAPTER 12
Working with XML
server understand it. We explicitly use UTF-8 character encoding to avoid any
cross-platform encoding problems.

 The service responds with a SOAP result envelope. We know it contains a node
named ConversionRateResult belonging to the service’s namespace. We locate
the first such node in the response and get the conversion rate as its text value.

import groovy.text.SimpleTemplateEngine as TEMPLATE
import groovy.xml.Namespace

def file = new File('data/conv.templ.xml')
def template = new TEMPLATE().createTemplate(file)

def params = [from:'USD', tofil:'EUR']
def request = template.make(params).toString().getBytes('UTF-8')

def url = 'http://www.webservicex.net/CurrencyConvertor.asmx'
def conn = new URL(url).openConnection()
def reqProps = [
 'Content-Type': 'text/xml; charset=UTF-8',
 'SOAPAction' : 'http://www.webserviceX.NET/ConversionRate',
 'Accept' : 'application/soap+xml, text/*'
]
reqProps.each { key,value -> conn.addRequestProperty(key,value) }

conn.requestMethod = 'POST'
conn.doOutput = true
conn.outputStream << new ByteArrayInputStream(request)
if (conn.responseCode != conn.HTTP_OK) {
 println "Error - HTTP:${conn.responseCode}"
 return
}

def resp = new XmlParser().parse(conn.inputStream)

def serv = new Namespace('http://www.webserviceX.NET/')
def result = serv.ConversionRateResult

print "Current USD to EUR conversion rate: "
println resp.depthFirst().find{result == it.name()}.text()

At the time of writing, it prints

Current USD to EUR conversion rate: 0.8449

Listing 12.19 Using the ConversionRate SOAP service

Templated envelope
of SOAP request

Request headers to
use every time

Send the
request

Parse the
response

Extract the result

Distributed processing with XML 447
This is straightforward in terms of each individual step, but taken as a whole,
the code is fairly cumbersome. One point to note about the implementation is
hidden in locating the result in the response envelope. We use the serv
namespace and ask it for its ConversionRateResult property, which returns a
QName. We assign it to the result variable and make use of the fact that QName
implements the equals method with strings such that we find the proper node.

 SOAP is verbose compared to other approaches. It is verbose in the code it
demands for execution and—more important—it is verbose in its message for-
mat. It is not unusual for SOAP messages to have 10 times more XML markup
then the payload size.

 However, the SOAP standard makes it possible to provide general tools for
dealing with its complexity.

Simplifying SOAP access with the GroovySOAP module

One of these tools is the GroovySOAP module, which eases the process of using
web services. Download the required jar files as outlined at http://groovy.
codehaus.org/Groovy+SOAP, and drop them into your GROOVY_HOME/lib direc-
tory. As an example of what you get from the GroovySOAP, listing 12.20 imple-
ments the SOAP client for the conversion rate service with a minimum of effort.

import groovy.net.soap.SoapClient

def url = 'http://www.webservicex.net/CurrencyConvertor.asmx?WSDL'
def remote = new SoapClient(url)

println 'USD to EUR rate: '+remote.ConversionRate('USD', 'EUR')

Now, that’s a lot groovier! Should your server be using a complex datatype in its
response, GroovySOAP will unmarshall it and define a variable in your script.
This can be demonstrated using the weather forecast located at webservicex.net.
Using a place name located in the USA as an input, the web service replies with a
one-week weather forecast in a complex document. Listing 12.21 nicely presents
the data with the help of GroovySOAP.

Listing 12.20 Using the SoapClient from the GroovySOAP module

448 CHAPTER 12
Working with XML
import groovy.net.soap.SoapClient

def url = 'http://www.webservicex.net/WeatherForecast.asmx?WSDL'
def proxy = new SoapClient(url)
def result=proxy.GetWeatherByPlaceName("Seattle")

println result.latitude
println result.details.weatherData[0].weatherImage

Here’s the output:

47.6114349
http://www.nws.noaa.gov/weather/images/fcicons/sct.jpg

Publishing a SOAP service with GroovySOAP
Suppose now that you want to develop your own server. GroovySOAP allows the
construction of such a service from a simple Plain Old Groovy Object (POGO) rep-
resenting your business logic. If you wanted to set up a small math server,21 you
could have a script that looks like listing 12.22.

 double add(double op1, double op2) {
 return (op1 + op2)
 }

 double square(double op1) {
 return (op1 * op1)
 }

Note that there is nothing about the script that suggests it has anything to do with
a web service. Listing 12.23 exposes this POGO as a web service.

import groovy.net.soap.SoapServer

def server = new SoapServer("localhost", 6990)
server.setNode("MathService")
System.out.println("start Math Server")
server.start()

Listing 12.21 Using complex data types with the SoapClient

21 Simple calculations and currency conversions have become the “hello world” of web service examples.

Listing 12.22 The Groovy SOAP service script MathService.groovy

Listing 12.23 Using the SoapServer from the GroovySOAP module

Summary 449
This little bit of magic is possible thanks to the delegation pattern and introspec-
tion that enables GroovySOAP to generate automatically the web service interface
by filtering the methods inherited from the GroovyObject interface.

 It’s worth paying attention to this area of ongoing Groovy development. We
anticipate that before long, new SOAP tools will arise and provide more function-
ality for using web services with Groovy.

12.4 Summary

XML is such a big topic that we cannot possibly touch all bases in an introductory
book on Groovy. We have covered the most important aspects in enough detail to
provide a good basis for experimentation and further reading. When pushing the
limits with Groovy XML, you will probably encounter topics that are not covered
in this chapter. Don’t hesitate to consult the online resources.

 At this point, you have a solid basis for understanding the different ways of
working with XML in Groovy.

 Using the familiar Java DOM parsers in Groovy enables you to work on the
standard org.w3c.com.Node objects whenever the situations calls for it. Such
nodes can be retrieved from the DOMBuilder, conveniently accessed with the help
of DOMCategory, and investigated with XPath expressions. Groovy makes life with
the DOM easier, but it can’t rectify some of the design decisions that give surprises
or involve extra work for no benefit.

 Groovy’s internal XmlParser and XmlSlurper provide access to XML documents
in a Groovy-friendly way that supports GPath expressions for working on the doc-
ument. XmlParser provides an in-memory representation for in-place manipula-
tion of nodes, whereas XmlSlurper is able to work in a more stream-like fashion.
For even further memory reductions, you can also use SAX and StAX.

 Finally, it’s easy to send XML around the world to make networked computers
work together, sharing information and computing power. XML-RPC and SOAP
have support in the Groovy libraries, although that support is likely to change sig-
nificantly over time. REST can’t benefit from such support as easily (not even in
the dynamic world of Groovy) due to a lack of standardization, but you have seen
how the use of builders can make the development of an API for a specific REST
service straightforward.

 Whatever your XML-based activity, Groovy is likely to have something that will
ease your work. By now, that shouldn’t come as a surprise.

Part 3

Everyday Groovy

In the course of this book, you have seen a large portion of Groovyland.
Part 1 introduced you to the Groovy language, datatypes, operators, control
structures, and even the Meta-Object Protocol. Part 2 led you through the
Groovy library, showing builders, templates, numerous JDK enhancements,
working with databases, and XML support. Your backpack is filled with lots of
valuable knowledge that waits to be brought to new horizons.

 Part 3 will give you guidance on how to best apply your knowledge in your
day-to-day work, where the happy paths of Groovy lead though uncharted ter-
rain, and how to employ your tools wisely.

 It starts with chapter 13, which reveals tips and tricks of the experts: how to
avoid common pitfalls; making use of a snippet collection; command-line and
automation support; and finally laying out the workspace such that coding,
debugging, profiling, and the like work well together.

 Chapter 14 elaborates on unit testing, an activity that no self-respecting pro-
fessional developer can work without. With a clever mix of the Groovy wisdom
you’ve already acquired and a bit of guidance through Groovy’s excellent testing
support, you will be able to appreciate unit testing as another strength of Groovy.

 Chapter 15 bridges the world of Java and Groovy to the Windows platform,
where lots of developers do their daily work. It presents how to put Groovy’s
expressiveness into action for automation of Windows controls and applications.

 Finally, chapter 16 comes as a bonus for all the diligent readers who held
out until the very end. You will be reimbursed with a sneak peek into Grails,
the (web) application framework that leverages J2EE, Hibernate, Spring, and
Groovy to allow rapid application development at industrial strength.

Tips and tricks
The competent programmer is fully aware of
the limited size of his own skull. He therefore
approaches his task with full humility, and
avoids clever tricks like the plague.

 —Edsger Dijkstra
453

454 CHAPTER 13
Tips and tricks
Learning language features and library APIs is one thing; using a language for your
everyday programming tasks has its own challenges. As the saying goes, “In theory,
practice and theory are one and the same. In practice, they’re not.” This chapter
attempts to bridge the gap, giving some insight into what it’s like to use Groovy for
real, and (we hope) steering you clear of some of the potholes others (including us)
have run into.

 Closures are a good example of the gulf between practice and theory. They
may appear unfamiliar and difficult in the language description, but they turn
out to be simple and straightforward in everyday use. Other concepts may appear
simple but have certain consequences that the programmer needs to be aware of
to avoid typical pitfalls. This is covered in section 13.1.

 Furthermore, the features of Groovy often suggest a certain way of approach-
ing a task that is different from Java or other languages. In such cases, although
there is a certain comfort level in staying with what you know, you will generally
become more productive if you follow the Groovy idioms. This isn’t because
“Groovy knows best” (although of course we believe that the Groovy way is usually
the best way), but because it’s generally easier to go with the flow of a language
than to fight against it. We show a few pieces of Groovy idiom in sections 13.2, 13.3,
and 13.4.

 Software development consists of more than just the programming; it also
includes debugging, profiling, and setting up the working environment to make
programming easier. Section 13.5 gives hints for organizing your work.

13.1 Things to remember

The following sections should remind you about some Groovy idiosyncrasies that
result from its language design and dynamic nature. Take this as a checklist of
topics that have been presented earlier in this book and that you should not for-
get. It’s also handy as a list of potential “gotchas” to run down if your code isn’t
behaving as you expect it to.

13.1.1 Equality versus identity

The distinction between equality and identity is one of the first things you learn
about Groovy. There are some consequences you should be aware of. Table 13.1
has the comparison between Java and Groovy idioms of equality and identity.

 Groovy equality isn’t necessarily commutative; it isn’t guaranteed that a==b is
the same as b==a. A programmer may choose to override equals and break this
behavior, even though you shouldn’t do so.

Things to remember 455
Furthermore, Groovy allows null in equality checks:

null == null // is true
null == 1 // is false

You cannot do that in Java, because null.equals(b) would throw a NullPointer-
Exception.

13.1.2 Using parentheses wisely
When in doubt, you can use the Java style of using parentheses: always putting
parentheses around method arguments. On the other hand, leaving out paren-
theses can often enhance readability by focusing the eye of the reader on the guts
of the code. You have the choice between the following:

println 'hi'
println('hi')

However, if no arguments are given, the parentheses are mandatory to distin-
guish method calls from property access:

println() // ok
println // <- fails with MissingPropertyException

The MissingPropertyException is thrown because with no arguments and no
parentheses given, Groovy assumes you are looking for the println property and
would call getPrintln if there were such a method.

 Note that this is different from other languages with optional elements of syn-
tax, such as Ruby. Another difference is that parentheses can be omitted only for
method calls that are top-level statements. In other words, parentheses are man-
datory for method calls that are used in expressions:

'abc'.substring 1,3 // ok
x = 'abc'.substring 1,3 // assignment expression -> parser error
println 'abc'.substring 1,3 // argument expression -> parser error

Finally, putting symbols in parentheses forces the Groovy parser to resolve the
symbol as an expression. This can be helpful when specifying keys in maps. Con-
sider a map like

map = [x:1]

Table 13.1 Equality and identity in Groovy compared to Java

Groovy Java

Equality a == b a.equals(b)

Identity a.is(b) a == b

456 CHAPTER 13
Tips and tricks
which is equivalent to

map = ['x':1]

Now, what if you have a variable x in scope, and you would like to use its content
as a key in the map? You can enforce that with parentheses around x:

def x = 'a'
assert ['a':1] == [(x):1]

This trick is also described in section 14.3.

13.1.3 Returning from methods and closures

Remember that inside a closure, return returns from the closure, not from the
method the closure was passed to as an argument, nor from any method sur-
rounding the closure definition. Suppose you run a line like

[1,2,3].each { print it; return }

This prints 123, not 1 as some might expect, because return returns from the clo-
sure, not from the each method. The closure is called three times, and each time
it is left via return. Compare this to

for (it in [1,2,3]) { print it; return }

which prints 1 because return now leaves the current block. With this difference
in mind, you can guess what this snippet does:

def myMethod() {
 [1,2,3].each { print it; return }
}
myMethod()

Right, it prints 123. Again, the return keyword only leaves the closure, not the
surrounding myMethod.

 So, how can you write closure code that leaves a method prematurely? There
currently is only one way—by throwing an exception:

def myMethod() {
 [1,2,3].each { print it; throw new RuntimeException() }
}
try {myMethod()} catch (Exception e){}

This prints 1. However, this code is really ugly. Alternatives are in the works but
not yet available at the time of writing. See also section 5.6.

 The groovier way to leave an iteration prematurely is different. If possible, you
should attempt to iterate over the right set of elements to start with, rather than

Things to remember 457
aborting the iteration early. The methods find, findAll, and grep and the sub-
script operator with indexes or ranges are your friends here. The following lines
show some alternatives:

list[0..1] .each { processing(it) }
list.find{ it == 2 } .each { processing(it) }
list.findAll{ it % 2 == 0}.each { processing(it) }
list.grep(~/\d/) .each { processing(it) }

In essence, you’re using a GPath to restrict the work items declaratively rather
than using control structures in a procedural way. This course of action isn’t
always available, but it should be used where it is both possible and elegant. When
you follow this style, you have the additional benefit of separating the concerns of
selecting items and processing them.

13.1.4 Calling methods in builder code

Suppose you are going to build nodes with NodeBuilder such that you get an outer
node containing a nested middle node with an inner node like this:

outer() {
 middle() {
 inner()
 }
}

The usual code for producing this structure with NodeBuilder is straightforward:

new NodeBuilder().outer {
 middle {
 inner()
 }
}

Now, suppose you would like to extract the production of the middle and inner
nodes to a method. You might want to do this because the production is compli-
cated or you use that production logic in multiple places. Let’s call the new
method produce.

 You cannot implement it as

def produce(){
 middle { // fails - no such method!
 inner()
 }
}

and call it like this:

458 CHAPTER 13
Tips and tricks
new NodeBuilder().outer {
 produce()
}

Groovy will complain because it can’t find the middle method. Within the scope of
the produce method, you have to make the builder known to the first method call
on the builder:

def builder = new NodeBuilder()

builder.outer {
 produce()
}
def produce(){
 builder.middle(){ // needs the builder reference
 inner() // now it's known
 }
}

Alternatively, you can use the following to avoid using a shared variable—if
your production code is in a different class to the declaration of the builder,
for example:

def builder = new NodeBuilder()

builder.outer {
 produce(builder)
}
def produce(builderContext){
 builderContext.middle(){
 inner()
 }
}

In both cases, you make the reference to the NodeBuilder available in the produce
method in order to get back into the context of the builder. Once the first method
call has been made, the builder will set the delegate of the closure to the builder,
which is why the call to inner doesn’t need to be made explicitly on the builder.

 Apart the builder reference, there is another issue to keep in mind when using
methods from within builder code: how the produce method is looked up. Why
does the preceding code call the produce method we’ve defined rather than cre-
ating a new node called produce?

 Before doing any builder-specific handling of a method call, the builder first
tries calling the method on the owner. The builder handles the method call (by
building nodes, for example) only if the owner doesn’t handle the method.

 Consequently, in the preceding code, there would be a conflict if there were
another method called inner within the script.

Things to remember 459
 All builders that come with the Groovy distribution obey this rule. All builders
that subclass BuilderSupport also have this behavior by default. However, the pri-
ority of local method lookup in builders cannot be guaranteed for all possible
builders, because a pathological builder implementation may choose to override
it, even though this is not advised.

13.1.5 Qualifying access to “this”

When referring to fields or methods from within the same class, most of the time
it’s optional to prefix the name of the field or method with the this. qualifier.
This behavior is equivalent to that of Java.

Disambiguation in Java
Even in Java, this prefix is sometimes used for disambiguation. The typical use is
to distinguish between a local variable and an instance variable, either in a con-
structor or in a property setter, for example:

MyClass (Object myField) { // Java constructor example
 this.myField = myField;
}

void setField (Object myField) { // Java property setter example
 this.myField = myField;
}

Disambiguation in Groovy
In Groovy, the need for distinction goes beyond that. Listing 13.1 combines
examples for using the this prefix to differentiate between local variables, fields,
and properties.

class ExplicitThisTest extends GroovyTestCase {
 def zero = 0

 def getZero() { return 1 }

 def callMePlain(zero) {
 return zero
 }
 def callMeQualified(zero) {
 return this.zero
 }

 void testZero() {

Listing 13.1 Using this to distinguish between property and field access

460 CHAPTER 13
Tips and tricks
 assert 0 == zero
 assert 0 == this.zero
 assert 0 == this.@zero
 assert 1 == getZero()
 assert 2 == callMePlain(2)
 assert 0 == callMeQualified(2)
 assert 1 == new ExplicitThisTest().zero
 assert 0 == new ExplicitThisTest().@zero
 }
}

It goes without saying that it is always good practice to avoid such name clashes.
But they sometimes occur accidentally, such as when performing a renaming
refactoring.

 If you ever find yourself unsure about what’s going on but do want to make a
lookup against this, it’s worth qualifying it, even if you decide that would be the
default behavior anyway. There’s no need to make a maintenance engineer go
through the same hoops as you to work out behavior.

 A reference prefix like this is always needed when denoting method closures. A
reference like &myMethod will never work; only using a reference like this.&myMethod
works. The same is true for field access with the @ sign, as in this.@zero, which
cannot be used without a preceding reference.

13.1.6 Considering number types

Groovy shines at capturing business logic in a declarative style. In the financial busi-
ness and in scientific research, this often means lots of formulas and calculations.

 In this scenario, you need to remember that Groovy returns BigDecimal
objects from the division operator, and any BigDecimal math is slow compared to
other number types.

 When calculations are used extensively, it is profitable to avoid full floating-
point division operations where possible. For example, you may want to calculate
monetary values with cents instead of dollars and use intdiv for division. This
proved to be useful in the first big commercial project that was fully implemented
in Groovy.

 Although Groovy relieves the programmer of tinkering with number types in
a lot of places, there are remaining areas that need attention. Suppose we need
to print the sine values from zero to 2p at every increment of p/2. Expected val-
ues would be close to 0, 1, 0, -1. The following solution would be straightfor-
ward, but wrong:

Field is used
if available

Parameter is used by method

Field is used by method
Property is used
Field is
used

Things to remember 461
0.step(Math.PI*2, Math.PI/2){ // wrong!
 println "$it : ${Math.sin(it)}"
}

The Integer.step method takes an Integer argument for the upper bound. The
preceding code is like using 0.step(6,PI/2). The correct version needs to call the
step method on a non-integer, such as the BigDecimal 0.0 :

0.0G.step(Math.PI*2, Math.PI/2){ println "$it : ${Math.sin(it)}" }

Note that the G suffix is optional, but helps to make it obvious which dot is part of
the number and which dot is involved in the method call. Whenever you encoun-
ter unexpected values with your calculations, check the number types being used
and the method signatures.

13.1.7 Leveraging Ant
Groovy and Ant make a power duo. From within a Groovy script, all Ant capabil-
ities are easily accessible via AntBuilder. From within an Ant script, all Groovy
capabilities are easily accessible via the <groovy> task. You can take the best of
both worlds, mixing and matching as needed.

Using Ant from Groovy
In section 8.4, you saw how to use AntBuilder. This is a valuable possibility to keep
in mind. There are so many well-engineered Ant tasks that you will often find a
good solution there.

 But there are more reusable components in the Ant distribution than just the
tasks. For example, the Ant fileScanner allows you to get all the File objects of
one or multiple filesets, as shown in listing 13.2. The example scans all the list-
ings in the current directory and—in our usual self-checking manner—asserts
that the result contains our example script.

def files = new AntBuilder().fileScanner {
 fileset(dir: '.') {
 include(name: 'Listing*.groovy')
 }
}
def scriptName = getClass().name + '.groovy'
assert files.collect{ it.name }.contains(scriptName)

The files variable refers to a FileScanner object. Because it has an iterator
method, it supports all Groovy object iteration methods such as collect, which
we use here.

Listing 13.2 Ant fileScanner example

462 CHAPTER 13
Tips and tricks
 A special task that is useful for calling a full Ant script file from Groovy is Ant’s
ant task. It is straightforward to use. To call the build.xml Ant script, use it like

new AntBuilder().ant(antfile:'build.xml')

You can see this as a way to include an Ant build script into a Groovy script. This is
also possible in the opposite direction: You can use Groovy scripts from Ant.

Using Groovy from Ant
Although Ant is extremely powerful, it can’t cater to every eventuality. It uses a
declarative paradigm that is great for many tasks but can get in the way on occa-
sion. As an example, you may have a classpath that is specified as a property in a
compressed form—for instance, as a list of library names (dom4j, hibernate,
spring) instead of as a full list of jar files. The code required (even with the
AntContrib library) to build a classpath from such a list is horrendous, whereas in
Groovy it can be specified very cleanly.

 The <groovy> Ant task allows you to run Groovy code directly from an Ant file,
either using a script file that is specified as a parameter to the task, or inline as
the text content of the task. Listing 13.3 shows a simple Ant build file that calls a
Groovy script included in the body of the build file.

<?xml version="1.0" ?>
<project name="groovy-test" default="test" >

 <taskdef name="groovy"
 classname="org.codehaus.groovy.ant.Groovy"
 classpath="groovy-all-1.0.jar"/>

 <target name="test">
 <groovy>
 println "Running in Groovy"
 </groovy>
 </target>

</project>

The easiest way to make Groovy available to Ant is with a <taskdef> that refers to
the embeddable Groovy jar file. The Groovy script is run within a binding which
knows about various Ant-specific properties, as shown in table 13.2.

Listing 13.3 A simple Ant script running some Groovy code

Things to remember 463
Using the ant variable from the binding allows you to use an AntBuilder that is
transparently aware of the enclosing Ant project and shares its properties, such as
the basedir. Therefore it’s easy to use tasks such as copy, move, and delete, and to
use filesets in general:

<groovy>
 def dirMap = ['old1': 'new1', 'old2': 'new2']
 dirMap.each {old, new -> ant.copy(dir: old, toDir: new) }
</groovy>

The project variable from the binding can also be useful, because project provides
access to a number of interesting features, such as properties, references,1 build
listeners,2 and task definitions. Suppose we want to implement a RulePrinter task
in Groovy and add it to the project:

<groovy>
 class RulePrinter extends Task {
 def size = 40
 def symbol = '*'
 public void execute() { println symbol * size }
 }
 project.addTaskDefinition('ruler', RulePrinter)
</groovy>

<ruler/>
<ruler symbol="--8<-" size="10"/>

Table 13.2 The properties available in the binding when running a Groovy script from Ant with the
<groovy> task

Name in binding Description

ant An AntBuilder with knowledge of the current project

project The project currently being built

properties The current properties (can be modified)

target The currently executing target

task The task wrapping Groovy

1 Projects can store arbitrary objects in references.
2 You can register Groovy listener objects that get notified whenever a task is started and ended; see

http://ant.apache.org/manual/listeners.html.

464 CHAPTER 13
Tips and tricks
The usual way of implementing such an Ant custom task would have been with
Ant’s <scriptdef> task. However, our solution is more elegant and demonstrates
again Groovy’s seamless integration with any Java-based technology.

 The properties property is particularly useful, because it allows you to use the
same means of parameterization within your script as in the rest of your build file.
Note that it lets you set the value of properties, which can be useful when setting
the value involves applying some logic:

properties.'out' = properties.'user.dir'+System.currentTimeMillis()

Ant usually doesn’t modify the value of properties during the run of a build.
Although doing so is technically possible, it is better to avoid this, in order to
comply with the Ant property contract.

 When writing code inline, you need to be careful about characters that have
special meaning within XML—particularly angle brackets. It’s often easiest to use
CDATA sections to avoid even having to worry about it. For example:

<groovy><![CDATA[
 println (Math.random() < 0.5 ? "Lower" : "Higher")
]]></groovy>

An alternative to using the <groovy> task directly is to use Ant’s own <script>
task. Consult the Ant documentation for the options available. The language
should be specified as "groovy".

 Using Groovy in your Ant scripts gives you a way to execute arbitrary logic
without resorting to compiling extra Ant tasks from Java. Although a build tool
would otherwise need to build other tools before it can complete its build, it’s nice
to have an ace up your sleeve such as Groovy.

13.1.8 Scripts are classes but different

One of the biggest misconceptions about Groovy is that a Groovy script will be
interpreted line-by-line. This is not the case.

 When a Groovy script gets executed, it is transformed into a class, and then
the class is executed. This transformation happens transparently to the devel-
oper. However, the process has some consequences that are helpful to be aware of.

Script naming
First and foremost, a class must have a name. Groovy chooses to name your class
by the filename (without the .groovy extension of course). So if you create a script
with content

println x

Things to remember 465
and save it to a file named x.groovy, executing the script via groovy x gives you

class x

This can be surprising. You can lower the risk of such surprises by naming your
script files like classes, with Pascal-cased names such as FileNameFinder.groovy
rather than findFileNames.groovy.

 As soon as you have the file x.groovy on the classpath, using the undeclared
variable x in any of your scripts can produce some odd behavior, because x will
then refer to the class x.

Script inclusion
Only in the simplest possible cases does all script code reside in one file. What is
the Groovy way of including dependent files into a script? There are no include or
require directives, unlike in some other scripting languages.

 The compilation process from scripts to classes would make it difficult to allow
a directive that does a literal inclusion of code that is stored in a dependent script
file. The concept doesn’t fit into the Java world.

 Instead, Groovy offers two alternatives:

■ Make your dependent script a declared class.
■ Evaluate the dependent script via evaluate(file).

We’ve used the first alternative many times throughout the book, even in the ear-
liest examples. Do you remember the Book example that we started the whole
Groovy adventure with? The Book class was declared in a file called Book.groovy.
We then called it from a script using code such as

Book gina = new Book('Groovy in Action')

and called methods on the reference stored in the gina variable. No special
directive is needed for finding the Book.groovy file. The only prerequisite is
that Groovy must be able to find the file on the classpath and must be able to
compile its content. If the lookup or the compilation fails, you’ll encounter a
ClassNotFoundException.3

 The second alternative is using the evaluate method that all scripts inherit
from GroovyShell. The overloads for this method include passing it a File object

3 When a ClassNotFoundException is encountered, it helps to explicitly compile the dependent
.groovy file with groovyc to get a more detailed error message from the compiler. This advice is some-
times misconstrued as “dependent scripts need to be compiled,” which is of course not true.

466 CHAPTER 13
Tips and tricks
to evaluate (see chapter 11). The evaluation of the file will work on the current
binding: It can use variables from the binding, read and change their values, and
add new variables to the binding. The evaluate method returns the value of the
script’s last evaluated expression.

 Let’s assume we have a smart configuration as in listing 13.4 to store a person’s
preferences in nodes, dynamically constructed with NodeBuilder and mixed with
iteration logic to assemble the hours when this person is supposed to appear at
work. We save that script to a file named Preferences.groovy.

def builder = new NodeBuilder()
builder.prefs(name:'Dierk') {
 language('Groovy')
 conference('http://www.waterfall2006.com')
 for (i in 9..17) {
 workingHour(i)
 }
}

The script does not have an explicit return statement, because that would be atyp-
ical for a script. The last evaluated expression serves this purpose, which is the
prefs node. Of course, it is also valid to use an explicit return statement.

 We have a second script in listing 13.5 that makes use of this smart configura-
tion. It does so by using the evaluate method. Some assertions show how to
access information from the smart configuration.

def prefs = evaluate(new File('Preferences.groovy'))

assert prefs.'@name' == 'Dierk'
assert prefs.workingHour*.value().contains(16)

For successful execution of listing 13.5, Preferences.groovy must be saved to the
working directory. Because the filename is used to find the dependent script, this
solution gets brittle in more complex scenarios. As soon as you have multiple
scripts depending on each other, scripts being stored in subdirectories and so on,
you are better off relying on declared classes and the classpath.

Listing 13.4 Preferences.groovy as a smart configuration

Listing 13.5 Including the configuration as a dependent script

Useful snippets 467
If you are keen to work with dependent files but seek more flexibility, look
at the JDK File API to set the parent of a file or use ClassLoader.
getResourceAsStream to read the dependent file as a stream from the
classpath and pass it to the evaluate method.

Now you know a few problems to avoid—but more positive examples are called
for as well. In the next section, we will provide some pieces of code that are self-
contained and can give you ideas during your own product development. They
also give you opportunities for experimentation and enhancement.

13.2 Useful snippets

Here are some code snippets that you may find useful when programming in
Groovy. They are aimed at being idiomatic. We will show you a novel use of clo-
sures, a neat way to modify text with regular expressions, a useful way of indicat-
ing progress in command-line applications, a useful tool to display execution
results line by line, and some advanced uses of GStrings.

13.2.1 Shuffling a collection

Suppose you have a collection—a list, for example—and you would like to shuffle
the content. For instance, you may have track numbers for your Groovy MP3
player and wish to create a random playlist. The Groovy variant of a solution that
is often suggested for scripting languages is

[1, 2, 3, 4, 5].sort { Math.random() } // very questionable solution

This works the following way: when a closure that is passed to the sort method
does not take two parameters (in which case it would have been used as a Compar-
ator) then sort applies the closure to each element before comparing. Because we
return random numbers each comparison has a random outcome.

 Although this works, it is neither efficient nor guaranteed to be stable with all
sort algorithms, nor does it deliver good results.

 Programming in Groovy means you have the wealth of Java at your disposal,
and thus you can use the shuffle method of java.util.Collections:

def list = [1,2,3,4,5]
Collections.shuffle(list)
println list

This solution is efficient and stable, and it leads leads to an even distribution of the
shuffled object; each item has an equal probability of being shuffled to a given index.

 We will reuse this functionality in the next example.

FOR THE
GEEKS

468 CHAPTER 13
Tips and tricks
13.2.2 Scrambling text with regular expressions

You may have heard about the experiment where text remains readable even
though the words in the text are scrambled, as long as the first and last character
don’t change. Look at the following scrambled text. Can you read what it means?

Sarbmlce the inner crharatces of words
laenvig the text sltil reabldae for poeple but
not for cutoermps.

Listing 13.6 implements this scrambling process in Groovy.

def text = '''
Scramble the inner characters of words
leaving the text still readable for people but
not for computers.
'''
println text.replaceAll(/\B\w+\B/) { inner ->
 def list = inner.toList()
 Collections.shuffle(list)
 list.join ''
}

We use a regular expression to find all inner word characters. Then, replaceAll
replaces all occurrences with the result of a closure that is fed the corresponding
match. The match is converted to a list, shuffled, converted to a string, and
returned. The regular expression for finding the inner characters of a word mod-
els the first and last character as a non-word-boundary (\B) with one or more word
characters (\w+) in between.

 The ability to use a closure to build the replacement value for a regular expres-
sion match is often very useful.

 We proceed with other helpful examples of closures.

13.2.3 Console progress bar

Suppose you have a time-consuming task that you need to apply to every file in a
directory. It would be helpful to get some information about the progress: how
much has already been processed, how much is still left to do, and which file is
currently being processed.

 The output should not be longer than a single line on the console, showing
updated information on-the-fly.

Listing 13.6 Scrambling the inner character of words

Text to be
scrambled

Useful snippets 469
 When started on the directory containing this book’s listings, this line may for
example read

::::::::: AthleteDAO.groovy

in between be refreshed to

####::::: Mailman.groovy

and finally be

######### x.groovy

Note: This is all one single displayed line that is updated over time, like a normal
progress bar. If you have used the wget command-line tool for fetching web con-
tent, you have seen the same kind of display there.

 The processFiles method in listing 13.7 takes a closure argument called
notify. This closure is notified whenever a new files starts being processed. This is
equivalent to the Observer pattern.4

 The processFiles method is called with a closure that updates the progress
bar whenever it receives a notification. For simplicity, our processing only consists
of sleeping a little, and processing is done for files in the current directory only.

def processFiles(notify) {
 def names = new File('.').list()
 names.eachWithIndex { name, i ->
 notify(i * 10 / names.size(), name)
 sleep 50
 }
}
processFiles { filled, info ->
 print '\b' * 61
 print '#'*filled + ':'*(10-filled) +' '+ info.padRight(50)
}

Of course, this snippet could be extended in a number of ways. However, even
running this simple version on the console is fun and worthwhile.

 We will look into more cool things you can do with the console in the
next example.

4 See Erich Gamma et al, Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley,
1995) for an explanation.

Listing 13.7 Printing a progress bar on the console

The real file operation
would go here

470 CHAPTER 13
Tips and tricks
13.2.4 Self-commenting single-steps

How about a snippet that reads a codebase and prints it to the console with an
indication what each line evaluates to? Example output could look like this:

data = [0,1,2,3] //-> [0, 1, 2, 3]
data[1..2] //-> [1, 2]
data.collect { it / 2 } //-> [0, 0.5, 1, 1.5]

Saving this output back to the original file would mean we have written a piece of
code that is able to write comments about itself.

 Listing 13.8 reveals how to achieve this. We split the code by line, ignore
empty lines, print each line, and finally evaluate the line and print the result.

def show(code) {
 for (line in code.split("\n")){
 if (!line) continue
 print line.padRight(25) + '//-> '
 println evaluate(line).inspect()
 }
}
show '''
data = [0,1,2,3]
data[1..2]
data.collect { it / 2 }
'''

But wait—didn’t we say that you cannot evaluate Groovy code line-by-line? Yes,
and the example works only because data has no declaration, which Groovy takes
as a hint to put it into the current binding. Each line is evaluated separately, but
the binding is passed onto the GroovyShell that conducts the evaluation. The first
line adds data to the binding; the second line reads data from the binding when
getting the 1..2 range from it.

 What would happen if the first line read List data = [0,1,2,3]? At that point,
data would be a local variable in the script and so would not be added to the bind-
ing. The first line would still evaluate correctly, but the second line will fail
because data would not be known in the scope of the GroovyShell that evaluates
the second line.

 That means that the applicability of our single-step printer is very restricted.
However, it makes a good example to sharpen your understanding of scripts
being classes rather than sequences of evaluated lines.

Listing 13.8 Evaluating and printing line-by-line

Evaluate each non-empty
line in its own GroovyShell

Useful snippets 471
13.2.5 Advanced GString usage

In the majority of cases, GStrings are used for simple formatting with the place-
holders resolved immediately, as in

println "Now is ${new Date()}"

GStrings have a special way in which they resolve any contained placeholders. At
the time of the GString creation, they evaluate each placeholder and store a ref-
erence to the result of that evaluation within the GString object. At the time of
transformation into a java.lang.String, each reference is asked for its string rep-
resentation in order to construct the fully concatenated result.

 In other words: Although the placeholder resolution is eager, writing the refer-
ences is lazy. The interesting point comes when a placeholder reference refers to
an object that changes its string representation over time, especially after the
GString was constructed. There are a number of objects that behave like this, such
as lists and maps that base their string representation on their current content.
Listing 13.9 uses a list to demonstrate this behavior and a typical Groovy object
that writes itself lazily: a writable closure.

def count = 0
def data = []

def counter = { it << count }.asWritable()

def stanza = "content $counter is $data"

assert 'content 0 is []' == stanza

count++
data << 1

assert 'content 1 is [1]' == stanza

Note how the stanza GString b first works on the current values of count and
data but changes its string representation when count and data change.

 This behavior enables GStrings to be used as a lightweight alternative to
Groovy’s template engines (see section 9.4).

 One word of caution: You need to be extremely careful when using such
dynamic GStrings as elements of a HashSet or as keys in a HashMap. In general, you
should avoid doing so, because the hash code of the GString will change if its

Listing 13.9 Writing GString content lazily

GString works
as templateb

472 CHAPTER 13
Tips and tricks
string representation changes. If the hash code changes after the GString has
been inserted into a map, the map cannot find the entry again, even if you
present it with the exact same GString reference.

 Writing idiomatic Groovy is one side of working with the language instead of
fighting against it. Another side is using the tools provided as effectively as possi-
ble. In the next section, we will give more information on the groovy tool used to
run scripts and classes.

13.3 Using groovy on the command line

While working through the book, you have used the groovy command to execute
Groovy programs and scripts. It has some additional options to use it on the com-
mand line or as a client-server program. We will explore the evaluation of short
scripts specified on the command line, processing text files line-by-line, setting
up very simple servers, and performing in-place file modifications.

 Table 13.3 lists the command-line options for the groovy command.

The -c/--encoding, -d/--debug, and -v/--version options are self-explanatory.
The other options will be demonstrated by example. But first, let’s try running a
short script.

Table 13.3 Command-line options for the groovy tool

Option Argument Meaning

-c, --encoding Character encoding Specify the encoding of the files

-d, --debug Debug mode will print out full stack traces

-e Text to execute Specify an in-line command-line script

-h, --help Usage information

-i Extension Modify files in place

-l Port Listen on a port, and process inbound lines

-n Process files line by line

-p Process files line by line, and print the result

-v, --version Display the Groovy and JVM versions

Using groovy on the command line 473
13.3.1 Evaluating a command-line script

The -e option (e stands for evaluate) lets you pass one-line scripts to groovy on
the command line as well as pipe output from one command or script as
input to the groovy command. It is similar to the -e option in Perl, Ruby, and
other languages.

 A simple one-liner using -e follows. This script prints the vendor of the JVM in
which Groovy is running, using the java.lang.System class to retrieve the
java.vendor System property value:

> groovy -e "println System.properties.'java.vendor'"

Sun Microsystems Inc.

Note the enclosing quotes around the script: When using –e to pass scripts to
groovy on the command line, make sure you enclose the script in single or double
quotes so that the command or shell interpreter in which you are running (cmd on
Windows or bash on UNIX, for example) does not interpret the contents of your
Groovy script as commands or wildcards for itself.

 Here is an example demonstrating piping the output of one Groovy script
to another Groovy script that takes it as input and transforms the characters to
uppercase. Enter the whole input in one line:

> groovy -e "println System.properties.'java.vendor'" |
 groovy -e "println System.in.text.toUpperCase()"

SUN MICROSYSTEMS INC.

You can also do this with native operating system commands, of course.
 If you pass additional arguments on the command line, they are available to

the script in the args variable. That means you can, for example, count lines in a
file like so:

> groovy -e "println new File(args[0]).readLines().size()" jokes.txt

1024

Alternatively, you could print a random joke:

> groovy -e "lines = new File(args[0]).readLines();
 println lines[(int)(lines.size()*Math.random())]" jokes.txt

A horse goes into a bar … "Hey buddy, why the long face?"

So far, so good—but we’re not making particularly extensive use of the piping fea-
ture of most shells, where the result of one operation can be the input to the next.
That’s just one of the uses for the options we deal with next.

474 CHAPTER 13
Tips and tricks
13.3.2 Using print and line options

The -e option becomes more interesting when combined with other options. The
-p (print) and –n (line) options tell groovy to create an implicit variable named
line from each line of input the groovy command receives from standard input.
Standard input may be sourced from a pipe or from files given as trailing
command-line arguments.

 The line variable is useful when you want to do something for each line of
input rather than for the text of the input stream as a whole.

 Assume there is a file example.txt in the subdirectory data containing

line one
line two
line three

You can cut off the line prefix with

> groovy -pe "line-'line '" data\example.txt
one
two
three

The -p option is essentially the same as -n, except it ensures that the result of pro-
cessing each line is printed to the console (it is an implicit println for each line
processed), whereas with -n you need to explicitly specify print or println for
anything you want to output.

 This can be helpful when filtering, for example, the directory entries for a
given date:

> dir | groovy -ne "if (line.contains('05.02.06')) println line"
05.02.06 17:48 <DIR> .
05.02.06 17:48 <DIR> ..
05.02.06 14:16 272 BraceCounter.groovy

Here’s a second example for system administrators, which uses the input redirec-
tion capabilities of your command shell with the < sign. In a cygwin shell, you
might do something like this:

> groovy -ne 'if (line =~ /dierk/) println line' < /etc/passwd
dierk:unused_by_nt/2000/xp:…:/home/dierk:/bin/bash

Note how the examples read from different input sources: from a file given on the
command line, from the piped output stream of the dir command, and from
streams redirected by the shell. On the command line, you always have a close
interaction with your command shell.

Using groovy on the command line 475
13.3.3 Using the listen mode

The –l (listen) option lets you run a Groovy script in client-server mode. You exe-
cute a script (using –e or specifying a file to execute), and Groovy starts a simple
server on port 1960 (by default; you may override the port setting if you choose).
You can then connect to that server via a telnet application, for example, and run
the script or pass arguments to the script for it to process and return results to
your client.

NOTE Case in point: Jeremy Rayner, one of the core Groovy developers, wrote
a simple HTTP server5 in less than 75 lines of Groovy code!

Here is an example of a tiny script that looks up and returns the IP address of any
hostname it receives. You will need two console windows for this example, one for
the server and one for the client. First start the server. By default, the server will
start on port 1960, but you can specify any unused port on the command line
after the –l option. We’re using port 5000 here:

> groovy -l 5000 -e "println 'ip address: ' +
 InetAddress.getByName(line).hostAddress"

groovy is listening on port 5000

Now the server is running, has opened a socket, and is listening for input on port
5000. Run a telnet client to connect to the server, and send it some hostnames to
look up:

> telnet localhost 5000
Trying ::1...
Connected to localhost.
Escape character is '^]'.
localhost
ip address: 127.0.0.1
java.sun.com
ip address: 209.249.116.141
manning.com
ip address: 64.49.223.143

Line-oriented client-server programming could hardly be simpler.

5 See http://svn.codehaus.org/groovy/trunk/groovy/groovy-core/src/examples/commandLineTools/
SimpleWebServer.groovy.

476 CHAPTER 13
Tips and tricks
13.3.4 In-place editing from the command line

Finally, the –i (in-place edit) option is used when you want your Groovy script to
iterate over a file or list of files, modifying them in place and, optionally, saving
backups of the original files. Here is an example that goes through all *.java files
in the current directory and replaces author tags in the Javadoc such that Dierk’s
full name appears instead of his nickname. For every file, a backup is generated
with a .bak extension:

> groovy -p –i .bak -e
 "line.replaceAll('@author Mittie','@author Dierk Koenig')" *.java

If you do not provide a backup extension, no visible backup file will be generated.
The “visible” part is necessary for accuracy’s sake because behind the scenes,
Groovy creates a backup anyway in your personal temporary folder and deletes it
when finished normally. So, in the worst case, such as when your power supply is
interrupted in the middle of such an operation and your working file is cor-
rupted, you can still recover it from the temporary folder. However, providing a
backup extension is the safer choice.

NOTE You can collapse option sequences such as collapsing –p –e to –pe as long
as, at most, the last one of these options takes an additional parameter. So
groovy –pie will not work as expected because this is interpreted as using
e for an extension (because it’s trailing after i). Additional parameters
can be appended with or without whitespace, so –i.bak and –i .bak are
both valid.

That’s it for the numerous options that groovy can be started with. If you come
from Ruby or Perl, they probably look familiar.

 Now that you can write useful scripts, you can use them to handle minor
chores you have to perform time and time again. Our next section helps to
smooth the process of automating away annoyance.

13.4 Writing automation scripts

A software developer’s range of responsibilities includes many activities that
require monitoring either constantly or on a repetitive schedule. Is the web server
still running? Is the latest state on the build server OK? Is there so much data in
the spam folder that it needs to be cleaned up? Did some prospect download an
evaluation copy of our product?

Writing automation scripts 477
 You can easily feel like a juggler who spins
as many plates as possible and merely keeps
them from falling down. Figure 13.1 suggests
that life would be easier if there were some
device that would take care of keeping the
plates spinning without our constant attention.

 Groovy is well suited to writing those little
“house-elf” scripts that automate our daily
work. We will go through some issues that are
special to command-line scripts, explore the
support provided by Groovy, and visit a series of examples. In particular, we exam-
ine the simple processing of command-line options, starting Java programs with
the minimum of fuss, and scheduling tasks for delayed or repeated execution.

13.4.1 Supporting command-line options consistently

Helper scripts are often started automatically from a scheduler such as cron or at,
or as a service. Therefore, they have no graphical user interface but receive all
necessary configuration on the command line. Starting a script generally looks
like this:

> groovy MyScript –o value

where –o value stands for assigning value to the o option. This is a standard way
of dealing with command-line options that users expect nowadays, and Groovy
supports it in its libraries.

The standard option handling
An option can have a short name and a long name, where the short name consists
of only one character. Short options are tagged on the command line with a sin-
gle dash, such as -h; long names use two dashes, such as --help. Most options are
optional, but certain options may be required.

 Options may have zero, one, or multiple trailing arguments such as filename in
–f filename. Multiple arguments may be separated by a character. When the sep-
aration character is a comma, this looks like --lines 1,2,3.

 When the user enters an invalid command, it is good practice to give an
error indication and print a usage statement. Options may be given in any
sequence, but when multiple arguments are supplied with an option, they are
sequence dependent.

Figure 13.1 Keeping the plates
spinning with lots of scheduled scripts

478 CHAPTER 13
Tips and tricks
 If you had to re-implement the option-parsing logic for every script, you
would probably shy away from the work. Luckily, there’s an easy way to achieve
the standard behavior.

Declaring command-line options
Groovy provides special support for dealing with command-line options.
The Groovy distribution comes with the Jakarta Commons command-line interface
(CLI).6 Groovy provides a specialized wrapper around it.

 The strategy is to specify what options should be supported by the current
script and let the CLI do the work of parsing, validating, error handling, and cap-
turing the option values for later access in the script.

 The specification is done with CliBuilder. With this builder, you specify an
option by calling its short name as a method on the builder, provide a map of
additional properties, and provide a help message. You specify a help option, for
example, via

def cli = new CliBuilder()
cli.h(longOpt: 'help', 'usage information')

Table 13.4 contains the properties that you can use to specify an option
with CliBuilder.

6 See http://jakarta.apache.org/commons/cli/.

Table 13.4 CliBuilder option properties

Property name Type Meaning

argName String Alias for being more descriptive when looking up values

longOpt String The long name for the option as used with doubled dashes

required boolean Whether the option is required; default: false

args int Number of arguments for this option; default: 0

optionalArg boolean Whether there is an optional argument; default: false

type Object Type of the argument

valueSeparator char The character to use for separating multiple arguments

Writing automation scripts 479
When the options are specified to the builder, the Groovy command-line support
has all the information it needs to achieve the standard behavior. CliBuilder
exposes two special methods:

■ parse(args) to parse the command line
■ usage() to print the usage statement

We will explain each of these before embarking on a full example.

Working with options
Letting CliBuilder parse the command-line arguments is easy. Just use its parse
method, and pass it the arguments the script was called with. Groovy puts the list
of command-line arguments in the binding of the script under the name args.
Therefore, the call reads

def options = cli.parse(args)

with options being an OptionAccessor that encapsulates what options the user
requested on the command line. When parsing fails, it prints the usage statement
and returns null. If parsing succeeds, you can ask options whether a certain
option was given on the command line—for example, whether –h was requested—
and print the usage statement if requested:

if (options.h) cli.usage()

The options object is a clever beast. For any option x, the property options.x
returns the argument that was given with –x somearg. If no argument was supplied
with –x, it returns true. If –x was not on the command line at all, it returns false.

 If an argName such as myArgName was specified for the x option, then options.x
and options.myArgName return the same value.

 If the x option is specified to have multiple arguments, the list of values can be
obtained by appending an s character to the property name—for example,
options.xs or options.myArgNames.

 Finally, options has a method arguments to return a list of all arguments that
were trailing after all options on the command line.

 Let’s go through an example to see how all this fits together.

The Mailman example
Assume we set out to provide a Groovy command-line script that sends a message
via email on our behalf. Our Mailman script should be reusable, and therefore it
cannot hard-wire all the details. On the command line, it expects to get informa-
tion about the mail server, the mail addresses it should use, the text to send, and
optionally the mail subject.

480 CHAPTER 13
Tips and tricks
 Here is how a casual user can request the information about the script and
its options:

> groovy Mailman -h
error: sft
usage: groovy Mailman -sft[mh] "text"
 -f,--from <address> from mail address (like me@home.com)
 -h,--help usage information
 -m,--subject <matter> subject matter (default: no subject)
 -s,--smtp <host> smtp host name
 -t,--to <address> to address (like you@home.com)

The user will also see this output whenever they pass options and arguments that
are incomplete or otherwise insufficient.

 Listing 13.10 implements the script starting with a specification of its
command-line options. It proceeds with parsing the given arguments and using
them for instrumenting the Ant task that finally delivers the mail.

def cli = new CliBuilder(usage: 'groovy Mailman -sft[mh] "text"')

cli.h(longOpt: 'help', 'usage information')
cli.s(argName:'host', longOpt:'smtp', args: 1, required: true,
 'smtp host name')
cli.f(argName:'address', longOpt:'from', args: 1, required: true,
 'from mail address (like me@home.com)')
cli.t(argName:'address', longOpt:'to', args: 1, required: true,
 'to address (like you@home.com)')
cli.m(argName:'matter', longOpt:'subject', args: 1,
 'subject matter (default: no subject)')

def opt = cli.parse(args)
if (!opt) return
if (opt.h) cli.usage()

def ant = new AntBuilder()
def subj = (opt.matter) ? opt.matter : 'no subject'
ant.mail(mailhost: opt.host, subject: subj) {
 from(address: opt.f)
 to (address: opt.t)
 message(opt.arguments().join(' '))
}

There are multiple aspects to consider about listing 13.10. It shows how the com-
pact declarative style of CliBuilder not only simplifies the code, but also
improves the documentation as well: better for the user because of the instant

Listing 13.10 Mailman.groovy script using CliBuilder

Stop processing
on parse error

Writing automation scripts 481
availability of the usage statement, and better for the programmer because of the
inherent self-documentation.

 The multiple uses for documentation, parsing, and validation pay off after the
initial investment in the specification. With this support in place, you are likely to
produce professional command-line interfaces more often.

 Providing command-line options is one part of starting a program, but you
won’t get very far if the program can’t find all the classes it requires. Next, you will
see how Groovy helps you with that perennial Java bugbear, the classpath.

13.4.2 Expanding the classpath with RootLoader

Suppose you’d like to start a script using groovy MyScript but your script code
depends on libraries that are not on the default classpath (<GROOVY_HOME>/
lib/*.jar and <USER_HOME>/.groovy/lib/*.jar).

 In this case, you’d need to set the classpath before calling the script, just like
you need to do for any Java program.

Starting Java is considered tricky
When starting a Java program, you have to either make sure your CLASSPATH envi-
ronment variable is set up correctly for specifically this program or you have to
pass the classpath command-line option to the java executable.

 Either way is cumbersome, requires a lot of typing, and is hard to remember
how to do correctly. The common solution to this problem is to write a shell script
for the startup. This works but requires knowledge about yet another language:
your shell script language (Windows command script or bash).

 Java is platform independent, but this value is lost if you cannot start your pro-
gram on all platforms. When trying to provide startup scripts for all popular sys-
tems (Windows in its various versions, Cygwin, Linux, Solaris), things get complex.
For examples, look at Ant’s various starter scripts in <ANT_HOME>/bin.

 All the work is required only because a Java program cannot easily expand
the classpath programmatically to locate the classes it needs. But Groovy can.

Groovy starters
Groovy comes with a so-called RootLoader, which is available as a property on the
current classloader whenever the Groovy program was started by the groovy
starter. It is not guaranteed to be available for Groovy code that is evaluated from
Java code.

 That means the RootLoader can be accessed as

def loader = this.class.classLoader.rootLoader

482 CHAPTER 13
Tips and tricks
The trick with this is that it has an addURL(url) method that allows you to add a
URL at runtime that points to the classpath entry to add, for example, the URL of
a jar file:

loader.addURL(new File('lib/mylib.jar').toURL())

Sometimes it is also useful to know what URLs are currently contained in the
RootLoader, such as for debugging classloading problems:

loader.URLs.each{ println it }

With this, you can easily write a platform-independent starter script in Groovy.
Let’s go through a small example.

 We need a Groovy script that depends on an external library. For the fun of it,
we shall use JFugue, an open-source Java library that allows us to play music as
defined in strings. Download jfugue.jar from http://www.jfugue.org, and copy it
into a subdirectory named lib.

 Listing 13.11 contains an example that uses the JFugue library to play a theme
from Star Wars. Save it to file StarWars.groovy.

import org.jfugue.*

def darthVaderTheme = new Pattern('T160 I[Cello] '+
 'G3q G3q G3q Eb3q Bb3i G3qi Eb3q Bb3i G3hi')

new Player().play(darthVaderTheme)

To start this script, we would normally need to set the classpath from the outside
to contain lib/jfugue.jar. Listing 13.12 calls the StarWars script by making up the
classpath. It adds all jar files from the lib subdirectory to the RootLoader before
evaluating StarWars.groovy.

def loader = this.class.classLoader.rootLoader

def dir = new File('lib')
dir.eachFileMatch(~/.*\.jar$/) {
 loader.addURL(it.toURL())
}
evaluate(new File('StarWars.groovy'))

Listing 13.11 StarWars.groovy uses the JFugue external library

Listing 13.12 Starting JFugue by adding all *.jar files from lib to RootLoader

Writing automation scripts 483
With this functionality in place, you can easily distribute your automated player
together with the libraries it depends on. There is no need for the user to install
libraries in their <USER_HOME>/.groovy/lib directory or change any environ-
ment variables.

 Also, everything is self-contained, and the user is less likely to run into version
conflicts with the external libraries.

 If you use dependency resolution packages such as Maven7 or Ivy,8 you can
directly refer to their downloaded artifacts. Groovy may provide even more
sophisticated support for this scenario in the future.

 We’ve been trying to lower the difficulty level of starting Groovy programs,
and we’ve made it simple to start them from the command line. The next obvious
step is to make programs so simple to run that the user doesn’t even need to use
the command line.

13.4.3 Scheduling scripts for execution

Automation scripts really shine when running unattended on a background
schedule. As the saying goes, “They claim it’s automatic, but actually you have to
press this button.”

 There are numerous ways to schedule your automation scripts:

■ Your operating system may provide tools for scheduled execution. The
standard mechanisms are the cron scheduler for UNIX/Linux/Solaris sys-
tems and the at service on Windows platforms. The downsides with these
solutions are that you might not be authorized to use the system tools and
that you cannot ship a system-independent scheduling mechanism with
your application.

■ The Java platform supports scheduling with the Timer class. It uses an
implementation based on Java threads and their synchronization features.
Although this cannot give any real-time guarantees, it is good enough for
many scenarios and scales well.

■ There also several third-party scheduler libraries for Java, both open-
source and commercial. The Quartz scheduler is a well-known example,
and one that is supported in Spring. It’s available from http://www.

7 Maven is a project build tool including dependency resolution: http://maven.apache.org.
8 Ivy is a dependency resolution tool: http://jayasoft.org/ivy. Note: This is not JavaSoft!

484 CHAPTER 13
Tips and tricks
opensymphony.com/quartz/. Of course, the cost of using advanced features
tends to be higher complexity.

■ Roll your own scheduler with the simplest possible means.

In a lot of scenarios, it is sufficient to schedule an execution like so:

while(true) {
 println "execution called at ${new Date().toGMTString()}"
 // call execution here
 sleep 1000
}

Remember that unlike in Java, the Groovy sleep method really sleeps at least a
second, even if interrupted (see section 9.1.2).

 Listing 13.13 extends this simple scheduling to a real-life9 scenario. A task
should be scheduled to run all working days (Monday through Friday) at office
hours (08:00 a.m. to 06:00 p.m.). Within this timeframe, the task is to be started
every 10 minutes.

def workDays = Calendar.MONDAY..Calendar.FRIDAY
def officeHours = 8..18

while(true) {
 def now = new Date()
 if (
 workDays.contains(now.day) &&
 officeHours.contains(now.hours) &&
 0 == now.minutes % 10
) {
 println "execution called at ${now.toGMTString()}"
 // call execution here
 sleep 31 * 1000
 }
 sleep 31 * 1000
}

The purpose of sleeping 31 seconds is to make sure the check is performed at
least once per minute. The extra sleep after execution is needed to avoid a second
execution within the same minute.

9 Canoo has a corporate client that has run such a schedule for over two years now.

Listing 13.13 Scheduling a task for every 10 minutes during office hours

Example automation tasks 485
 The solution in listing 13.13 is certainly not suited for scheduling at the gran-
ularity of milliseconds. It is also not perfect, because it uses deprecated Date
methods.10 However, it is sufficient for the majority of scheduling tasks, such as
checking the source code repository for changes every 10 minutes, generating a
revenue report every night, or cleaning the database every Sunday at 4:00 a.m.

 We’ve examined how to make scripts easy to run and easy to schedule, but
we’ve said little about the kinds of things you might want such a script to do. Our
next section gives a few examples to whet your appetite.

13.5 Example automation tasks

We couldn’t possibly tell you what your automation needs are. However, many
tasks have similar flavors. By giving you a few examples, we hope we’ll set some
sparks going in your imagination. You may have a moment where you spot that a
repetitive task that has been getting under your skin could easily be automated in
Groovy. If that’s the case, feel free to rush straight to your nearest computer
before you lose inspiration. We’ll wait until you’ve finished.

 Still here? Let’s roll up our sleeves and get groovy.

13.5.1 Scraping HTML pages

The web is not only full of endless information, but it is also full of interesting new
and updated information. Regularly visiting your favorite pages for updated con-
tent is one of the plates you need to keep spinning. It’s easy to delegate this task
to a Groovy script.

 The script needs to

1 Connect to a URL.

2 Read the HTML content.

3 Find the interesting information in the HTML.

Finding the information of interest is the tricky part, because HTML source code
can be complex. Also, our script should be forgiving in terms of whitespaces,
attribute sequences, quoting of attribute values, and so on. In other words, we
cannot use regular expressions to cut the information out of the source code.

10 Using the day/hours/minutes properties of Date has been deprecated since JDK 1.1. However, cor-
rectly using Calendar methods here would distract from the focus of the example.

486 CHAPTER 13
Tips and tricks
 If we could work in XML rather than HTML, we could use an XML parser and
GPath or XPath expression to scrape off the interesting parts reliably.

BY THE WAY The term scraping stems from olden times when users were faced with a
25x80 character terminal screen. New automation features could be
added by reading characters off this screen. This technique was called
screen scraping.

The good news is that there are free open-source parsers that read HTML and
expose the content as SAX events such that Groovy’s XML parsers can work with
it. The popular NekoHTML parser can be found at http://people.apache.org/
~andyc/neko/doc/index.html. Download it, and copy its jar file to the classpath.

 As an example, consider analyzing the HTML page of http://java.sun.com as
captured in figure 13.2. Let’s assume we’re interested in the news items, or every-
thing that appears as links in bold type. For the screen shown in figure 13.2, our
script should print

Developing Web Services Using JAX-WS
More Enhancements in Java SE 6 (Mustang)
"Get Java" Software Button Now Available
Gosling T-Shirt Hurling Contest

Figure 13.2
Screenshot of http://java.sun.com
to scrape information off

Example automation tasks 487
The links in bold appear in the page’s HTML source like this (pretty-printed):

 "Get Java" Software Button Now Available

Listing 13.14 shows the surprisingly compact solution to extract this data.

import org.cyberneko.html.parsers.SAXParser

def url = 'http://java.sun.com'

def html = new XmlSlurper(new SAXParser()).parse(url)

def bolded = html.'**'.findAll{ it.name() == 'B' }
def out = bolded.A*.text().collect{ it.trim() }
out.removeAll([''])
out[2..5].each{ println it }

We only need to wrap the NekoHTML SAXParser with the Groovy XmlSlurper.
With the help of the slurper, we find all B nodes and their nested A nodes. Finally,
we trim surrounding whitespace and remove empty links for nicer output.

 Of course, if the web site offers XML datafeeds such as RSS or ATOM, or even
as web services, then it’s more reliable to use those. See chapter 12 for more
details. But think about all those web pages that have no such luxury, but still con-
vey important information: webmail clients, web server administration pages,
web-based planning tools, calendaring systems, conference pages, project build
information, and so forth. The list is literally endless.

 In combination with a task scheduler, you can use this approach to regularly
check whether your server is alive and kicking. If it doesn’t respond in a timely
manner or contains an error indication in the page, you can send a notification to
the admin.

 Reading HTML is nice, but how about clicking links and submitting forms?
We’ll show that next.

13.5.2 Automating web actions

HTML-based web applications are perfect candidates for automating all the
actions that you would do manually otherwise. Think about the steps you repeat-
edly take in web applications: filling in your daily timesheet, updating the project

Listing 13.14 Scraping news off the Java homepage

488 CHAPTER 13
Tips and tricks
plan, synchronizing with the address database, posting your current location to
the corporate intranet, and so on.

 To automate these steps, you can download HtmlUnit11 from http://htmlunit.
sourceforge.net/ and put its jars on the classpath. HtmlUnit was originally
designed for testing web applications and thus developed all the means to operate
them. We will only use the operation controls here.

 Our example of an interactive web
interface is the ubiquitous Google
search form, as shown in figure 13.3,
with search results for “Groovy” in fig-
ure 13.4.

 Our example is a basic interaction,
but nevertheless it contains all the steps
for automated web actions:

■ Starting at an initial page
■ Filling an input field in a web form
■ Submitting the form
■ Working on the results

From the results, we filter the top three hits and report them as follows:

http://groovy.codehaus.org/ : Groovy - Home
http://www.groovy.de/ : Groovy.de - Headshop Growshop…
http://www.jeronimogroovy.com/ : JERONIMO GROOVY RADIO

11 The examples use HtmlUnit version 1.9.

Figure 13.3 The Google search form when
searching for “Groovy”

Figure 13.4
Top three Google search
results for “Groovy”

Example automation tasks 489
Listing 13.15 uses HtmlUnit to achieve this. With a newly constructed WebClient,
it gets the starting page with the Google URL. From the page, it reads the form
and input field by the names they are tagged with. The input field is filled and the
form submitted. The form submission returns the result page with the main result
anchors having the class attribute 'l'.

import com.gargoylesoftware.htmlunit.WebClient

def client = new WebClient()
def page = client.getPage('http://www.google.com')
def input = page.forms[0].getInputByName('q')
input.valueAttribute = 'Groovy'
page = page.forms[0].submit()

def hits = page.anchors.grep { it.classAttribute == 'l' } [0..2]
hits.each { println it.hrefAttribute.padRight(30) + ' : ' +
 it.asText() }

HtmlUnit offers a lot of sophisticated features. It also includes NekoHTML and
can deliver the current pages asXml, allowing Groovy to fully leverage its XML
support. It can also deal with a wide range of JavaScript content and present the
DOM for XPath processing. See its API documentation for details.

 All this makes it an ideal companion to Groovy when implementing a remote
control for web applications.

13.5.3 Inspecting version control

One nice feature of version-control systems such as Concurrent Versioning System
(CVS) or Subversion (SVN) is that they come with command-line clients. This makes
them ideal candidates for inspection by Groovy scripts.

 Let’s go through a CVS example. CVS comes with a command-line client that
supports a variety of options. You can achieve almost everything with these options,
but sometimes you need a little more. For example, when trying to find out who
accessed the repository since a certain date, you can use the history command:

cvs history -a -e -D 2006-02-04

But that prints too much and in a rather cryptic way, with countless lines such as
M 2006-02-03 23:52 +0000 denis 1.8 website_base.css …

Listing 13.15 Finding the top three hits in Google

490 CHAPTER 13
Tips and tricks
It would be nice if a Groovy script could consolidate the output into something
that displays the information as a summary:

2006-02-04 cruise update: delete
2006-02-04 denis commit: modified
2006-02-04 marc update: delete
2006-02-04 paul commit: add
2006-02-04 paul commit: modified

This summary tells you that the user named cruise12 updated from the repository,
deleting a local file as a result. You can see who accessed the repository and the
resulting operations.

 The output is the result of running listing 13.16 against the CVS repository of
the open-source Canoo WebTest project. It issues the cvs command and processes
the output line by line. Each line is split on whitespace, and the fields of interest
are extracted and joined to a string. Each string is put into a HashSet, which has
the effect of removing duplicates. The result set is finally printed in a sorted order.

def cvscommand = 'cvs history -a -e -D 2006-02-04'
def codes = [
 F: 'release',
 O: 'checkout',
 E: 'export',
 T: 'rtag ',
 C: 'update: conflict',
 G: 'update: merge',
 U: 'update: copy',
 W: 'update: delete',
 A: 'commit: add',
 M: 'commit: modified',
 R: 'commit: removed'
]
def result = new HashSet()
cvscommand.execute().in.eachLine { line ->
 def fields = line.split(/\s/)
 fields[0] = codes[fields[0]]
 result << [1,4,0].collect{ fields[it] }.join("\t")
}
result.sort().each { println it }

12 This is not the famous actor but the technical user for the cruisecontrol continuous integration service.

Listing 13.16 Summarizing cvs command output for access surveillance

Run cvs and process one
output line at a time

b

Collate and format
the results

c

Sort and print the formatted results

Example automation tasks 491
Some aspects in listing 13.16 are particularly Groovy in style. The command is
first executed in an extremely simple and readable fashion. The output of the
resulting process is processed line by line b. Using list and string operations,
including a literal list, we transform the raw output into the more readable for-
mat c.

 Note that we could have replaced the last two data extraction lines with a sin-
gle line of code:

result << "${fields[1]}\t${fields[4]}\t${codes[fields[0]]}"

This would have been even shorter, because it saves one line. However, it doesn’t
read as declaratively, because it mixes the concerns of field selection and presen-
tation. Changing either the fields to be displayed or the formatting of those fields
is a simple task in the original code, requiring no duplication.

13.5.4 Pragmatic code analysis

In our consulting work, we’re asked to do code reviews every now and then. We
even review and analyze code of our own projects regularly. In the course of this
activity, we’ve learned to value pragmatic tools that work on any codebase.

 When reviewing, you need a starting point. A good move is to assemble some
statistical data such as the number of files per directory, files sizes, line count per
file, and so on for that purpose. It’s amazing how much you can tell about a
project from this data. Put it in a spreadsheet, and generate charts for the various
dimensions. You will soon spot the hot candidates for review.

 There are some helpful measures (we wouldn’t dare to call them metrics) that
you can assemble with the help of Groovy. For example, it helps to know the revi-
sion number of each file in the version-control system. Unusually high revision
numbers can indicate a problematic area, just like files with the most conflicts (see
the previous section).

 Listing 13.17 points to another interesting measure: maximum nesting depth
of braces. It’s a pragmatic approach, because it doesn’t use a real parser for the
language and may thus be slightly off when braces occur in comments or strings.
However, the solution can be applied to a wide range of languages and gives a
good indication of complexity.

def source = new File(args[0]).text

def nesting = 0
def maxnest = 0

Listing 13.17 Finding the maximum brace nesting depth

492 CHAPTER 13
Tips and tricks
for (c in source) {
 switch (c) {
 case '{' : nesting++
 if (nesting > maxnest) maxnest++
 break
 case '}' : nesting--
 break
 }
}
println maxnest

When applying this measure to Groovy code, you can expect higher numbers
than for Java, due to the usage of braces in builders, closures, and GPath expres-
sions. On the other hand, the line count is likely to be significantly lower!

13.5.5 More points of interest

There is a huge list of external libraries that are specifically helpful when used
together with Groovy scripts.

 First, automation often sends notifications. There are Ant tasks for this pur-
pose, but for fine-grained control, you can use the JavaMail13 API that comes as
an external package of the JRE (javax.mail). Via mail gateways, you can also send
text messages to a cell phone.

 When automation is used for periodic reporting, libraries for producing
graphs and charts are useful. You will find many of these on the Web, such as Snip-
Graph, JCCKit, and JFreeChart. They all work from a textual representation of data,
and using them with Groovy is therefore easy. Groovy templates can make the
production of such text input files much simpler.

 Reporting can also mean producing Microsoft Office documents. When run-
ning on a Windows platform, you can relay such tasks to Groovy’s Scriptom mod-
ule, which we will describe in chapter 15. There also are platform-independent
solutions with restricted functionality that may nonetheless be sufficient for your
needs: POI (http://jakarta.apache.org/poi) for Office documents, and for spread-
sheets in particular, JExcelApi (http://jexcelapi.sourceforge.net).

 A variety of projects implement customized Groovy support. You can find the
list at http://groovy.codehaus.org/Related+Projects. There is, for example, special

13 A good introduction is available at http://java.sun.com/developer/onlineTraining/JavaMail/
contents.html.

Laying out the workspace 493
support for the Lucene search engine. Running its indexer repeatedly would be a
typical automation task.

 When reports are to be published on the Web, using a Groovy-enabled Wiki
can be handy, because the pages can contain Groovy code to update themselves.
Currently, the known implementations14 are Biscuit, SnipSnap, and XWiki.

 The Groovy developers provide specialized modules for making particu-
larly interesting libraries more groovy. Have a look at the modules section at
http://groovy.codehaus.org. For example, you will find Groovy support for Goo-
gle’s calendaring package, allowing constructions such as

import org.codehaus.groovy.runtime.TimeCategory

use(TimeCategory) {
 Date reminder = 1.week.from.now
}

and expressions such as 2.days + 10.hours, basically allowing convenient defini-
tions of dates, timestamps, and durations as usual Java objects. Over time, such a
module may be promoted to the Groovy distribution.

 Because you can use any Java library, there is an endless list of possibilities.
The goal was to trigger your curiosity and make you think about the wide range
of applicability.

 Next, we will go through various aspects of making your life as a Groovy pro-
grammer easier.

13.6 Laying out the workspace

When your work with Groovy only encompasses writing a few little scripts, it is
sufficient to use an all-purpose text editor. Groovy doesn’t force you to use big
programs for small tasks.

 However, as soon as you start developing more elaborate programs in Groovy,
you will benefit from using one of the IDEs mentioned in section 1.5. The benefit
comes not only from the available Groovy plug-ins but also from the general Java
programming support: integration of version-control clients, local versioning,
browsing dependent Java libraries, search and replace, classpath management,
and so on.

 This section collects some hints for how to make your daily programming life
with Groovy easier using the features of any Java IDE. It explains how to create a

14 See http://groovy.codehaus.org/Related+Projects.

494 CHAPTER 13
Tips and tricks
comfortable environment for working with Groovy, describes how to use Java
debuggers and profilers with Groovy code, and discusses the current state of the
Groovy refactoring landscape.

13.6.1 IDE setup

As soon as you step into serious Groovy programming, you should look at the
available IDE plug-ins and select the one of your choice.

 Make sure you have your JDK configured to also include the JDK source and its
API documentation. Unlike Java, Groovy plug-ins cannot always provide you with
instant code completion. Therefore, you will look up JDK classes and methods
more often than you are used to when programming Java. With a proper setup,
such a lookup by name can still be efficient.

 Most IDEs support the notion of a library that assembles jar files, classes,
resources, source code, and API documentation of a common purpose. Create
such a library for Groovy, including the Groovy source tree. This enables you to
quickly look up important information such as GDK methods. For example, you
could run a search for method definitions of the name eachFile*.

 Note that Groovy comes with a comprehensive suite of unit tests. Most of these
are written in Groovy. This is also a good source of information to have around
when programming.

 What is true for the JDK and the Groovy distribution is also true for any other
external library. The better your setup and the more complete your local infor-
mation, the less time you will spend scanning through external documentation.

 If your IDE can include a Java decompiler such as JAD, get it. It helps a lot
when decompiling class files that were generated by groovyc. Make sure the
decompilation writes into a directory that will not be used to pick up source files
for your next run or compile operation.

 IDEs often support a mechanism to break the whole source tree into modules
or projects with an option to define their dependencies. In case of a mixed
Groovy/Java project, you can use this fea-
ture to avoid compile problems with mutual
dependencies. For example, you can have
three modules: a Groovy-only module, a
Java-only module, and a module of shared
Java interfaces.

 Figure 13.5 illustrates the dependencies
of the Groovy and Java modules to the
shared interface module.

Figure 13.5 Groovy and Java source
modules depending on a shared
interface module

Laying out the workspace 495
 This setup ensures that you can compile either module and the whole
project easily. Once you have your code compiling, you’ll want to run it sooner
or later—and sometimes that will mean running it in a debugger.

13.6.2 Debugging

Debugging is the act of removing bugs from the code. Some people claim that this
implies that programming is the act of putting them in.

 The best advice we can possibly give about debugging is advice on how to
avoid it. The need for debugging is drastically reduced when solid unit testing is
in place and when code is created in a test-first manner.

 The next best approach is to make wise use of assertions throughout your
code, making it fail early for obvious reasons.

 The debugging tool that everybody uses every day is putting println state-
ments in the code under development. This is certainly helpful, and Groovy
makes it a workable way of debugging, because transparent compiling and instant
class-reloading lead to quick coding cycles.

 However, don’t fall into the trap of leaving println statements in the code
after debugging is done. Don’t even put them in comments. Depending on the
purpose of the line, you can change it into an assertion or into a log statement.

BY THE WAY Consistent use of logging makes debugging much easier. In Groovy, you
can use the same mechanics for logging as for any other Java code run-
ning on JDK 1.4. See the JDK documentation for details.

Generally, debugging offers a chance to learn something new about your code
and improve it. After finding the bug, you can ask yourself how you could have
found it earlier or could have avoided it altogether: what log statement would
have helped, what assertion, what unit test, and how could the wrong behavior
have been more visible in the code?

 Until then, you first have to locate the bug.

Exploiting groovyc
When you get errors from Groovy scripts, precompilation with groovyc can pro-
vide more detailed error messages, especially when you’re working with multiple
dependent scripts. In this case, use groovyc on all scripts.

 When things get really tricky and you suspect Groovy is parsing your code
incorrectly or producing bad constructions from it, you can use the properties
listed in table 13.5 to make groovyc produce more artifacts. Set the environment
variable JAVA_OPTS to the appropriate value before calling groovyc.

496 CHAPTER 13
Tips and tricks
The pretty-printer gives a first indication of possible misconceptions about the
nesting structure in the code. This can easily occur when you’re using single-
statement control statements without braces, such as

if (true)
 println "that's really true"

If you later add more lines to the if-block but forget to add the braces that are then
needed, you end up with an error that you can spot by looking at the pretty-print.

 The pretty-printer is an obvious candidate to integrate in the Groovy IDE
plug-ins.

 The HTML and mindmap options in table 13.5 are two other interesting views
on the Abstract Syntax Tree (AST) that the Groovy parser creates from your source
code. The HTML view is rather conventional, but the mindmap allows you to nav-
igate and expand/collapse the AST nodes. Figure 13.6 shows the AST mindmap
for the brace-matching analyzer in listing 13.17.

So far, we have assessed only the static aspects of the code. We will now look into
the live execution of the code.

Groovy runtime inspection
Groovy’s MetaClass concepts allow a full new range of options when inspecting
code for debugging purposes. Because all method calls, the method dispatch,

Table 13.5 System properties that groovyc is sensitive to

JAVA_OPTS Purpose Destination

-Dantlr.ast=groovy Pretty printing Foo.groovy.pretty.groovy

-Dantlr.ast=html Writing a colored version of source, with each
AST node as a rollover tooltip

Foo.groovy.html

-Dantlr.ast=mindmap Writing the AST as a mind map (view with
http://freemind.sf.net)

Foo.groovy.mm

Figure 13.6
Mindmap AST of
listing 13.17 expanded
on a for loop

Laying out the workspace 497
dynamic name resolution, and the property access are funneled through this
device, it makes an ideal point of interception.

 You came across the usage of MetaClasses and the TracingInterceptor in
section 7.6.3. The TracingInterceptor can be engaged by attaching it to a
ProxyMetaClass that acts as a decorator over the original one. This results in
a non-intrusive tracing facility—one that doesn’t change the code under inspection.

 Revisit the code in chapter 7 for more examples.
 Another groovy way to do live-system debugging is integration of an inspec-

tion capability. Examples of this are Grash, a shell-like inspection utility,15 and
the ULC Admin Console.16 Although there are security implications in providing
these capabilities in your applications, the potential for diagnosing problems that
may occur in the field is immense.

Using debugging tools

Groovy runs inside the Java Virtual Machine as ordinary Java bytecode. The byte-
code is constructed such that it contains all information required by the Java Plat-
form Debugger Architecture (JPDA). In other words, you can use any JPDA-compliant
Java debugger with Groovy and get Groovy source-level debugging!

 The debugger that ships with your preferred Java IDE is most likely JPDA com-
pliant. For graphical standalone debuggers, good experiences have been reported
with JSwat,17 which shines when it comes to Groovy source-level debugging.

 One debugging tool that ships with every JDK is the jdb Java command-line
debugger. The JDK documentation describes it in detail: the various ways of
starting it, the commands it understands, and how to use it for in-process and
remote debugging.

 Let’s go through a sample usage with the script in listing 13.18. It prints the
numbers from 1 to 100, stating whether each number is a prime number. An inte-
gral number x is a prime number if no integral number y between 2 and x-1
divides into x without a remainder. Note how the isPrime method implements
this specification in a declarative way.

15 http://biscuit.javanicus.com/grash.
16 http://ulc-community.canoo.com/snipsnap/space/Contributions/Utilities/Admin+Console.
17 http://www.bluemarsh.com/java/jswat/.

498 CHAPTER 13
Tips and tricks
boolean isPrime(int x) {
 ! (2..<x).any { y -> x % y == 0 }
}

for (i in 1..100) {
 println "$i : ${isPrime(i)}"
}

To work with this script in the jdb, you need to set the CLASSPATH environment
variable to include the current dir (.) and all jars in the GROOVY_HOME/lib dir.

 For ease of use, place a file named jdb.ini in your USER_HOME or current
directory to set up defaults when using jdb. When working with Groovy, it is con-
venient to make it contain the line

exclude groovy.*,java.*,org.codehaus.*,sun.*

to go avoid stepping through the Java and Groovy internals.

Jdb session transcript
With this preparation in place, you can start as follows:

> %JAVA_HOME%\bin\jdb groovy.lang.GroovyShell Primer
Initializing jdb ...
*** Reading commands from …\jdb.ini

Let’s set a breakpoint at the second line for inspecting the call. You do this before
running the program. Otherwise, it would complete so quickly that you couldn’t
see anything.

 There are various ways to set breakpoints. Type help to see them. We use a
simple one with a classname and a line number. Note that scripts compile to
classes, with the name of the script file becoming the classname:

> > stop at Primer:2
Deferring breakpoint Primer:2.
It will be set after the class is loaded.

Now, start the program:

> run
run groovy.lang.GroovyShell Primer
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
>
VM Started: Set deferred breakpoint Primer:2

Listing 13.18 Primer.groovy for printing prime number information

Laying out the workspace 499
Breakpoint hit: "thread=main", Primer.isPrime(), line=2 bci=13
2 ! (2..<x).any { y -> x % y == 0 }

Jdb has started the program, told you that it will not catch any Throwables on your
behalf, and reported the breakpoint where it stopped.

 It’s good to see the line of the breakpoint, but you can hardly understand it with-
out seeing the surrounding lines. The list command shows the neighborhood:

main[1] list
1 boolean isPrime(int x) {
2 => ! (2..<x).any { y -> x % y == 0 }
3 }
4
5 for (i in 1..9) {
6 println "$i : ${isPrime(i)}"
7 }

Let’s see what local variables you have at this point:

main[1] locals
Method arguments:
Local variables:
x = instance of groovy.lang.Reference(id=726)

The x variable is not a simple int, but a Reference object, because we’re looking
at Groovy code through Java glasses. Reference objects have a get method that
returns their value. You can eval this method call:

main[1] eval x.get()
 x.get() = "1"

That’s what you expected. You are done with the isPrime method. Let’s ask jdb to
bring you back to the caller of this method:

main[1] step out
>
Step completed: "thread=main", Primer.run(), line=6 bci=76
6 println "$i : ${isPrime(i)}"

Time to end the jdb session:

main[1] exit

Dear passengers, thank you very much for flying with jdb airlines.
 Debugging gives you control over the execution so you can make the code run

as slowly as you need it to in order to understand it. Profiling helps you do the
reverse—with the aid of a profiler, you can usually make your code run faster and
more efficiently. Although Groovy code is rarely used when absolute performance
is important, it can nevertheless be instructive to see where your code is spending
the most time or what the most memory is being used for.

500 CHAPTER 13
Tips and tricks
13.6.3 Profiling

Profiling is the task of analyzing a run of your program for memory and CPU
time consumption. Groovy code can be profiled with any ordinary Java profiling
tool. Profiling our Primer script as shown in listing 13.18 can easily be done with
the profiling support that comes with the Java Runtime Environment. The JDK
documentation comes with extensive documentation of this topic. In short, you
can a run a compact command-line profiler with

java -Xprof groovy.lang.GroovyShell Primer

A more sophisticated solution is available with

java -agentlib:hprof groovy.lang.GroovyShell Primer

This second way of starting the JRE profiler writes extensive data to a file named
java.hprof.txt. There are a lot of options that you can set when profiling this way.
For a list of options, type

java -agentlib:hprof=help

That extensive output of the JRE profiler requires some time to understand.
Therefore, commercial profiling solutions are used more often. Figure 13.7 shows
profiling data from a Primer run as presented by the commercial YourKit profiler,
which grants a free license to the Groovy committers.

 From looking at the profiling analysis in figure 13.7, you can tell (line 2) that
we started the profiling run from within the Intellij IDE. A special YourKit plug-in
for that IDE allows easy profiling setup.

 Because scripts are created with main and run methods, you see these method
calls in lines 4 and 6. Line 8 shows that calls to the isPrime method took almost
no time. Almost all the time was used for writing the resulting GString to the

Figure 13.7 Profiling data from YourKit for the Primer script

Summary 501
console. This is not surprising, because I/O operations are always expensive com-
pared to mere calculations.

 In between the calls to Primer, you see calls to the Groovy runtime system. The
icon indicates that these lines are filtered; in other words, they represent a series
of hidden calls. Setting such filters is important to make the interesting parts of
the stack stand out.

 Profiling and debugging are expert activities, and it takes some time to get
proficient with the tools and their usage. But this is not particular to Groovy. It is
also true for Java.

 What is particular to Groovy is that you will be faced with lots of the internals
of the Groovy runtime system: how classes are constructed, what objects get cre-
ated, how the method dispatch works, and so on.

13.6.4 Refactoring
Refactoring is the activity of improving the design of existing code. The internal
structure of the code changes, but the external behavior remains unchanged.

 The classic book on refactoring is Refactoring: Improving the Design of Existing
Code by Martin Fowler. All the listed refactorings and mechanics can be applied to
Groovy exactly as shown for Java code in the book. Where the mechanics suggest
compiling the changed code, such a compilation check should be accompanied
with running the unit tests for Groovy code.

 For the Java world, lots of the standard refactorings such as Extract Method,
Introduce Explaining Variable, Pull Members Up, and so on have been automated for
use from inside the IDE.

 For Groovy, refactoring support is currently not as complete. The future will
show which IDE vendor or open source project will be able to provide a compel-
ling solution.

13.7 Summary

Groovy is a unique language. It has a lot of similarities with Java and is fully inte-
grated into the Java runtime architecture. This can sometimes lead us to forget
about the differences. On the other hand, if you have a background in scripting
languages such as Perl, Ruby, or Python, the biggest difference that you need to
be aware of is—again—the Java runtime. Having gone through section 13.1, you
are less likely to fall for the most common traps.

 The uniqueness of Groovy leads to its own style of tackling programming
tasks. Groovy still lets you write code in a procedural or Java-like way, but the idi-
omatic solutions as shown in section 13.2 have their own appeal.

502 CHAPTER 13
Tips and tricks
 Groovy is a good friend for all kinds of ad-hoc command-line scripting and
serious automation solutions. This ranges from the groovy command and its var-
ious options for one-liners to scheduled execution of complex automation
actions. Whether you want to surf the Web automatically or play some music,
Groovy can do it for you. The important point is that Groovy can use any Java
library to fulfill these tasks.

 Finally, everyday programming work needs good organization to make it an effi-
cient and satisfying experience. With the information provided in section 13.6, you
are now able to make the best possible use of the existing Groovy and Java tools.

 Although we have largely avoided making assumptions about your develop-
ment process, one practice that is becoming more and more widely used is unit
testing. The developers of Groovy believe strongly in the merits of unit testing (as
do we), so it would be strange if Groovy didn’t have good support for it. The next
chapter shows that our expectations are met once again.

Unit testing with Groovy
The major difference between a thing that
might go wrong and a thing that cannot pos-
sibly go wrong is that when a thing that can-
not possibly go wrong goes wrong, it usually
turns out to be impossible to get at or repair.

—Douglas Adams
503

504 CHAPTER 14
Unit testing with Groovy
Developer unit testing has become a de facto standard in the Java community.1 The
confidence and structure that JUnit2 and other testing frameworks bring to the
development process are almost revolutionary, if you think about it. To those of us
who were actively developing Java applications in the latter years of the 20th cen-
tury, automated unit testing was almost unheard of. Sure, we wrote tests, but they
were hardly automated or even a part of a standard build!

 Fast-forward to the present, and many people wouldn’t think of writing, let
alone releasing, code without corresponding unit tests! We write tests all the time,
and we expect everyone else on our teams to do the same. Moreover, there is
growing momentum behind the idea of writing code by always writing tests first.
Although this is not universal, it is another indicator that the recent growth in the
importance of tests will continue.

 We test at all levels, from unit testing to integration testing to system testing. It
is sometimes more fun to write the tests than the code under test, because doing
so improves not only the code itself, but also the design of the code. When tests
are written often and continually, code has the benefit of being highly extensible,
in addition to being obviously freer of defects and easier to repair when needed.

 Combine this increased awareness of developer testing with Groovy, and you
have a match made in heaven. With Groovy, tests can be written more quickly and
easily. It gets even better when you combine the simplicity of unit testing in
Groovy with normal Java. You can write Groovy tests for your Groovy-based sys-
tems and leverage the many Java libraries and test-extension packages. You can
write Groovy tests for your Java-based systems and leverage Groovy’s enhanced
syntax benefits and extended test functionality.

 Groovy makes unit testing a breeze, whichever way you use it, mainly due to
four key aspects. First, Groovy embeds JUnit, so there is no need to set up a new
dependency. Second, Groovy has an enhanced test-case class, which adds a pleth-
ora of new assertion methods. Third, Groovy has built-in mock, stub, and other
dynamic class-creation facilities that simplify isolating a test class from its collab-
orators. Finally, tests written in Groovy can be easily run from Ant, Maven, or your
favorite IDE.

1 See Kevin Tate, Sustainable Software Development: An Agile Perspective (Addison Wesley Professional,
2005) for a good discussion of recent trends.

2 See Vincent Massol with Ted Husted, JUnit in Action (Manning, 2003); J. B. Rainsberger, JUnit Recipes
(Manning, 2004), and www.junit.org for more information.

http://www.junit.org

Getting started 505
 Our focus in this chapter is unit testing; however, many of the ideas can be
extended to other kinds of testing as well. We’ll mention specific examples
throughout the chapter.

14.1 Getting started

The section header implies that you have to do some preparation work before
you can start your testing activities. But you don’t. There is no external support to
download or install. Groovy treats unit testing as a first-class developer duty and
ships with everything you need for that purpose.

 Even more important, it simplifies testing by making assertions part of the
language,3 automatically executing test cases by transparently invoking its
TestRunner when needed, and providing the means to run suites of test cases eas-
ily, both from the command line and through integration with your IDE or build
environment. This section will show you how simple it can be and introduce you
to GroovyTestCase, the base class used for most unit testing in Groovy.

14.1.1 Writing tests is easy

Assume you have a simple Groovy script that converts temperatures measured in
Fahrenheit (F) to Celsius (C). To that end, you define a celsius method like so:

def celsius(fahrenheit) { (fahrenheit - 32) * 5 / 9 }

Is this implementation correct? Probably, but you can’t be sure. You need to gain
additional confidence in this method before the next non-US traveler uses your
method to understand the US weather forecast.

 A common approach with unit testing is to call the code under test with static
sample data that produces well-known results. That way, you can compare the cal-
culated results against your expectations.

 Choosing a good set of samples is key. As a rule of thumb, having a few typical
cases and all the corner cases you can think of is a good choice.4 Typical cases
would be 68° F = 20° C for having a garden party or 95° F = 35° C for going to
the beach. Corner cases would be 0° F, which is between -17° C and -18° C, the

3 Java also supports assertions at the language level but disables them by default.
4 Finding good test data is a science of its own and involves activities such as structural analysis of the

parameter domain. For our purposes, we keep it simple. Refer to the background literature for more
information.

506 CHAPTER 14
Unit testing with Groovy
coldest temperature that Gabriel Daniel Fahrenheit could create with a mixture
of ice and ordinary salt in 1714. Another corner case is when water freezes at
32° F = 0° C.

 Sound complicated? It isn’t. Listing 14.1 contains the method together
with inline unit tests made with the simple assertions that are built into the lan-
guage itself.

def celsius (fahrenheit) { (fahrenheit - 32) * 5 / 9 }

assert 20 == celsius(68)
assert 35 == celsius(95)
assert -17 == celsius(0).toInteger()
assert 0 == celsius(32)

Inline tests of this kind are very useful. Just look at this book: Most listings con-
tain such self-checking asserts to ensure the code works and to help reveal your
expectations from the code at the same time.

 Whenever the environment of self-testing code changes, the inline tests assert
that it is still working. Environmental changes can happen for a number of rea-
sons: evaluating the script on a different machine, using an updated JDK or
Groovy version, or running with different versions of packages that the script
depends upon.

 There are circumstances when tests cannot be inlined, such as due to perfor-
mance requirements. In such cases, it is conventional to pack all the tests of a
given script or class into a separate class residing in a separate file. This is where
GroovyTestCase appears on stage.

14.1.2 GroovyTestCase: an introduction

Groovy bundles an extended JUnit class dubbed GroovyTestCase, which facilitates
unit testing in a number of ways. It includes a host of new assert methods, and it
also facilitates running Groovy scripts masquerading as test cases.

 The added assertions are listed in table 14.1. We won’t go into the details of
each method, mostly because they are descriptively named—where it’s not abso-
lutely obvious what the meaning is, the description provided in the table should
be sufficient. Even though we won’t discuss them explicitly, we will use them in
the assertions elsewhere in this chapter, so you’ll see how useful they are.

Listing 14.1 Inline unit tests for the Fahrenheit to Celsius conversion method.

Getting started 507
However, Groovy doesn’t force you to extend GroovyTestCase, and you are free to
continue to extend the traditional TestCase class provided by JUnit.5 Having said
that, unless you need the functionality of a different subclass of TestCase, there
are plenty of reasons to use GroovyTestCase and no reasons to specifically avoid it.
Along with the assertions listed in table 14.1, it’s easier to work with GroovyTestCase
than TestCase, as you’ll see in the next section.

Table 14.1 Enhanced assertions available in GroovyTestCase

Method Description

void assertArrayEquals(Object[]
expected, Object[] value)

Compares the contents and length of
each array

void assertLength(int length,
char[] array)

Convenience method for asserting the length of
an array

void assertLength(int length,
int[] array)

Convenience method for asserting the length of
an array

void assertLength(int length,
Object[] array)

Convenience method for asserting the length of
an array

void assertContains(char expected,
char[] array)

Verifies that a given array of chars contains an
expected value

void assertContains(int expected,
int[] array)

Verifies that a given array of ints contains an
expected value

void assertToString(Object value,
String expected)

Invokes the toString method on
the provided object and compares the result
with the expected string

void assertInspect(Object value,
String expected)

Similar to the assertToString method, except that
it calls the inspect method

void assertScript(final String script) Attempts to run the provided script

void shouldFail(Closure code) Verifies that the closure provided fails

void shouldFail(Class clazz,
Closure code)

Verifies that the closure provided throws an
exception of type clazz

5 These methods extend the 3.8.2 version of JUnit, which is bundled with Groovy. JUnit 4 has some
built-in support for arrays.

508 CHAPTER 14
Unit testing with Groovy
14.1.3 Working with GroovyTestCase

To utilize Groovy’s enhanced TestCase class, extend it as follows:6

class SimpleUnitTest extends GroovyTestCase {
 void testSimple() {
 assertEquals("Groovy should add correctly", 2, 1 + 1)
 }
}

Remember, you are free to extend any TestCase class you choose, so long as it is in
your classpath. For example, you can easily extend JUnit’s TestCase as follows:

import junit.framework.TestCase

class AnotherSimpleUnitTest extends TestCase{
 void testSimpleAgain() {
 assertEquals("Should subtract correctly too", 2, 3 - 1)
 }
}

GroovyTestCase has the added benefit that it also allows test cases to be run via the
groovy command, which is not possible for test cases that extend the normal JUnit
TestCase class. For example, the SimpleUnitTest script seen earlier, which extends
GroovyTestCase, can be run by typing the command groovy SimpleUnitTest:

> groovy SimpleUnitTest
.
Time: 0

OK (1 test)

If the output looks familiar to you, that’s probably because it is the standard JUnit
output you’d expect to see if you ran a normal Java JUnit test using JUnit’s text-
based test runner.

 Now that you’ve got your feet wet, let’s go back and start again from scratch,
this time testing a little more methodically.

14.2 Unit-testing Groovy code

We have introduced you to Groovy’s testing capabilities, but we skipped over
some of the details. We’ll now explore more of those details by exploring a slightly
larger Groovy application in need of testing. We will start with a new example and
build up our test class, refactoring tests as we go, validating boundary data, testing

6 There is no need to import it—it resides in one of the packages imported by default.

Unit-testing Groovy code 509
that inputs aren’t inadvertently changed, and even checking that the tests them-
selves haven’t been adversely changed!

 Let’s imagine we’ve built a small calculator class that determines how many
numbers in a list are larger than a target threshold number. The Groovy code is
fairly trivial but useful as our example class under test:

class Calculator {
 def countHowManyBiggerThan(items, target) {
 return items.grep{ it > target }.size()
 }
}

Testing this class is easy. First, we define our test case class, CalulatorTest, which
extends GroovyTestCase:

class CalculatorTest extends GroovyTestCase {
 …
}

Next, we follow the common unit-testing practice of writing a method to set up
the variables we’ll need in the tests that follow:

class CalculatorTest extends GroovyTestCase {
 private calc
 void setUp() {
 calc = new Calculator()
 }
 …
}

We are now in a position to write a test:

void testCalculatorWorks() {
 assertEquals(2, calc.countHowManyBiggerThan([5, 10, 15], 7))
}

We could continue adding tests in this way, but first let’s introduce some constants
that capture useful boundary case data and refactor out a helper method:

static final NEG_NUMBERS = [-2, -3, -4]
static final POS_NUMBERS = [4, 5, 6]
static final MIXED_NUMBERS = [4, -6, 0]

private check(expectedCount, items, target) {
 assertEquals(expectedCount,
 calc.countHowManyBiggerThan(items, target))
}

This lets us specify more tests in a compact form:

void testCalcHowManyFromSampleNumbers () {
 check(2, NEG_NUMBERS, -4)

510 CHAPTER 14
Unit testing with Groovy
 check(2, POS_NUMBERS, 4)
 check(1, MIXED_NUMBERS, 0)
 …
}

Once you have written sufficient tests to cover all the boundary cases you think are
important (or to meet your project’s coverage requirements7), you may think you
are finished, but there is more that you can do. First, you might want to ensure
that your method doesn’t change the input items. You might provide the correct
answer but accidentally modify the input data and cause errors to occur else-
where. Here one example of such a test:

 void testInputDataUnchanged() {
 def numbers = NEG_NUMBERS.clone()
 def origLength = numbers.size()
 calc.countHowManyBiggerThan(numbers, 0 /* don't care */)
 assertLength(origLength, numbers.toArray())
 assertArrayEquals(NEG_NUMBERS.toArray(), numbers.toArray())
 }

You can add items[0] = 0 as the first line of the countHowManyBiggerThan method
to show how this test would pick up an accidental bug in the code.

 We now have some sound tests in place, but we can be more paranoid about
our test data and introduce a final test. Over time, we expect further developers
to work on the code, and they will likely change the test constants. To ensure that
our key cases remain covered, we can create a test that validates our assumptions
about the data:

 void testInputDataAssumptions() {
 assertTrue(NEG_NUMBERS.every{ it < 0 })
 assertTrue(POS_NUMBERS.every{ it > 0 })
 assertContains(0, MIXED_NUMBERS as int[])
 def negCount = MIXED_NUMBERS.grep{it < 0}.size()
 assert negCount, 'at least one negative number expected'
 def posCount = MIXED_NUMBERS.grep{it > 0}.size()
 assert posCount, 'at least one positive number expected'
 }

This will ensure that our positive, negative, and mixed numbers retain the prop-
erties we intend.8

7 See the discussion later in this chapter in section 14.7.1.
8 You could argue that we are being too paranoid here. Maybe, but it gives us a chance to show off a few

more example test assertions.

Unit-testing Groovy code 511
 Now for a neat bit of Groovy magic. It turns out that even though we set out to
create a calculator for numbers, there was nothing in our original method that
was specific to numbers. We add another test to illustrate this using strings with
their natural order:

 void testCalcHowManyFromSampleStrings() {
 check(2, ['Dog','Cat','Antelope'], 'Bird')
 }

Putting this altogether results in the code in Listing 14.2.

class CalculatorTest extends GroovyTestCase {
 static final NEG_NUMBERS = [-2, -3, -4]
 static final POS_NUMBERS = [4, 5, 6]
 static final MIXED_NUMBERS = [4, -6, 0]
 private calc

 void setUp() {
 calc = new Calculator()
 }

 void testCalcHowManyFromSampleNumbers() {
 check(0, NEG_NUMBERS, -1)
 check(0, NEG_NUMBERS, -2)
 check(2, NEG_NUMBERS, -4)
 check(3, NEG_NUMBERS, -5)
 check(0, POS_NUMBERS, 7)
 check(0, POS_NUMBERS, 6)
 check(2, POS_NUMBERS, 4)
 check(3, POS_NUMBERS, 3)
 check(0, MIXED_NUMBERS, 5)
 check(1, MIXED_NUMBERS, 2)
 check(1, MIXED_NUMBERS, 1)
 check(1, MIXED_NUMBERS, 0)
 check(2, MIXED_NUMBERS, -1)
 check(3, MIXED_NUMBERS, -7)
 }

 void testInputDataUnchanged() {
 def numbers = NEG_NUMBERS.clone()
 def origLength = numbers.size()
 calc.countHowManyBiggerThan(numbers, 0 /* don't care */)
 assertLength(origLength, numbers.toArray())
 assertArrayEquals(NEG_NUMBERS.toArray(), numbers.toArray())
 }

 void testCalcHowManyFromSampleStrings() {
 check(2, ['Dog', 'Cat', 'Antelope'], 'Bird')

Listing 14.2 A complete test example, including implementation at the end

Constants repeated
in the test

Use a helper
method to make
code simpler

Tests proving we don’t
change the array

Calculator doesn’t only
work with numbers

512 CHAPTER 14
Unit testing with Groovy
 }

 void testInputDataAssumptions() {
 assertTrue(NEG_NUMBERS.every{ it < 0 })
 assertTrue(POS_NUMBERS.every{ it > 0 })
 assertContains(0, MIXED_NUMBERS as int[])
 def negCount = 0
 def posCount = 0
 MIXED_NUMBERS.each {
 if (it < 0) negCount++ else if (it > 0) posCount++
 }
 assert negCount > 0 && posCount > 0
 }

 private check(expectedCount, items, target) {
 assertEquals(
 expectedCount,
 calc.countHowManyBiggerThan(items, target)
)
 }
}

class Calculator {
 def countHowManyBiggerThan(items, target) {
 return items.grep{ it > target }.size()
 }
}

Looks familiar, doesn’t it? It’s darn close to normal JUnit test code, but with some
slight improvements thanks to Groovy’s extra assert methods, proper closure sup-
port, and more compact syntax. Groovy hasn’t made the code much shorter here,
just a bit more convenient. As is often true, there’s more test code than produc-
tion code (although in this case, the difference is more pronounced than usual).

 Although it’s immediately obvious that Groovy code should be able to test
Groovy code, it may not be as clear to you that you can test your existing Java using
the benefits of GroovyTestCase, too. You’ll see this in action in the next section.

14.3 Unit-testing Java code

At this point in your career, you’ve probably coded more Java applications than
Groovy ones. It stands to reason that one of the quickest ways to experience the
pleasures of Groovy is to use this nifty language to test normal Java applications.
As it turns out, this process is amazingly simple.

 Using Groovy to test normal Java code involves three steps:

Test constants
sanity check

Implementation
of calculator

Unit-testing Java code 513
1 Write your tests in Groovy.

2 Ensure that the Java .class files you wish to test are on the classpath.

3 Run your Groovy tests in the normal way (on the command line or via
your IDE or favorite build environment).

That’s it most of the time. Of course, there are more complicated scenarios. For
example, if you are running a complicated integration test and want to run your
Groovy test code on a server, you can always run groovyc on your test code and
then follow the same steps that you’d go through for a Java application.

 Let’s explore this further by looking at an example. Rather than spending a
lot of time describing a Java application that you may not have seen before, we
will consider how you might write some tests for two old Java favorites: Hashtable
and HashMap.

 One of the first things you would do if you were writing some Java tests for
Hashtable and HashMap is set up test fixtures. You do the same thing in Groovy, but
you have Groovy’s convenient syntax to make your tests shorter and easier to
understand. For example, this is how we set up our test fixtures for an arbitrary key
object and a sample map:

static final KEY = new Object()
static final MAP = [key1: new Object(), key2: new Object()]

One of the complicated things to test with Java-based tests is proper exception
handling. Groovy’s built-in shouldFail assert method can be of great assistance
for such tests. For example, it is part of Hashtable’s expected behavior to disallow
null values. Trying to store a null value as in new Hashtable()[KEY] = null should
lead to a NullPointerException. The shouldFail method asserts that this excep-
tion is thrown from within its closure:

void testHashtableRejectsNull() {
 shouldFail(NullPointerException) {
 new Hashtable()[KEY] = null
 }
}

If the attached closure fails to throw any exception, the test fails with a message
like the following:9

junit.framework.AssertionFailedError: testHashtableRejectsNull() should
have failed with an exception of type java.lang.NullPointerException

9 Edited slightly for easier reading.

514 CHAPTER 14
Unit testing with Groovy
If the closure fails but with an incorrect exception, the test fails with a message
similar to

junit.framework.AssertionFailedError: testHashtableRejectsNull() should
have failed with an exception of type java.lang.NullPointerException,
instead got Exception java.lang.IllegalArgumentException:
Illegal Capacity: -1

The shouldFail method additionally returns the exception message so that you
can test that the correct message is being generated by the exception, as in the
following example:

 void testBadInitialSize() {
 def msg = shouldFail(IllegalArgumentException) {
 new Hashtable(-1)
 }
 assertEquals "Illegal Capacity: -1", msg
 }

If the incorrect exception message was returned, your test would fail with a mes-
sage similar to the following:

junit.framework.ComparisonFailure:
Expected :Illegal Capacity: -1
Actual :Illegal Capacity: -2

Groovy’s object-inspection methods (see section 9.1.1 for further details) also
prove useful for writing our Groovy tests. Here is how you might use dump:

assert MAP.dump().contains('java.lang.Object')

Putting all this together results in the code in listing 14.3.

class HashMapAndTableTest extends GroovyTestCase {
 static final KEY = new Object()
 static final MAP = [key1: new Object(), key2: new Object()]

 void testHashtableRejectsNull() {
 shouldFail(NullPointerException) {
 new Hashtable()[KEY] = null
 }
 }

 void testBadInitialSize() {
 def msg = shouldFail(IllegalArgumentException) {
 new Hashtable(-1)
 }
 assertEquals "Illegal Capacity: -1", msg
 }

Listing 14.3 Testing Hashtable and HashMap from Groovy

Check that
the right kind
of exception
is thrown

Check the
message

Unit-testing Java code 515
 void testHashMapAcceptsNull() {
 def myMap = new HashMap()
 myMap[KEY] = null
 assert myMap.keySet().contains(KEY)
 }

 void testHashMapReturnsOriginalObjects() {
 def myMap = new HashMap()
 MAP.entrySet().each {
 myMap[it] = MAP[it]
 assertSame MAP[it], myMap[it]
 }
 assert MAP.dump().contains('java.lang.Object')
 assert myMap.size() == MAP.size()
 }
}

None of the behavior here is unexpected—after all, the classes we’re testing are
familiar ones. Using shouldFail is more compact and readable than the equiva-
lent in Java with a try/catch, which fails if it reaches the end of the try block. It’s
also safer than the new JUnit4 annotation for exception testing, which will only
check whether anything in the method throws the desired exception, rather than
just the line of code we want to check.

 The use of dump in this test isn’t as elegant as it tends to be in real testing.
When you know the internal structure of the class, you can perform more useful
tests against the introspected representation.

 The final point we’ll mention about using Groovy to test your Java code is
related to the agile software development practice of test-driven development
(TDD).10 Using this practice, code is developed by first writing a failing test and
then writing production code to make that test pass, followed by refactoring
and then repeating the process. Modern IDEs provide strong support for this
practice; for example, they will offer to automatically create a nonexistent class
mentioned in a test.

 You can still adopt TDD using a hybrid Groovy/Java environment, but current
IDEs provide minimal support to assist making this as streamlined as pure Java
environments. We expect this to change over time as IDE support for Groovy
steadily improves.

 Having considered individual test classes, you will now see how to run sets of
tests together.

10 See Test-Driven Development: By Example by Kent Beck (Addison Wesley, 2002).

Use Groovy
inspection
to examine
the map

516 CHAPTER 14
Unit testing with Groovy
14.4 Organizing your tests

So far, we have been running our Groovy tests individually. For large systems, tests
typically aren’t run individually but are grouped into test suites that are run
together. JUnit has built-in facilities for working with suites. These facilities allow
you to add individual test cases (and other nested suites) to test suites. JUnit’s
test runners know about suites and run all the tests they contain. Unfortunately,
these facilities require you to manually add all of your tests to a suite and assume
you are using Java classes for your tests. We’ll look at ways of making life easier
with Groovy.

 Because grouping tests into suites is so important, numerous solutions have
popped up in the Java world for automatically creating suites, but these too typi-
cally assume you are using Java classes. The good news is that because Groovy
classes compile to Java classes, you don’t have to abandon any of your current
practices for grouping tests—as long as you are willing to compile your Groovy
files using groovyc first. The even better news is that there are solutions that allow
you to work more naturally directly with your Groovy files.

 First, we should mention GroovyTestSuite, which is a Java class. It allows you
to invoke Groovy test scripts from the command line as follows:

> java groovy.util.GroovyTestSuite src/test/Foo.groovy

Being a Java class, GroovyTestSuite can be used with any conventional Java IDE
or Java build environment for running JUnit tests. It allows you to add Groovy
files into your test suites, as shown in listing 14.4. This creates a suite containing
the two previous tests. You could also add Java tests to the same suite.

import junit.framework.*

static Test suite() {
 def suite = new TestSuite()
 def gsuite = new GroovyTestSuite()
 suite.addTestSuite(gsuite.compile
 ("Listing_14_2_Calculator_Test.groovy"))
 suite.addTestSuite(gsuite.compile
 ("Listing_14_3_Hash_Test.groovy"))
 return suite
}

junit.textui.TestRunner.run(suite())

Listing 14.4 Adding Groovy scripts to a JUnit suite with GroovyTestSuite

Advanced testing techniques 517
We create a normal JUnit TestSuite and call GroovyTestSuite’s compile method
to compile the Groovy source code so that TestSuite knows how to run it. We then
use the normal JUnit console UI to run the tests. It isn’t aware that it’s running
anything other than normal Java.

 Next, we look at AllTestSuite, which can be thought of as an improved ver-
sion of GroovyTestSuite. It allows you to specify a base directory and a filename
pattern, and then it adds all the matching Groovy files to a suite. Listing 14.5
shows how you would use it to run the same tests as we did in listing 14.4.

def suite = AllTestSuite.suite(".", "Listing_14_*_Test.groovy")
junit.textui.TestRunner.run(suite)

This time, we use the return value of the suite method directly, but if we wanted
to add multiple directories or patterns, we could have called suite multiple
times, adding the tests to a suite before running them all together.

 We will have more to say about grouping tests into suites and running test
suites when we look at IDE, Ant, and Maven integration later in this chapter.

 Unit testing can be difficult in some situations, particularly if you are adding
tests for code that was originally developed without any thought of testing.
Groovy’s dynamic nature eases the pain with a number of advanced ways of test-
ing, which we shall examine next.

14.5 Advanced testing techniques

Automated testing is easy if you develop your automated tests in close interplay
with your production code, because you immediately design your system for test-
ability. Unfortunately, this level of test awareness is not yet mainstream, and you’ll
sometimes find yourself in the position where you have to write tests for code that
already exists. This is when you need advanced testing techniques, just as you’d
need a more specialized tool than a normal fork to efficiently extract a single
strand of spaghetti from a bowl of pasta.

 A number of bad programming habits make testing difficult. One is writing
incoherent classes and methods that do more than they should, resulting in
overly long classes and methods.

 Even worse is code with lots of dependencies to other classes that we will call
collaborators. Unit-testing your class under test (CUT) in its purist form means that

Listing 14.5 Adding Groovy scripts to a JUnit suite with AllTestSuite

518 CHAPTER 14
Unit testing with Groovy
you test it in isolation without the collaborators so that you are just focused on
finding bugs in your code.11

 The advanced testing techniques we are about to explore are mainly con-
cerned with replacing such collaborators for the purpose of unit-testing the CUT
in isolation. To that end, we will first show how you can employ Groovy’s core lan-
guage features to provide “fake” collaborators. We then explore Groovy’s special
support for so-called stubs and mocks, which allow flexible simulation of collabo-
rator behavior, as well as let you specify exactly how the collaborators must be
used. We finish with a technique that can be used when all else fails: using logs to
test that your classes are behaving as you expect them to.

14.5.1 Testing made groovy

Once, I (Dierk) gave a lecture on unit testing where I asked the audience to chal-
lenge me with the most difficult testing problem they could think of, something
they believed would be impossible to unit test. Their proposal was to test the load-
balancer of a server farm. How could we test this in Groovy?

 The core logic of a load balancer is to relay a received request to the machine
in the server farm that currently has the lowest load. Suppose we already have col-
laborator classes that describe requests, machines, and the farm; a Groovy load bal-
ancer could have the following method:

def relay(request, farm) {
 farm.machines.sort { it.load }[0].send(request)
}

The method finds the machine with the lowest load by sorting all machines in the
farm by the load property, taking the first one, and calling the send method on
that machine object.

 In order to unit-test this logic, we need to somehow call the relay method to
verify its behavior. We can do this only if we have request and farm objects, but we
don’t want our test to depend on any of the production collaborator classes. Luck-
ily, our Groovy solution doesn’t demand any specific types, and we can use any
type we fancy.

 What would be a good object to use for the farm parameter? Thanks to
Groovy’s duck typing of the relay parameters, any object that we can ask for a
machines property would do—a map for example. The machines property in turn

11 Other kinds of integration tests should pick up bugs that come from integrating your code with the
collaborators.

Advanced testing techniques 519
needs to be something that can be sorted by a load property and understands the
send(request) method. Listing 14.6 follows this route by testing the load bal-
ancer logic with a map-based farm of fake machines that are made using a
FakeMachine class. Fake machines return a self-reference from their send method
to allow subsequent asserts to verify that the send method was called on the
expected machine.

import junit.framework.Assert;

def relay(request, farm) {
 farm.machines.sort { it.load }[0].send(request)
}

class FakeMachine {
 def load
 def send(request) { return this }
}

final LOW_LOAD = 5, HIGH_LOAD = 10
def farm = [machines: [
 new FakeMachine(load:HIGH_LOAD),
 new FakeMachine(load:LOW_LOAD)]]

Assert.assertSame(LOW_LOAD, relay(null, farm).load)

Note that we don’t need to create a special stub for the request parameter. Since
it is relayed and no methods are ever called on it, null is fine.

 The important point about listing 14.6 is that the load-balancing logic is tested
in full isolation. No accidental change to any of the collaborator classes can possibly
affect this test. When this test fails, we can be sure that the load-balancing logic and
nothing else is in trouble.

 Up to this point, the Groovy support for dynamic typing, property-style access
to maps, and the ease of declaring small helper classes has saved us lot of work,
but Groovy has even more useful features in stock.

 Listing 14.7 tests the same logic, but using Expandos (see section 7.4 for an
introduction). Expando objects are great for replacing duck-typed collaborator
objects, because they can mimic method calls by having a closure assigned to the
property that is named after the method. You can easily create two instances of
Expando, which respond to method calls in different ways, just by specifying dif-
ferent closures as their property values for that method:

Listing 14.6 Unit-testing a load balancer with Groovy collaborator replacements

Code
under test

Replacement
class

Map replaces
farm

520 CHAPTER 14
Unit testing with Groovy
def relay(request, farm) {
 farm.machines.sort { it.load }[0].send(request)
}

def fakeOne = new Expando(load:10, send: { false })
def fakeTwo = new Expando(load:5, send: { true })

def farm = [machines: [fakeOne, fakeTwo]]

assert relay(null, farm)

Both listings achieve the same effect, but the latter feels more Groovy. They are
pushing demanded behavior into the faked collaborators, which is an often-used
advanced testing technique. You will see this approach reapplied and extended
when we look at Groovy’s built-in support for stubs and mocks.

14.5.2 Stubbing and mocking

So far, our load balancer was fairly easy to test in isolation because we could feed
all collaborator objects into the relay method. That wasn’t a real challenge.
Things get more interesting when we need to replace objects that cannot be set
from the outside.12

Example problem: collaborator construction
Suppose our load balancer directly creates its collaborator farm object:

def relay(request) {
 new Farm().getMachines().sort { it.load }[0].send(request)
}

The Farm class looks like this:

class Farm {
 def getMachines() {
 /* some expensive code here */
 }
}

From an implementer’s perspective, such a solution could be justifiable for a
number of reasons. Perhaps the Farm’s getMachines method provides support for
finding all machines via a network scan and then caches that information. Any-

Listing 14.7 Using Expando objects for replacing collaborators in unit tests

12 In UML terms: when the collaborator is composed, not aggregated.

Advanced testing techniques 521
way, we would not want to perform an expensive operation if we didn’t need it, so
placing the new Farm().getMachines() statement within relay seems like the way
to go. From a tester’s perspective, however, even allowing for potential caching,
calling the real code is going to be too expensive an operation for a unit-test envi-
ronment, where tests should execute in the blink of an eye if developers are to be
expected to run them often. Also, we need to run our tests even when there are no
real machines available.

 The implementation is not easily testable. We can’t use the Expando or fake
implementation techniques in the way you saw earlier, because there is no way to
sneak such a subclass into our code under test. One common trick when testing
would be to subclass Farm. That won’t help us here either, for the same reasons.
Should we give up? No!

Stubbing out the collaborator
Groovy’s Meta-Object capabilities come to the rescue in the form of Groovy
stubs. The trick provided by Groovy stubs is to intercept all method calls to
instances of a given class (Farm in this case) and return a predefined result. Here
is how it works.

 We first construct a stub object for calls to the Farm class:

import groovy.mock.interceptor.StubFor

def farmStub = new StubFor(Farm)

Next, we create two fake machines that we will use to help define our expectations
from the stub:

def fakeOne = new Expando(load:10, send: { false })
def fakeTwo = new Expando(load:5, send: { true })

Then, we demand that when the getMachines method is called on our stub, our
fake machines are returned. Registering this behavior is done by calling the
respective method on the stub’s demand property and passing a closure argument
to define the behavior:

farmStub.demand.getMachines { [fakeOne, fakeTwo] }

Finally, we pass our test code as a closure to the stub’s use method. This ensures
that the stub is in charge when the test is executed: Any call to any Farm object
will be intercepted and handled by our stub. The full test scenario reads like
listing 14.8.

522 CHAPTER 14
Unit testing with Groovy
import groovy.mock.interceptor.StubFor

def relay(request) {
 new Farm().getMachines().sort { it.load }[0].send(request)
}

def fakeOne = new Expando(load:10, send: { false })
def fakeTwo = new Expando(load:5, send: { true })

def farmStub = new StubFor(Farm)
farmStub.demand.getMachines { [fakeOne, fakeTwo] }

farmStub.use {
 assert relay(null)
}

Note that for the use of Groovy stubs, it makes no difference whether the collab-
orator class is written in Java or Groovy. The class under test, however, must be a
Groovy class.

Stub expectations
Groovy stubs support a flexible specification of the demanded behavior. To
demand calls to different methods, demand them in sequence:

someStub.demand.methodOne { 1 }
someStub.demand.methodTwo { 2 }

When calls to the stubbed method should yield different results per call, add the
respective demands in sequence:

someStub.demand.methodOne { 1 }
someStub.demand.methodOne { 2 }

You can additionally provide a range to specify how often the demanded closure
should apply; the default is (1..1):

someStub.demand.methodOne(0..35) { 1 }

Finally, it is also possible to react to the method argument that the CUT passes to
the collaborator’s method. Each argument of the method call is passed into the
demand closure and can thus be evaluated inside it. Suppose you expect that
the stubbed method is called only with even numbers, and you would like to
assert that invariant while testing. You can achieve this with

Listing 14.8 Using Groovy stubs to test an otherwise untestable load balancer

Create stub Specify demanded
behavior

Call the class under
test using stub

Advanced testing techniques 523
someStub.demand.methodOne {
 number -> assert 0 == number % 2
 return 1
}

Of course, you can also combine all these kinds of demand declarations, produc-
ing an elaborate specification of call sequences on the collaborator and returned
values. The more elaborate that specification is, the more likely it is that you will
want to additionally assert that all demanded method calls happened. For stubs,
this is not asserted by default, but you can enforce this check by calling

someStub.expect.verify()

after the use closure.
 Stubs use a LooseExpectation for verifying the demanded method calls. It is

called loose because it only verifies that all demanded methods were called, not
whether they were called in the sequence of the specification.

Comparing stubs and mocks
Strict expectations are used with mocks. A mock object has all the behavior of a
stub plus more. The strict expectation of a mock verifies that all the demanded
method calls happen in exactly the sequence of the specification. The first
method call that breaks this sequence causes the test to fail immediately. Also,
with mocks there is no need to explicitly call the verify method, because that
happens by default when the use closure ends.

 At first glance, it appears that mocks and stubs are almost the same thing, with
mocks being a bit more rigorous. But there is a deep fundamental difference in
the purpose behind their use:13 Stubs enable your CUT to run in isolation and
allow you to make assertions about state changes of the CUT. With mocks, the test
focus moves to the interplay of the CUT and its collaborators. What gets asserted
is whether the CUT follows a specified protocol when talking with the outside
world. A protocol defines the rules that the CUT has to obey when calling the col-
laborator. Typical rules would be: the first method call must be init, the last
method call must be close, and so on.

 Consider a new variant of our load balancer that uses a SortableFarm class,
which provides a sort method to change its internal representation of machines
such that any subsequent call to getMachines returns them sorted by load:

class SortableFarm extends Farm {
 def sort() {

13 See http://www.martinfowler.com/articles/mocksArentStubs.html for more details.

524 CHAPTER 14
Unit testing with Groovy
 /* here the Farm would sort its machines by load */
 }
}

Our CUT now has to follow a certain protocol when using SortableFarm: first sort
must be called, and then getMachines:

def relay(request) {
 def farm = new SortableFarm()
 farm.sort()
 farm.getMachines()[0].send(request)
}

Listing 14.9 uses a mock as constructed with the MockFor class to verify that our
CUT exactly follows this protocol. Only the compliance to the protocol is tested
and nothing else; for this special test, we don’t even verify that the call is relayed
to the machine with the lowest load.

import groovy.mock.interceptor.MockFor

class SortableFarm extends Farm {
 void sort() {
 /* here the Farm would sort its machines by load */
 }
}

def relay(request) {
 def farm = new SortableFarm()
 farm.sort()
 farm.getMachines()[0].send(request)
}

def farmMock = new MockFor(SortableFarm)

farmMock.demand.sort(){}
farmMock.demand.getMachines { [new Expando(send: {})] }

farmMock.use {
 relay(null)
}

If you are unfamiliar with mock objects, protocol-based testing14 will probably
appear strange to you. In traditional testing, we tend to focus on state changes

Listing 14.9 Using Groovy mock support to verify protocol compliance

14 Also called interaction-based testing.

Create
mock

Specify demanded
behavior

Advanced testing techniques 525
and return values rather than on the effects caused to collaborating objects. In
some cases, interactions with collaborators are implementation details and
shouldn’t be tested. If, however, they are part of the object’s guaranteed behavior,
mock testing is appropriate.

 Groovy’s clever way of providing stubs and mocks even for objects that cannot
be passed to the CUT is a two-edged sword. Testing should lead you into a design
of high coherence and low coupling. Without resorting to clever Java tricks, Java
mocks only work if you can pass them to the CUT, forcing you to expose the col-
laborator, which usually leads to a more flexible design. In Groovy, there is no
such restriction, because you can more easily test even a rotten design. The impli-
cation is that Groovy won’t stop you from building a less-flexible design even
when using the latest development practices.

 On the other hand, Java projects often suffer from the deadlock that appears
when developers find large sections of untestable code. They cannot easily refac-
tor such a section of code because it has no tests. They cannot easily write tests
without refactoring the code to make it more testable. With Groovy’s built-in
mocking facilities, you have a better chance of escaping this deadlock.

14.5.3 Using GroovyLogTestCase

Sometimes, even with stubs and mocks, testing a particular object can be difficult.
The amount of work involved in setting up all the mocked interactions in a tricky
scenario may outweigh the benefits of your testing efforts. To be realistic, if your sys-
tem (and resulting tests) is that complex, perhaps you will have a bug in your tests.
In such cases, another useful feature provided by Groovy is GroovyLogTestCase.
You have already seen in listing 14.2 that it was relatively easy to test the fictitious
countHowManyBiggerThan calculator. Suppose, though, that is was much harder to
test. We could resort to writing some information to a log file, and then we could
manually check the log file to see if it appears to contain the correct information.
In these scenarios, GroovyLogTestCase can be extremely useful. Consider the fol-
lowing modified LoggingCalculator:

import java.util.logging.*

class LoggingCalculator {
 static final LOG = Logger.getLogger('LoggingCalculator')
 def countHowManyBiggerThan(items, target) {
 def count = 0
 items.each{
 if (it > target) {
 count++
 LOG.finer "item was bigger - count this one"

526 CHAPTER 14
Unit testing with Groovy
 } else if (it == target) {
 LOG.finer "item was equal - don't count this one"
 } else {
 LOG.finer "item was smaller - don't count this one"
 }
 }
 return count
 }
}

Note that the calculator outputs log messages for each of three scenarios: the
item being tested was smaller than, equal to, or bigger than the target value. We
can now test this class with the assistance of GroovyLogTestCase, as shown in list-
ing 14.10.

import java.util.logging.*

class LoggingCalculatorTest extends GroovyLogTestCase {
 static final MIXED_NUMBERS = [99, 2, 1, 0, -1, -2, -99]
 private calc

 void setUp() {
 calc = new LoggingCalculator()
 }

 void testCalculatorAndLog(){
 def log = stringLog(Level.FINER, 'LoggingCalculator') {
 def count = calc.countHowManyBiggerThan
 (MIXED_NUMBERS, -1)
 assertEquals(4, count)
 }
 checkLogCount(1, "was equal", log)
 checkLogCount(4, "was bigger", log)
 checkLogCount(2, "was smaller", log)
 checkLogCount(4, /[^d][^o][^n][^'][^t] count this one/, log)
 checkLogCount(3, "don't count this one", log)
 }

 private checkLogCount(expectedCount, regex, log) {
 def matcher = (log =~ regex)
 assertTrue log, expectedCount == matcher.count
 }
}

If you look at the test data in the MIXED_NUMBERS list, you would expect four entries
to be bigger than -1, two to be smaller, and one to be the same. Log messages

Listing 14.10 Using GroovyLogTestCase for tricky cases

Test
data

Set up
stringLog

Invoke CUT
Traditional JUnit
style assert

Helper method
asserting patterns
within the log

IDE integration 527
corresponding to these cases will be stored in the log variable thanks to the
stringLog statement. Our test then uses regular expressions to ensure that the log
contains the correct number of each kind of log message.

 GroovyLogTestCase makes use of the Log String testing pattern15 in a test sce-
nario that would otherwise be cumbersome and error-prone to implement. It
relieves you of the work of setting the appropriate log levels and registering
string appenders for the CUT logger. After the test, it cleans up properly and
restores the old logging configuration.

 You have seen that Groovy makes even advanced testing techniques easily
available through core language features. The running theme of improving
developer convenience with Groovy finds its logical continuation in the next sec-
tion, where we integrate Groovy unit testing in Java IDEs.

14.6 IDE integration

In section 1.6, you saw that some major Java IDEs (with the addition of plug-ins)
have useful support for editing and running Groovy code. The same mecha-
nisms are suitable for editing and running your Groovy tests. But the story
doesn’t end there.

 Java IDEs often have additional features to better support Java unit testing,
such as enhanced test runners. Fortunately, you’ll see that many of these enhanced
features can be leveraged for your Groovy unit testing. We explore how to use the
two test suite classes you saw earlier within an IDE, before taking a brief look at
how Groovy’s close relationship with Java allows it to be used with cutting-edge
IDE testing features.

14.6.1 Using GroovyTestSuite

While editing a Groovy test file within your IDE, you can run it like any other
Groovy file. Eclipse users with the Groovy plug-in installed might right-click, select
Run As, and then select Groovy. IntelliJ IDEA users with the GroovyJ plug-in
installed might press Ctrl-Shift-F10. In both cases, the corresponding tests within
the current file would run. If your Groovy file was several assert statements in a
script file, like listing 14.1, then you wouldn’t see any output—this is as expected
because assert statements make noise only when something goes wrong. If you
don’t want to run your tests individually or want some additional feedback when
running your tests, GroovyTestSuite may be what you are after.

15 See chapter 27 of Test-Driven Development: By Example.

528 CHAPTER 14
Unit testing with Groovy
In section 14.4, you saw that GroovyTestSuite could be used to invoke a Groovy
test from the command line. You also saw how it could be used to add Groovy
files into a standard JUnit suite.16 We are now going to look at another way of
using GroovyTestSuite: as part of an IDE run configuration. Figure 14.1 shows
how to configure Eclipse to use GroovyTestSuite as part of a run configuration.
Select Run -> Run, and create a new Java Application configuration. Set the
Project to be your current project, and select groovy.util.GroovyTestSuite as
the Main class.

 Next, click the Arguments tab; in the Program Arguments box, include the
path to your Groovy script, as shown in figure 14.2.

 When you run this configuration, you should see output similar to that shown
in figure 14.3.

 Users of JUnit’s text-based runner will now feel quite at home and will be see-
ing a bit more feedback than the previously empty output.

16 Test suites remain an important concept you typically use in conjunction with other IDE integration.

Figure 14.1 Eclipse run configuration for Main tab using GroovyTestSuite

IDE integration 529
14.6.2 Using AllTestSuite

JUnit’s green/red bar reporting mechanism found in graphical test runners can
be addictive when you are “in the groove.” The default behavior of Groovy’s
GroovyTestSuite, however, doesn’t easily fit into the graphical runner model,
because those runners usually prefer to run normal Java classes, rather than
Groovy files.

 One strategy is to rely on groovyc to compile all test cases and then run them
via a Java-aware GUI runner; however, that takes an extra step. It’s more fun to
see the green bar immediately after coding! This is where AllTestSuite, which we
discussed earlier in section 14.4, really shines. In addition to its uses for organiz-
ing your tests into suites, AllTestSuite can also be used as part of configuring
your test runs.

Figure 14.2
Eclipse run configuration
for the Arguments tab
using GroovyTestSuite

Figure 14.3 Eclipse GroovyTestSuite example run output

530 CHAPTER 14
Unit testing with Groovy
To configure Eclipse to use AllTestSuite, create a new JUnit run configuration,
select your project, and set the Test class to groovy.util.AllTestSuite, as shown
in figure 14.4.

 Then, in the Arguments tab, define two properties that tell AllTestSuite which
Groovy tests to run. These properties need to be supplied as two VM Arguments.
The properties will need to be adjusted for your system but will look something
like -Dgroovy.test.dir=src for the directory and -Dgroovy.test.pattern=

CelsiusTest*.groovy for the filename pattern. Your configuration will be similar
to that shown in figure 14.5.

Figure 14.4 Eclipse AllTestSuite run configuration Test tab

Figure 14.5
Eclipse AllTestSuite run
configuration Arguments tab

IDE integration 531
When you run this configuration, you should see the familiar green and red bar,
as shown in figure 14.6. We don’t have time to illustrate how to set up other IDEs,
but we included the output from running the same configuration in IntelliJ in fig-
ure 14.6 so that you would know what to expect.

14.6.3 Advanced IDE integration

Groovy’s close relationship with Java opens up a whole world of additional inte-
gration possibilities. Most technologies as new as Groovy suffer from immature
tools. Although Groovy doesn’t totally escape this condition, it can frequently
leverage the mature Java tool set. We will give you one brief example based on the
Eclipse TPTP platform to give you the idea.

 The Eclipse open source Test & Performance Tools Platform (TPTP) project pro-
vides a framework that supports test editing and execution, monitoring, tracing
and profiling, and log analysis capabilities.17 The platform is multifaceted and
would probably require its own book to fully describe all of its features. For our
purposes, you only need know that one feature it provides is a mechanism to
support creation of test suites by non-Java programmers. A typical scenario is a
Java programmer creating a set of base Java test classes. A tester can then com-
bine tests into suites, create loops involving tests, run performance tests based on
these tests, and supply data from spreadsheets and other sources to be used in
the tests.

Figure 14.6 Eclipse and IntelliJ IDEA AllTestSuite example test run output

17 See http://www.eclipse.org/tptp for more details.

532 CHAPTER 14
Unit testing with Groovy
 It is beyond the scope of this book to describe all the details, but we wanted to
show you the results of an initial attempt to leverage TPTP’s great features in the
Groovy world. First, we followed an introductory tutorial included in the TPTP
documentation called Creating a datapool driven JUnit test application.18 Toward the
end of the tutorial, it generated some Java JUnit tests for us. We replaced the Java
tests it created with our own Groovy tests using GroovyTestSuite.

 TPTP then allowed us to com-
bine our Groovy tests in a graphical
manner within the tool without
having to see the code again, and it
let us create data for the tests using
a built-in datapool mechanism that
TPTP provides. Figure 14.7 shows
how we entered the data required
for our test. We could have imported
it from a spreadsheet or a number of
other sources. For those who have
looked up the tutorial, you will note that we changed the last data value from 4.99
to 5.99 so that we can show you what a failed test looks like.

 When we ran the test, a test log was created and stored away for us. If you
examine the events in the log, you can observe the graphical representation of
the steps in the left pane of figure 14.8. Because we intentionally modified one
of the data values, you observe a JUnit failure message in the description of the
failure, along with a stacktrace showing that our Groovy test was running.

 We ask you to excuse us for skipping many of the details in this example. It
wasn’t meant to be a TPTP tutorial or even to suggest that the integration we
have shown you is the best way to use TPTP with Groovy. It was just meant to
provide you with a glimpse of the possibilities available to Groovy because of its
Java heritage.

 Of course, Java has more to offer than just IDEs, and many tools have been
written to make testing simpler and more effective. Again, these tools can be used
with Groovy code, as you’ll see in our next section.

18 See http://help.eclipse.org/help31/topic/org.eclipse.hyades.test.doc.user/samples/saccessdp.htm.

Figure 14.7 Eclipse TPTP sample data

Tools for Groovy testing 533
14.7 Tools for Groovy testing

In the previous section, you saw some value-added IDE support from the Java
world for testing. It turns out there are also quite a few value-added non-IDE tools
with Java heritage that you can leverage for your Groovy tests. We don’t have the
space to cover all of them, but we will talk about Cobertura and JUnitPerf to show
that whatever library you want to use can be used from Groovy.

14.7.1 Code coverage with Groovy

Code-coverage tools are now a mainstream part of any serious agile Java devel-
oper’s toolkit. They provide useful feedback on how well your testing efforts are
going. To leverage any existing Java code coverage tool for Groovy, you need to
compile your Groovy into bytecode and then run the tool as before.

 However, if you are interested in the coverage of your Groovy code and you try
this technique with an older coverage tool, you will probably not have the ability
to see reports indicating which lines of code were executed, because the tool or its
reporting infrastructure doesn’t know about Groovy source files.

 The good news is that efforts are being made to provide native Groovy support
in code-coverage tools. One open source tool that has gained Groovy support is

Figure 14.8 Eclipse TPTP sample output

534 CHAPTER 14
Unit testing with Groovy
Cobertura, available from http://cobertura.sourceforge.net. For example, con-
sider the following Groovy class:19

class BiggestPairCalc
{
 int sumBiggestPair(int a, int b, int c) {
 def op1 = a
 def op2 = b
 if (c > a) {
 op1 = c
 } else if (c > b) {
 op2 = c
 }
 return op1 + op2
 }
}

Here’s a test for this code:

class BiggestPairCalcTest extends GroovyTestCase
{
 void testSumBiggestPair() {
 def calc = new BiggestPairCalc()
 assertEquals(9, calc.sumBiggestPair(5, 4, 1))
 }
}

At this stage, we could run our test and make sure it passes. To get coverage, how-
ever, requires a few extra steps. We used an Ant build file to capture these steps.
The first part of the build file looks like the following:

 <!-- set up definitions and properties … -->
 <!-- compile java code, if any … -->
 <javac …/>
 <!-- compile groovy code … -->
 <groovyc …/>

Here, we are compiling our source files into class files so that Cobertura can
instrument them, as shown in the next lines:

 <cobertura-instrument todir="target/instrumented-classes">
 <fileset dir="${dir.build}">
 <include name="**/*.class"/>
 </fileset>
 </cobertura-instrument>

19 If we were trying to be really Groovy, we could have written [a,b,c].sort()[-2..-1].sum(), but
that would have made it harder to show some lines covered and some not!

Tools for Groovy testing 535
By this stage in the build process, Cobertura has modified our bytecode so that
while it is executing, it will write out information about which code paths have
been executed. This information will be stored away in a form suitable for later
processing by the coverage tool. We can now use our classes in the normal way,
which in this case means running them using Ant’s junit task as follows:

 <!-- run tests with the junit task as normal,
 - making sure we use the instrumented classes -->
 <junit …/>

We follow our test run with the cobertura-report task to generate a coverage
report similar to the one shown in figure 14.9:

 <cobertura-report srcdir="${dir.src}"
 destdir="${dir.report}/cobertura"/>
 <!-- cleanup … -->

Note that nothing special was required to get the Groovy coverage. All Java classes
(if any) and Groovy classes in our project will be part of the coverage analysis.

 If we drill down into the report by clicking an appropriate link for one of our
source files, we can see which lines are covered by tests. Figure 14.10 shows that
lines 7 and 9 are not covered yet by tests.

 Now that we can see where we’re missing coverage, we can add more tests to
our test method:

 assertEquals(15, calc.sumBiggestPair(5, 9, 6))
 assertEquals(16, calc.sumBiggestPair(10, 2, 6))

We can run the tests to make sure they all still work and then check the coverage
again to see how our coverage is going. The result is shown in figure 14.11.

 So, is the code correct? The tests all pass, and we have 100 percent coverage—
that means we don’t have any bugs, right? Just for fun, let’s add one more test:

assertEquals(11, calc.sumBiggestPair(5, 2, 6))

Figure 14.9 Cobertura code-coverage summary report

536 CHAPTER 14
Unit testing with Groovy
If we run our tests again, they now fail. There was a bug in our original algorithm.
That was nothing to do with Groovy, but just a reminder that coverage is a neces-
sary but not sufficient condition to show that you have all the tests that you need.
We can fix up the calculator as follows:

int sumBiggestPair(int a, int b, int c) {
 int op1 = a
 int op2 = b
 if (c > [a,b].min()) {
 op1 = c
 op2 = [a,b].max()
 }
 return op1 + op2
}

Now we can run all our tests. They should all pass, and Cobertura should report
100 percent coverage.

Figure 14.10 Cobertura code-coverage file report showing partial coverage

Figure 14.11 Cobertura code-coverage file report showing full coverage

Tools for Groovy testing 537
14.7.2 JUnit extensions

Most JUnit extension frameworks integrate easily with Groovy. For example, you
can easily employ XMLUnit, DbUnit, and jWebUnit via JUnit tests written in
Groovy, because these frameworks expose an API that facilitates delegation. Dec-
orator-based frameworks, however, are slightly more challenging to utilize within
Groovy using the techniques we have shown you so far.

 JUnitPerf is an extension framework for JUnit that offers the ability to ascer-
tain fine-grained performance and scalability (at a method level). For instance,
JUnitPerf enables scenarios such as “the findTrades method must return a
collection of Trade objects within one second, or the test fails (even if the test did
return a valid collection of Trade objects).” The framework also adds scalability
via threading. Using this scenario, you can add the requirement that under a load
of 100 invocations, the findTrades method must return a collection of Trade
objects within one second.

 Understandably, there are scenarios within Groovy where this type of frame-
work could come in handy:

■ Testing the performance and scalability of Groovy applications
■ Testing the performance and scalability of normal Java code in tests written

in Groovy

Using JUnitPerf with Groovy can be tricky. JUnitPerf is a decorator-based frame-
work. It decorates test cases by individually wrapping them with a decorator.
This is typically done within a suite method. Groovy’s GroovyTestSuite and
AllTestSuite test runners, however, ignore suite definitions and provide alter-
native mechanisms for determining which tests to run.

 To allow JUnitPerf to work with Groovy involves following a few simple steps.
First, you need a way to select a single JUnit test that you want to decorate. If you
look at JUnit’s TestCase class, you will notice that it provides a constructor which
takes the name of a test method and allows a single test case to be selected. We
can make use of this for JUnitPerf by declaring a constructor that takes a method
name and have it call super(methodName):

RegexFilterPerfGTest(test){
 super(test)
}

Then we create a suite method that defines a test case using this constructor:

static Test suite() {
 def testCase = new RegexFilterPerfGTest("testOr")

538 CHAPTER 14
Unit testing with Groovy
 …
}

Now we can apply the appropriate decorators on the test case according to JUnit-
Perf ’s documentation for load and stress testing scenarios:

def loadTest = new LoadTest(testCase, 20, new ConstantTimer(100))
…

It sounds complicated, but really it is the same steps you would follow to use
JUnitPerf in Java.

 As an example, listing 14.11 utilizes JUnitPerf to verify that invoking
testOr 20 times (each thread staggered by 100 milliseconds) returns within
2100 milliseconds.

//…imports removed

class RegexFilterPerfGTest extends TestCase {

 RegexFilterPerfGTest(test){
 super(test)
 }

 void testOr() {
 def filter = new RegexPackageFilter("java|org")
 assertTrue("value should be true",
 filter.applyFilter("org.sf.String"))
 }

 static main(args) {
 TestRunner.run(RegexFilterPerfGTest.suite())
 }

 static Test suite() {
 def testCase = new RegexFilterPerfGTest("testOr")
 //20 users for load staggered at 100 ms
 def loadTest = new LoadTest(testCase, 20,
 new ConstantTimer(100))
 //each thread must return within 2100 ms
 return new TimedTest(loadTest, 2100)
 }
}

When you run this program, you should see output indicating that the program is
running your tests, followed by the time it took to complete the tests. Because

Listing 14.11 Using JUnitPerf decorators to perform load and time tests

Call super

Traditional nontimed JUnit test

Class under test,
code not shown

Define
test case

Decorator to
simulate load

Decorator to assert
time contraint

Build automation 539
there are 20 users, starting 100ms apart, we expect the test to run for at least
2 seconds. If the time is less than 2.1 seconds, then the test will be successful:

....................TimedTest (WAITING): LoadTest (NON-ATOMIC):
ThreadedTest: testOr(RegexFilterPerfGTest): 2016 ms

Time: 2.016
OK (20 tests)

If the test takes too long to run (suppose we expect it to complete in 2.01 sec-
onds), then the test will fail:

There was 1 failure:
1) LoadTest (NON-ATOMIC): ThreadedTest: testOr(RegexFilterPerfGTest)

junit.framework.AssertionFailedError: Maximum elapsed time exceeded!
Expected 2010ms, but was 2015ms.

The next time you need figure out the performance of some Groovy code or you
want to test the performance and scalability of your Java application with Groovy,
give JUnitPerf a try!

 We have shown you a couple of technologies that originated in the Java world
but that Groovy can now benefit from. There are many more. Why not have some
fun now and explore how to use your favorite Java technology with Groovy? Alter-
natively, read on, and find out how to integrate your build automation technology
with Groovy.

14.8 Build automation

We have looked at how to run tests individually or in suites from the command
line and using IDEs. For a team environment, however, the automated build envi-
ronment should also run all the tests.20 Two of the more popular build automa-
tion technologies in the Java world are Ant and Maven. We’ll briefly look at how
to integrate Groovy with each of these technologies.

14.8.1 Build integration with Ant

Ant is a commonly used build environment for running unit, system, integration,
and acceptance testing in an automated fashion. For the moment, we are mainly
focusing on unit tests. If you want to see some additional example related to accep-
tance testing, see chapter 16 for coverage of how Grails automatically generates
WebTest acceptance tests in Groovy for your Grails web-based CRUD applications.

20 See Pragmatic Project Automation: How to Build, Deploy, and Monitor Java Apps by Mike Clark (The Prag-
matic Programmers, 2004) for more details on why this is important.

540 CHAPTER 14
Unit testing with Groovy
 As an example of unit testing, we are going to examine the build file we used
for generating the Cobertura report in the previous section. Here are the lines
that compiled the Java and Groovy production and test classes:

 <javac srcdir="${dir.src}" destdir="${dir.build}" debug="true">
 <classpath refid="project.classpath"/>
 </javac>
 <groovyc srcdir="${dir.src}" destdir="${dir.build}"
 stacktrace="true">
 <classpath refid="project.classpath"/>
 </groovyc>

Here is the relevant part, which ran the unit tests:

 <junit printsummary="yes" haltonerror="no" haltonfailure="no"
 fork="yes">
 <formatter type="plain" usefile="false"/>
 <batchtest>
 <fileset dir="target/instrumented-classes"
 includes="**/*Test.class" />
 </batchtest>
 <classpath refid="cover-test.classpath"/>
 </junit>

These examples show how easy it is to make Groovy work in your Ant build files.
We would be remiss if we didn’t show you some more power that Groovy can bring
to your Ant build files. You can access the power of Groovy in your build files in
one of two ways:

■ You can use Groovy from normal Ant build files using the <script> or
external <groovy> task, as you saw in section 13.1.7.

■ You can start from Groovy and use the Ant builder syntax to have full pro-
gramming capabilities, as shown in section 8.3.

Listing 14.12 shows an example that combines both techniques.

<groovy>
def scanner = ant.fileScanner {
 fileset(dir: properties['src.dir']) {
 include(name: '**/*.xml')
 }
}
def nameCheck = scanner.every{
 file -> file.name.contains('build')
}
def totalSize = 0

Listing 14.12 Using Groovy with Ant for testing

File scanner for
all XML files

Check that all filenames
contain ‘build’

Build automation 541
def fileCount = 0
def maxSize = 0
for(file in scanner){
 fileCount++
 if (file.size() > maxSize) maxSize = file.size()
 totalSize += file.size()
}
if (nameCheck || totalSize / fileCount > 50 ||
 maxSize > 100 || fileCount > 10)
 properties.shouldCompress = true
</groovy>

In listing 14.12, we set up a property for subsequent use in an if or unless
attribute. The property is called shouldCompress and is set based on the proper-
ties of selected XML files in the directory in which the script is run. The property
will be set if every file in the selected fileset has the characters “build” in its name,
if there are more than 10 files, if the average file size is greater than 50, or if the
maximum file size is more than 100.

 You can use fancy checks like this within your build file. Based on such a check,
you might decide to run a totally different set of tests or include some optional
tests. The sky is the limit.

14.8.2 Build integration with Maven

Maven is a software project-management framework that can help you manage
the many activities associated with producing a project’s deliverable artifacts.
This may include acquiring your project’s dependent software, compiling your
software, testing it, packaging it, and generating test and metrics reports. Two
main versions of Maven are in use today: the original Maven (versions up to 1.x)
and Maven 2 (versions 2.0 and above).

 Maven supports the concept of plug-ins to perform many of the project lifecy-
cle activities that it manages for you. For example, there are plug-ins to compile
Java files, test them, package them up as jar files, and so forth. Because Groovy
tests are easily compiled to normal Java bytecode, it should come as no surprise
that you can leverage many of the existing Maven Java tasks to assist you. In addi-
tion, there are purpose-built Maven 2 tasks for Groovy that you can utilize.

 If you are already a Maven 2 user, consider using the generic Maven 2 plug-in:
groovy-maven-plugin.21 This allows you to run a Groovy script in your build but

Iterate through
selected files

Set property based on
results of iteration

21 See http://mojo.codehaus.org/groovy-maven-plugin/examples.html for more details.

542 CHAPTER 14
Unit testing with Groovy
has no knowledge per se about test features of your project. Alternatively, con-
sider using the Maven 2 plug-in for running Ant files: maven-antrun-plugin.22

With this plug-in, you can make use of the Ant groovyc task you saw in the previ-
ous section. If you are a Maven 1 user, or you want to find out about a plug-in spe-
cifically aimed at testing, read on.

 In the approach we are going to use to ensure that our Groovy tests automat-
ically run as part of our Maven build, we first need to compile the Groovy files
down to bytecode. By defining a new goal and a few attainGoal elements in your
maven.xml file, you can create a process by which Groovy scripts are compiled
and then run via a passed in command, such as test.

 First, the groovyc command must be defined in your maven.xml file:

<goal name="groovyc-tests" prereqs="java:compile,test:compile">
 <path id="groovy.classpath">
 <pathelement path="${maven.build.dest}"/>
 <pathelement path="target/classes"/>
 <pathelement path="target/test-classes"/>
 <path refid="maven.dependency.classpath"/>
 </path>
 <taskdef name="groovyc"
 classname="org.codehaus.groovy.ant.Groovyc">
 <classpath refid="groovy.classpath"/>
 </taskdef>
 <groovyc destdir="${basedir}/target/test-classes"
 srcdir="${basedir}/test/src"
 listfiles="true">
 <classpath refid="groovy.classpath"/>
 </groovyc>
</goal>

In order for the groovyc task to work, we need Groovy to be in our Java classpath.
In Maven terms, we’ve introduced Groovy as a dependency, so we’ll also have to
update Maven’s project.xml file and add groovy-all-<version>.jar as an addi-
tional compile time dependency.

 Next, we’ll create a new goal named test that will force the groovyc-tests goal
to run followed by the standard test:test goal:

 <goal name="test">
 <attainGoal name="groovyc-tests"/>
 <attainGoal name="test:test"/>
 </goal>

22 See http://codeforfun.wordpress.com/2006/05/19/groovy-and-maven2-in-action/ for an example.

Build automation 543
Last, because the default Maven configuration looks for Java files to find match-
ing unit tests (such as **/*Test.*), we need to configure Maven to look at class
files. This is easily done by setting the maven.test.search.classdir to true in
your build.properties or project.properties file.

 We are now ready to run our tests. This can be done from a DOS or UNIX com-
mand shell:

$> maven test

The output should look something like this:

build:start:

test:
test:prepare-filesystem:

java:prepare-filesystem:

groovyc-tests:
Overriding previous definition of reference to groovy.classpath
 [taskdef] Trying to override old definition of task groovyc

java:prepare-filesystem:

java:compile:
 [echo] Compiling to c:\dev\projects\gd/target/classes

java:jar-resources:
Copying 2 files to c:\dev\projects\gd\target\classes
Copying 4 files to c:\dev\projects\gd\target\classes

test:prepare-filesystem:

test:test-resources:

test:compile:

test:test:
 [junit] Running test.com.vanward.adana.hierarchy.

GroovyHierarchyBuilderTest
 [junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 1.382 sec
BUILD SUCCESSFUL
Total time: 7 seconds
Finished at: Fri Aug 12 19:34:31 EDT 2005

Configuring Maven to run test cases in Groovy is fairly straightforward, and the
beauty of Maven is its ability to easily encapsulate common operations into a
plug-in. You can, for example, take the groovyc-tests part of your maven.xml

544 CHAPTER 14
Unit testing with Groovy
file as is and make it available as a plug-in for other Maven users to use. The
advantage of this plug-in over a standard plug-in that just runs Groovy scripts is
that this one is intended for developers coding on the Java platform who wish to
utilize Groovy in a noninvasive manner. The plug-in handles all associated
Groovy dependencies, compiles each Groovy test into normal Java bytecode, and
invokes JUnit to run the tests. If you wanted to integrate additional non-Groovy-
aware plug-ins that worked on the resulting compiled Java classes (for example,
to perform dependency analysis on the classes), your plug-in would have every-
thing in the correct place.

 As you can see, plugging Groovy into your normal Java build processes is a
cinch, whether they are Ant or Maven based.

14.9 Summary

That wraps up our exploration of how Groovy adds immense value to your unit-
testing activities.

 We believe that unit testing is not only a worthwhile activity but also sometimes
even more demanding and full of variations and engineering challenges than
writing production code. Our experiences with Groovy are that it assists with
meeting those demands and challenges. We hope you felt this too when we exam-
ined the benefits that Groovy brings to unit testing: the automatic availability of
JUnit, the enhanced test case class with its additional assert methods, and the in-
built support for mocks, stubs, and other dynamic classes.

 Groovy’s integrated unit-test support lets you test Groovy and Java code alike.
Our more detailed examination of how to unit-test Groovy code with Groovy
tests, how to test Java code with Groovy tests, and how to organize your tests into
meaningful suites gave you the grounding to begin testing your own systems
using Groovy.

 Our investigation of advanced testing techniques led us to explore how to
use stubs, mocks, and other dynamic classes such as Expando and Groovy-
LogTestCase. With the help of these advanced features, it is possible to test com-
plex scenarios with minimal to moderate effort. Previously tricky scenarios can
sometimes be tackled with much less work. This can often be the difference
between being able to justify unit testing and it being too expensive.

 For sustainable software development with a high level of test coverage, unit
testing must be both pleasant and efficient. What makes it pleasant is seamless
integration into the developer’s IDE of choice to provide immediate feedback in
develop, test, refactor cycles. What makes it efficient is the frequent unsupervised

Summary 545
self-running execution of the test suite in an automated build process. In the
Groovy world, both of these have excellent support.

 Groovy gains much from its Java heritage. This was clearly shown when we
looked at additional Java-level tool integration: in particular, one technology that
enabled us to do code coverage and another that enabled us to do stress and per-
formance testing. We examined only two tools, but there are hundreds of tools
available for Java and many yet-unexplored possibilities for leveraging them
in Groovy.

 To advocates of unit testing, Groovy can only be seen as a powerful and posi-
tive addition to the Java and Groovy developer’s toolkit. With Groovy, you can
write your tests more quickly and easily. Just think, with all the time you’ll save by
writing tests in Groovy, you can now go back to your customer and ask for more
feature requests!

Groovy on Windows
[O]ne is blinded to the fundamental useless-
ness of their products by the sense of achieve-
ment one feels in getting them to work at all.
In other words, their fundamental design
flaws are completely hidden by their superfi-
cial design flaws.

—The Hitchhiker’s Guide to the Galaxy
(Douglas Adams)

referring to the Sirius
Cybernetics Corporation
546

Downloading and installing Scriptom 547
You might wonder why this book contains a specific chapter about Groovy on
Microsoft’s famous and ubiquitous operating system. After all, Groovy is a language
that lives on the Java platform and its Java Virtual Machine, so it is a language that
also obeys the mantra “write once, run everywhere”—on all operating systems with
a JVM. So why is it worth talking about Windows specifically? Because of Scriptom.

 Scriptom’s name stems from a mix of the word scripting and the acronym COM,
Microsoft’s component object model. Groovy’s meta-programming capabilities allow
manipulating COM and ActiveX objects with Scriptom to be as simple as it is in
Visual Basic or JavaScript. Combining Scriptom and Groovy means that you can
leverage the wealth of the Java world and its multitude of outstanding libraries at
the same time as controlling applications such as Microsoft Word or Excel from
Groovy. This gives you the best of both worlds, bridging the gap between them.

 Scriptom is not part of the Groovy distribution; it is an external module that
can be easily installed on a standard Groovy installation. In this chapter, you’ll see
where to download and install Scriptom and discover what scripting native appli-
cations looks like. We’ll then start hacking away by controlling some applications
such as Internet Explorer, Word, and Excel. We’ll then show more advanced inte-
gration with the native applications by providing our own event support to react
to user actions or application state changes. Finally, we will show a real-world use
of Scriptom and various other automation tasks.

15.1 Downloading and installing Scriptom

Before getting started with the Windows native integration that Groovy offers, you
first need to download and install Scriptom. It is an add-on that you can choose to
use if you are running Windows on your machine. Downloading and installing
Scriptom is as easy as unzipping an archive. First, point your web browser to the
Scriptom documentation page on the Groovy web site: http://groovy.codehaus.org/
COM+Scripting. Click the link for the zip bundle, download it, and unpack it in
your Groovy installation directory. That’s all there is to do!

 The archive contains only three files:

■ A jar called scriptom-*.jar (the star denoting the latest version number),
which is the meat of the animal

■ A DLL named jacob.dll
■ A jar called jacob.jar

The last two do the heavy lifting of providing an API using the Java Native Interface
(JNI) to access the native functions of COM and ActiveX objects in a groovy way.

http://groovy.codehaus.org/COM+Scripting

548 CHAPTER 15
Groovy on Windows
 To test the installation, let’s write our first Groovy script to use ActiveX:

import org.codehaus.groovy.scriptom.ActiveXProxy

def wshell = new ActiveXProxy('WScript.Shell')
wshell.popup('Scriptom is Groovy!')

Run it like any other Groovy script—there’s no need for
any classpath changes or anything else. If everything has
worked, you should see a dialog box like the one shown in
figure 15.1.

 It’s hard to imagine how integration with COM/
ActiveX could be much easier than that. Now that we’ve
shown you a little of what can be done, let’s look at how
Groovy, Scriptom, and Jacob fit together to let you script
native applications.

15.2 Inside Scriptom

Magic tricks like rabbits coming out of hats are usually best left unexplained. Sim-
ilarly, you can use Scriptom without knowing how it works. Unlike stage magic,
however, understanding how Scriptom makes integration so easy takes nothing
away from the effect—indeed, seeing the elegance of the solution enhances the
appreciation of it. Toward this end, you’ll learn a bit of the mechanics behind
Scriptom while exploring how to use it. First we will look at the library Scriptom
relies on for the native code interaction. After that, you’ll be ready to create com-
ponent instances and learn how to call their methods, interrogate their proper-
ties, and subscribe to their events.

15.2.1 Introducing Jacob

The Scriptom module uses Jacob (Java COM Bridge), a project hosted on Source-
Forge,1 which is a Java/COM bridge that allows you to call COM automation com-
ponents from Java. It uses JNI to make native calls into the COM and Win32
libraries. Figure 15.2 shows the interaction between those different elements.

Figure 15.1 A pop-up
dialog showing a
customized message

1 http://jacob-project.sourceforge.net.

Inside Scriptom 549
Jacob offers a generic API that can be used to access any native object. For
instance, you can manipulate Internet Explorer with this sample Java code—
imports, exception handling, classes, and methods are omitted for brevity:

// Java
ActiveXComponent ie =
 new ActiveXComponent("InternetExplorer.Application");
Dispatch.put(ie, "Visible", new Variant(true));
Dispatch.put(ie, "AddressBar", new Variant(true));
Dispatch.call(ie, "Navigate",
 new Variant("http://groovy.codehaus.org"));
ie.invoke("Quit", new Variant[] {});

Scriptom builds on top of Jacob API to provide a more intuitive syntax similar to
what VB programmers are used to. This example becomes

import org.codehaus.groovy.scriptom.ActiveXProxy

def explorer = new ActiveXProxy('InternetExplorer.Application')
explorer.Visible = true
explorer.AddressBar = true
explorer.Navigate 'http://groovy.codehaus.org'
explorer.Quit()

We create a proxy that wraps the native application, set one property to make the
application visible, set another one to show the address bar, and call a method to
make the browser visit the Groovy web site.

 Jacob does a good job of being concise, but the code to deal with native objects
is harder to read in the Java form. Scriptom leverages the underlying Jacob API to
make it look like standard object handling. As we hinted before, Scriptom per-
forms its magic using Groovy’s Meta-Object Protocol, and in particular the facili-
ties of the GroovyObject class. Scriptom consists of only three classes:

■ ActiveXProxy wraps the COM or ActiveX component, which is the class you
use to instantiate native applications.

Figure 15.2
Layered view of the interactions between
Scriptom, Jacob, JNI, and the native platform

550 CHAPTER 15
Groovy on Windows
■ VariantProxy wraps all properties and return values of the wrapped appli-
cation.

■ EventSupport deals with event support; but you should not have to deal
with this class, as you’ll see when we review how to subscribe to events the
Windows applications generate.

As shown in figure 15.3, ActiveXProxy, VariantProxy, and EventSupport extend
GroovyObjectSupport (which in turn implements GroovyObject). They intercept
method calls by overriding invokeMethod and intercept properties with getProperty
and setProperty. They then delegate to Jacob for the work.

What do you need to do to manipulate a Windows application or component?
First, you have to instantiate an ActiveXProxy that will wrap the Jacob compo-
nent, and then you can access its properties and call its methods. Let’s see how
you can do that.

15.2.2 Instantiating an ActiveX component

To make direct use of native code on the Java platform, you have to use JNI.
Although this is powerful, it is difficult to use, and the resulting code tends to be
hard to read. Thanks to the Groovy meta-programming capabilities, Scriptom
provides a simplified syntax for interacting with native COM/ActiveX components
as easily as possible. The result can often appear as simple as Visual Basic compo-
nent interactions—but with the full power of Groovy behind it, of course.

 The first step to instantiate a native component is to import ActiveXProxy with
the following directive:

Figure 15.3
Classes composing
the Scriptom module

Inside Scriptom 551
import org.codehaus.groovy.scriptom.ActiveXProxy

Once the class is imported, you can instantiate it through its only constructor,
which takes a string parameter. You can pass the constructor either the applica-
tion name or Program ID of the application, or its class identifier (CLSID), which is a
globally unique identifier that identifies a COM class object.

 For instance, you can use Excel by using its application name
def xls = new ActiveXProxy('Excel.Application')

or by referring to its related class identifier:
def clsid = 'clsid:{00024500-0000-0000-C000-000000000046}'
def xls = new ActiveXProxy(clsid)

Jacob utilizes the clsid: prefix to differentiate application names from class
identifiers.

 Usually, for the sake of clarity and readability, it is preferable to use the appli-
cation name. However, it can sometimes be handy to reference a component by
its class identifier, particularly if you need to use a specific version of an applica-
tion and multiple versions might be installed on a single machine. If you want to
discover the class identifier associated with a given application, you should search
in the Windows registry under the following key:

HKEY_LOCAL_MACHINE\Software\Classes\

Figure 15.4 shows what you would see in the Registry Editor if you searched for
Excel. In this case, you can see that Excel’s class identifier can be found under

HKEY_LOCAL_MACHINE\Software\Classes\Excel.Application\CLSID

and its value is {00024500-0000-0000-C000-000000000046}.

Figure 15.4 View of the Windows Registry, showing where Excel-related keys can
be found

552 CHAPTER 15
Groovy on Windows
Just to get you started automating a few Microsoft applications with Scriptom,
table 15.1 provides a list of some common applications and their Program IDs.

For Microsoft Office applications, there are different program names for the var-
ious Office releases. If you want to address a given version (in case several are
installed at the same time, or because your script targets a specific version), you
can append the version number to the Program ID with the suffixes given in
table 15.2.

Table 15.1 A few Windows applications and their Program IDs

Application Program ID

Access Access.Application

Excel Excel.Application

Explorer Shell.Application

FrontPage FrontPage.Application

Internet Explorer InternetExplorer.Application

Notepad Notepad.Application

Outlook Outlook.Application

PowerPoint Powerpoint.Application

Windows Media Player WMPlayer.OCX

Word Word.Application

Table 15.2 Association of Office versions and Program ID suffixes

Office version Program ID suffix

Office 95 ${PRGID}.7

Office 97 ${PRGID}.8

Office 2000 ${PRGID}.9

Office XP ${PRGID}.10

Office XP 2003 ${PRGID}.11

Inside Scriptom 553
With this table in mind, you’ll be able to use a specific version of an Office appli-
cation. If you refer to Word.Application.9, you use Word 2000; but if you want to
stay more general and use the latest version installed on the computer, you can
use Word.Application without any version suffix.

 In addition to applications, several utilities available on the Windows platform
let you interact with the operating system in a simple fashion. This is handy when
your automation tasks include activities such as reading and writing keys in the
registry, popping up file dialogs, or sending keystrokes to running applications.
Table 15.3 has a few of these utilities and their uses.

We will be using those utilities to explain how you can invoke methods as well as
set and retrieve properties on those native objects.

15.2.3 Invoking methods

You’ve already seen an example of method invocation when we manipulated
Internet Explorer. Invoking a method on a COM component is no different than
invoking a method on a standard Java or Groovy object. Using the file explorer,
which has a Program ID of Shell.Application, you can call a method to minimize
all the windows opened on your desktop:

import org.codehaus.groovy.scriptom.ActiveXProxy

def sh = new ActiveXProxy('Shell.Application')
sh.MinimizeAll()

Contrary to the Java naming conventions, in the Microsoft universe, method
names and properties are often capitalized. This looks a bit strange when you see
it in the midst of a Groovy script, but Scriptom keeps the same convention: The
case is unchanged. In our example, on the Shell object, we call the MinimizeAll
method; true to its name, all windows will be minimized.

Table 15.3 Utility components and their purpose

Utility Purpose

ScriptControl Evaluate Visual Basic or JavaScript expressions

Scripting.FileSystemObject Deal with the filesystem

Shell.Application File explorer; manipulate running application windows

WScript.Network Access network information

WScript.Shell Interact with the registry and the Windows shell; show pop-ups

554 CHAPTER 15
Groovy on Windows
 Obviously, we can also use methods with parameters. Let’s go back to our first
example using WScript.Shell, the Windows Scripting Host shell, to show a pop-
up message window. The code is reproduced here for reference. (It’s so short,
there’s no reason not to!)

import org.codehaus.groovy.scriptom.ActiveXProxy

def wshell = new ActiveXProxy('WScript.Shell')
wshell.Popup('Scriptom is Groovy!')

The Popup method takes a string parameter
representing the message that will be shown
inside the pop-up dialog. The Jacob API
wraps all values or parameters inside Vari-
ant instances. Scriptom wraps these values
inside instances of VariantProxy. Through
that wrapper implementing GroovyObject,
other methods can be called without resort-
ing to using the raw Jacob API. Let’s see an
example of chained methods. We’re going
to show a file-chooser dialog like the one
shown in figure 15.5.

 Here is the script that displays the
file chooser:

import
org.codehaus.groovy.scriptom.ActiveXProxy

def sh = new ActiveXProxy('Shell.Application')
def PARENT = 0
def OPTS = 0
def folder = sh.BrowseForFolder(PARENT, 'Choose a folder', OPTS)
println "Chosen folder: ${folder.Items().Item().Path.value}"

With the shell, you can use BrowseForFolder, a utility method, which shows a file-
chooser widget to allow you to select a file or directory. The PARENT and OPTS val-
ues are the parent window (where 0 means there is no parent) and the option
flags to use, respectively. On the last line, you can see that the method returns an
object representing a file selection. On this object, you can call the Items method
to retrieve the selected files and Item to select the chosen one. This item has a
property called Path to retrieve the path of the chosen file. Finally, value is a
Groovy property that lets you unmarshal the value of the Path, as you shall see
further. This is a bit of black magic; but you can find the documentation of this

Figure 15.5 A file chooser is shown
thanks to a WScript.Shell component.

Inside Scriptom 555
ActiveX component by looking at its API on the Microsoft Developer Network
library, which is always of great help when you need to script those components.

 Native components have more than methods, though—they also expose prop-
erties that can be accessed and modified. The next section explains how to access
these properties and also how to deal with the return values of the methods
you invoke.

15.2.4 Accessing properties and return values
You already saw a few examples showing how to access properties and method
return values. Again, doing so is not very different from standard property
access in the Java or Groovy world. The following example will print the name
of the computer:

import org.codehaus.groovy.scriptom.ActiveXProxy

net = new ActiveXProxy('WScript.Network')
println "Name of this computer: ${net.ComputerName.value}"
assert net.ComputerName.value == net.ComputerName.getValue()

This time, we’re using the WScript.Network component, which is used for network-
related needs. In our example, we retrieve the name of the computer, which is
represented through the ComputerName property. However, you will have noticed
that we append another property called value. Because all methods that return
values and properties are wrapped in VariantProxy objects, we need to use a trick
to retrieve the real value. VariantProxy has a special value property that will give
you a value usable from Groovy. The name of the computer is contained in a
VariantProxy, and value returns the string representing that name. In case a prop-
erty named value already exists in the wrapped object, you can also retrieve the
real value with the getValue method as shown by the last line of the script. This
has the same effect as the value property.

 Now that you know how to call methods and access properties of the objects of
the native Windows component, it is time to also be able to respond to events
happening in the application by subscribing to them.

15.2.5 Event support
Being able to script running applications is one side of the story, but there’s also
the other side: the person in front of the computer being able to use the applica-
tion and click buttons, type in text, or execute shortcuts. It would be beneficial if
our script control could recognize and react on these user-triggered events. Addi-
tionally, the application could receive other notifications, such as reaching the
end of a media stream.

http://msdn.microsoft.com/archive/default.asp?url=/archive/en-us/wsh/htm/wsMthSendKeys.asp

556 CHAPTER 15
Groovy on Windows
 This is where event support comes into play, and your Groovy scripts need to
know what is happening and how to react to changes or actions. Most applica-
tions that expose a part of their internals through ActiveX or COM objects also
expose a set of events that a caller can subscribe to.

 ActiveXProxy has a special property called events, which can be retrieved
either with the myProxy.events property access notation, or through a method
call with proxy.getEvents(). It’s through this special object that you can interact
with a component’s events.

 Subscribing to events and registering your own event listener isn’t rocket sci-
ence, even though the effect can be impressive when you consider the layering of
Groovy on top of native code. It can be achieved with two easy steps:

1 Define a closure taking an array of VariantProxy that will be called when-
ever the associated event is triggered, and specify it using the events
property. The property within events to which you assign the closure
should be named after the event you’re subscribing to. For a given event,
you can define a single handling routine by assigning a new closure to
the property events.myEventName.

2 Once all event handling closures are defined, call the events.listen
method to make the event subscriptions active.

Again, a code sample will make things crystal clear, as shown in listing 15.1, where
we are evaluating VBScript expressions in Groovy! Evaluating VBScript expres-
sions can produce errors. When this happens, all error listeners are notified. We
register a Groovy error listener to demonstrate the mechanics.

 Who would have thought it would be so simple to invoke Visual Basic code
from Groovy? Windows offers a COM component called ScriptControl, which
allows you to evaluate JavaScript or Visual Basic expressions. We subscribe to an
event called Error, and when this event is triggered, the associated closure is exe-
cuted in a separate thread to the main thread of control.

import org.codehaus.groovy.scriptom.ActiveXProxy

def sc = new ActiveXProxy("ScriptControl")
sc.Language = "VBScript"

sc.events.Error = { println "Evaluation error!" }
sc.events.listen()

Listing 15.1 Evaluating VBScript expressions from Groovy

Create a VBScript
ScriptControl

b

Register error
listener

c

Inside Scriptom 557
try {
 assert 3 == sc.Eval("1 + 2").value
 println sc.Eval("+").value

} catch (Exception e) {
 println "An exception was thrown due to a failing evaluation"
}

Let’s take a close look at this code. At b, a ScriptControl is instantiated with the
VBScript language. We subscribe to the Error event and assign a closure event han-
dler at c. In the try/catch block d, we evaluate 1+2, which will print 3. We then
try to evaluate +, which will throw an exception and call the event handler. Finally,
we catch the exception thrown in case an expression wasn’t parsed successfully—
which is the case in the last evaluation.

 Now, let’s see a more complex example. Let’s play the DJ, and illustrate the
use of events subscription by scripting Windows Media Player. In listing 15.2, we
play all the songs in the directory from which the script is launched.

import org.codehaus.groovy.scriptom.ActiveXProxy

def player = new ActiveXProxy('WMPlayer.OCX')
player.events.PlayStateChange = { variants ->
 if (variants[0].value == 1)
 synchronized(player) { player.notify() }
}
player.events.listen()

def folder = new File('.')
println "Playing files from: ${folder}"
folder.eachFileMatch(~/.*\.(wav|au|wma|mp3)/) { song ->
 println "Listening to: $song"
 player.URL = song.absolutePath
 player.controls.play()
 synchronized(player) { player.wait() }
}
player.close()

The Windows Media Player is instantiated at b from its Program ID name.
 We register an event handler at c for the PlayStateChange event by defining a

new property on the events special property of the ActiveX proxy, whose value is
a closure corresponding to the code that will be executed once the event is triggered.

Listing 15.2 Playing all the media files in the current directory

Force
errord

Register event
handler

b

Subscribe
to eventsc

Play each
media file
in turn

d

Wait until the
song finishese

558 CHAPTER 15
Groovy on Windows
The closures used as event handlers have only one argument, which is an array of
VariantProxy instances that wrap the values passed to the native event handler
routine. Here, for this PlayStateChange event, the array of VariantProxy contains
only an int corresponding to the state of the player: In our case, we’re interested
in the state 1, which means a media playback just finished.

 When the end of the playback happens, we notify the player at d in the main
loop that it can process the next media file. We take advantage of the fact that
Groovy fully complies with Java’s thread and object model. Therefore, we can use
the same wait/notify handling for coordination. For the use of synchronized
blocks, the same rules apply as in Java.

 The special method listen on events is the method at e that registers all the
closure event handlers and starts the subscription to events we’re interested in.

 On the local directory, we call eachFileMatch at f to iterate over all files
matching the regular expression pattern: files ending with some common
media extensions.

 We call the play method g on the controls object to play the song.
 Once the playback is started, we’re waiting at h for the event handler to

give us back control and continue looping over the media files to play, when the
currently playing song is finished.

 We finally close the player when the song has finished playing.
 It is high time we take the bull by the horns and start developing an even big-

ger example, integrating different native applications and leveraging some
Groovy or Java APIs. In the next section, we’re going to introduce a real-world
scenario right from the battlefield and show how you can provide an elegant and
useful solution to the problem at hand.

15.3 Real-world scenario: automating localization

For an example of how Scriptom can help in the real world, we’ll consider an
example from a leading European car manufacturer. They had created a compo-
nent of the technical documentation production infrastructure that could gener-
ate various documents for all the countries worldwide where cars were sold. This
component was a huge thesaurus, storing hundreds of thousands of sentences
translated into more than 40 languages. Technical documents were represented
as an XML structure in Microsoft Word ML format, holding the page layout, the
embedded images, and the set of sentence identifiers composing the document.
When a document was to be printed, the list of sentence codes was read, and the
thesaurus was queried through a web service to return all the translated sentences

Real-world scenario: automating localization 559
to build the final readable and localized document. The overall scenario is briefly
presented in figure 15.6.

 We’ll get inspiration from this real-world scenario, and we’ll create a document
in a custom XML format, holding both the layout of the document and its style,
along with the list of sentence codes it contains. The document will be stored on
the filesystem in a file named document.xml. The thesaurus will be a simple Excel
spreadsheet (thesaurus.xls), with each line representing a sentence and the col-
umns being all the translations available. From those two sources, the XML docu-
ment and the Excel thesaurus spreadsheet, we’ll create a Word file representing
the final document through our producer.groovy script. We’ll look at each of the
steps in isolation and then put them together to form the complete application.

 Let’s start at the beginning, with the document format.

15.3.1 Designing our document format

Our document format is simple. It’s an XML file that will use only two tags:

■ A root element named Document holding all the sentences of the document
■ Child elements named Sentence representing each sentence, with two

attributes: a sentence code, and a format string

Let’s see an example of that format:

<Document>
 <Sentence code="S0001" format="Document.Title"/>
 <Sentence code="S0002" format="Section.Title"/>
 <Sentence code="S0003" format="Subsection.Title"/>
 <Sentence code="S0004" format="Sentence"/>
 <Sentence code="S0005" format="Sentence"/>
 <Sentence code="S0006" format="Subsection.Title"/>
 <Sentence code="S0007" format="Sentence"/>
</Document>

Figure 15.6
A general overview of
the documentation
production system

560 CHAPTER 15
Groovy on Windows
In this example, all our codes will be of the form Sxxxx, and the format is just a
style to use when rendering each sentence in the final document.

 The Groovy groovy.util.XmlParser class makes parsing the document trivial.
We need to iterate over all the Sentence elements in the documents, so we use the
each method, passing a closure that will initially print out the data so we can
check that it looks correct:

def xmlDoc = new XmlParser().parse(new File("document.xml"))
xmlDoc.each{ node ->
 println "Code: ${node['@code']}, Format: ${node['@format']}"
}

In the final script, we’ll replace the logic inside the each{} iteration to output text
in the Word document. But now, let’s see how we will design our thesaurus.

15.3.2 Designing the thesaurus spreadsheet

The thesaurus is a table of sentence codes and associated translations in all the
supported locales. The rows contain a sentence each, whereas the columns give
all the translations for a given locale. Our spreadsheet looks like the Excel screen-
shot shown in figure 15.7.

 To look up a particular translated sentence, knowing its code and its locale,
we’re going to open the thesaurus.xls spreadsheet with Scriptom, read the first
row containing the ISO codes of the locales and the first column containing the
sentence codes, and retrieve the value of the cell containing the translation.

Figure 15.7
Thesaurus stored as
an Excel spreadsheet

Real-world scenario: automating localization 561
The first obvious step explained in listing 15.3 is to launch Excel through Scrip-
tom and its ActiveXProxy and see how we select the active sheet, and also see how
we close and quit the application appropriately.

import org.codehaus.groovy.scriptom.ActiveXProxy

def thesaurus = new File('thesaurus.xls').canonicalPath
def xls = new ActiveXProxy('Excel.Application')
def workbooks = xls.Workbooks
def workbook = workbooks.Open(thesaurus)
def activeSheet = workbook.ActiveSheet

def localeColumns = [:]
for (column in 'B'..'Z') {
 def loc = activeSheet.Range("${column}1").Value.value
 if (!loc) break
 localeColumns[loc] = column
}

def sentenceCodeRows = [:]
for (row in 2..1000) {
 def code = activeSheet.Range("A${row}").Value.value
 if (!code) break
 sentenceCodeRows[code] = row
}

// a few lines further…

workbook.Close()
xls.Quit()
xls.release()

In b, after importing the ActiveXProxy class and creating the proxy instance, we
retrieve the Workbooks object to open our thesaurus and select the active sheet
containing our translations.

 Then, in c and d, we create maps containing associations of locales and the
columns where they are found, and sentence codes and their rows, respectively.
We cache these values to avoid having to traverse the sheet each time we’re look-
ing up a locale or code. We use ranges to iterate through the rows and columns,
and GStrings to pinpoint the cells we’re interested in. We’re only interested in a
single cell at a time, but as far as Excel is concerned, they’re ranges that happen
to have only one row and column. These Excel ranges have a Value property from

Listing 15.3 Opening and closing Excel, and selecting the active sheet

Open
thesaurus
sheet

b

Find the
locales

c

Find all
sentence
codes

d

Clean upe

562 CHAPTER 15
Groovy on Windows
which we’ll retrieve the equivalent value in Groovy thanks to the value property—
getValue could have been used too.

 Eventually, in e, when we don’t need the thesaurus anymore, we close it and
close Excel.

WARNING Due to a bug in Jacob, the underlying Java/COM bridge, we noticed cer-
tain Excel versions don’t always exit gracefully and keep a process run-
ning in the background. If this is the case, you should make sure that you
call the release method on the ActiveX proxy instance: It tries its best to
free all the allocated resources and hence closes the launched process.

Armed with these locale and code associations, we can easily retrieve a translation
for a given sentence. Suppose we have a code of S0045 and that we want the
French translation with the fr_FR locale. We can write

def cell = "${localeColumns['fr_FR']}${sentenceCodeRows['S0045']}"
def translation = activeSheet.Range(cell).Value.value

Now, on to drive Word for creating the final document!

15.3.3 Creating a Word document

After our Excel manipulations, we have to master Word to make it produce our
localized documentation. In our path to COM nirvana, we are going to follow
four steps.

 First, we create a Word instance, create a new document, and select it as the
active file for editing:

def word = new ActiveXProxy('Word.Application')
word.Documents.Add()
def doc = word.ActiveDocument

Making good-looking documents is not just a matter of style; it’s also a matter of
formatting the output with the required font, thickness, size, or color. That’s why
we are creating a map that associates the styles defined in the XML document with
formatters defined as closures—another handy usage of closures:

def CENTERED = 1
def styleFormatter = [
 'Document.Title': { it.Font.Size = 24
 it.Font.Name = 'Arial'
 it.ParagraphFormat.Alignment = CENTERED },
 'Section.Title': { it.Font.Size = 18
 it.Font.Name = 'Arial' },
 'Subsection.Title': { it.Font.Size = 14

Real-world scenario: automating localization 563
 it.Font.Name = 'Arial' },
 'Sentence': { it.Font.Size = 12 }
]

For instance, the styleFormatter map associates the style Document.Title with a
closure that will take a Word text range selection, apply a 24-point Arial font, and
center the text.

NOTE The magic constant 1 references a centered alignment, whose value in the
VBA Object Inspector is Word.wdAlignParagraphCenter. Unfortunately,
those constants aren’t directly available in Scriptom by name. Also note
that rather than using our styling closures, you can use the Style prop-
erty to use a style defined in your document.

Let’s reuse our XML parsing routine in listing 15.4 to write each localized sen-
tences in our Word document.

def cursorPos = 0
def xmlDoc = new XmlParser().parse(new File(docName))
xmlDoc.each{ node ->
 def column = localeColumns[locale]
 def row = sentenceCodeRows[node['@code']]
 def cell = "${column}${row}"
 def translation = activeSheet.Range(cell).Value.value

 def range = doc.Range(cursorPos, cursorPos)
 range.Text = translation + "\n"
 styleFormatter[node['@format']].call(range)
 range.Select()
 cursorPos += translation.size() + 1
}

Of particular interest is the somewhat awkward part for inserting each sentence:
An empty text range is created, the sentence text is defined as the content of the
range, and we then apply our formatter closure on this range. The closure is
obtained by retrieving the format attribute on the sentence node of the XML doc-
ument and using it as a key in our styleFormatter map. Finally, the Select
method is called. Although this is not usually required, it is always harmless, and
some versions of Word don’t apply the style until it is called.

 Our last step is to save the produced document and close Word:

doc.SaveAs(new File(".\\document-${locale}.doc").canonicalPath)
word.Quit()

Listing 15.4 Write and format localized sentences in the Word document

Iterate over all
the sentences

Retrieve
translation

Insert styled
sentence at
cursor position

564 CHAPTER 15
Groovy on Windows
You have now seen each of the individual pieces of the application, so we just
need to put everything together to finish our translation system.

15.3.4 Producing the final document

It’s now the magic moment when everything falls into place and we produce our
final localized documents with the full script shown in listing 15.5.

import org.codehaus.groovy.scriptom.ActiveXProxy

def docName = args[0]
def locale = args[1]

def thesaurus = new File('thesaurus.xls').canonicalPath
def xls = new ActiveXProxy('Excel.Application')
def workbooks = xls.Workbooks
def workbook = workbooks.Open(thesaurus)
def activeSheet = workbook.ActiveSheet

def word = new ActiveXProxy('Word.Application')
word.Documents.Add()
def doc = word.ActiveDocument

def CENTERED = 1
def styleFormatter = [
 'Document.Title': { it.Font.Size = 24
 it.Font.Name = 'Arial'
 it.ParagraphFormat.Alignment = CENTERED },
 'Section.Title': { it.Font.Size = 18
 it.Font.Name = 'Arial' },
 'Subsection.Title': { it.Font.Size = 14
 it.Font.Name = 'Arial' },
 'Sentence': { it.Font.Size = 12 }
]

def localeColumns = [:]
for (column in 'B'..'Z') {
 def loc = activeSheet.Range("${column}1").Value.value
 if (!loc) break
 localeColumns[loc] = column
}

def sentenceCodeRows = [:]
for (row in 2..1000) {
 def code = activeSheet.Range("A${row}").Value.value
 if (!code) break
 sentenceCodeRows[code] = row
}

Listing 15.5 Script producing Word documents from XML and a spreadsheet

Open the Excel
spreadsheet

Open Word and create
a new document

Create the style
formatter

Retrieve all
the locales

Retrieve all the
sentence codes

Further application automation 565
def cursorPos = 0
def xmlDoc = new XmlParser().parse(new File(docName))
xmlDoc.each{ node ->
 def column = localeColumns[locale]
 def row = sentenceCodeRows[node['@code']]
 def cell = "${column}${row}"
 def translation = activeSheet.Range(cell).Value.value

 def range = doc.Range(cursorPos, cursorPos)
 range.Text = translation + "\n"
 styleFormatter[node['@format']].call(range)
 range.Select()
 cursorPos += translation.size() + 1
}

doc.SaveAs(new File(".\\document-${locale}.doc").canonicalPath)
word.Quit()

workbook.Close()
xls.Quit()
xls.release()

Once you have saved the full script in a file named Producer.groovy, you can run it
from the command line with the following command, using two parameters that
indicate the XML document to transform and the locale used for the translation:

groovy Producer document.xml fr_FR

The command will produce a document named document-fr_FR.doc in your
local directory. This document is shown in figure 15.8.

 You’ve now successfully created a full script automating two Office applica-
tions and benefiting from the Groovy XML APIs. With a concise and clear syntax,
you can build useful script glue, which takes only 60 lines of code to parse XML
files, look up translations in an Excel spreadsheet, and generate fully styled
Word documents.

 In the following section, you’ll see how you can further integrate Groovy on
your desktop to automate some administrative tasks.

15.4 Further application automation

You’ve happily launched and automated native Windows applications, focusing
on the generation and manipulation of documents. Although this is helpful and
bridges two opposite worlds that usually never meet to create a value-added pro-
gram, it is only a small part of the Scriptom story.

Parse the XML
document
source file

Retrieve the
translation
for the given
sentence
code and
locale

Write the
styled
sentences
in the Word
document

Save and close the
Word documentClose the spreadsheet

and quit Excel

566 CHAPTER 15
Groovy on Windows
The larger part is using Scriptom to relieve you of repetitive work that involves
operating-system-related activities. This can be as simple as opening your corpo-
rate timesheet application and submitting today’s numbers or letting your scripts
conduct a series of actions in an endless loop to make up a self-running presenta-
tion. You can even use it for sophisticated tasks such as writing your own applica-
tion installer or password manager.

 From the endless list of possibilities, we show how to interact with the host
environment to tweak the Windows registry and how to roll out your own
macro system.

15.4.1 Accessing the Windows registry

Most Windows applications use the Windows registry to store information such as
user preferences, software configurations, or application defaults. The Java Pref-
erences API stores its data in the registry as well. But manipulating the registry
directly has never been possible, apart from writing the JNI calls yourself—some
third-party libraries provide that feature, though. But again, Scriptom comes to
the rescue by allowing you to use the WScript.Shell object to manipulate the reg-
istry: You can read, write, or delete keys and values.

Figure 15.8 The generated Word document

Further application automation 567
 To give you a simple example, we’ll show you a nice trick we’ve come across:
On some Windows machines, filename and path autocompletion in a DOS con-
sole isn’t always activated by default, particularly on older machines. However,
completion can be enabled thanks to some magic values in the registry. Two keys
are responsible for that behavior:

HKLM\SOFTWARE\Microsoft\Command Processor\CompletionChar
HKLM\SOFTWARE\Microsoft\Command Processor\PathCompletionChar

NOTE In our code, we’re using the abbreviation HKLM, which is short for
HKEY_LOCAL_MACHINE. Similarly, HKEY_CURRENT_USER can be abbrevi-
ated as HKCU.

By setting the associated values of these keys to the character number, you can
define or redefine the key you can use for autocompletion of filenames and paths.
The following scripts2 can do that for you, by setting the Tab key to become the
completion key:

import org.codehaus.groovy.scriptom.ActiveXProxy

def TAB = 9
def ROOT = /HKLM\SOFTWARE\Microsoft\Command Processor/

def wshell = new ActiveXProxy('WScript.Shell')
wshell.RegWrite(/$ROOT\CompletionChar/, TAB, 'REG_DWORD')
wshell.RegWrite(/$ROOT\PathCompletionChar/, TAB, 'REG_DWORD')

You can write registry keys, but obviously, you can also read them. For example, if
Internet Explorer is your default web browser, you can read the browser user
agent string like so:

import org.codehaus.groovy.scriptom.ActiveXProxy

def wshell = new ActiveXProxy('WScript.Shell')
def key = /HKCU\Software\Microsoft\Windows\CurrentVersion/ +
 /\Internet Settings\User Agent/
println wshell.RegRead(key).value

Accessing the registry can be handy, particularly if you wish to customize the
default settings of applications that store their preferences or configuration
there. Thanks to Scriptom, you can easily create specific software-installation
scripts. This is often needed in big companies where the IT department is trying

2 Just like the standard *.reg files do to set registry keys and values.

568 CHAPTER 15
Groovy on Windows
to commoditize its desktop platforms and computer assets to provide a smoother
upgrading mechanism, lowering maintenance costs. Of course, Windows admin-
istrators can use VBScript or JavaScript for most of these tasks, but when integrat-
ing with Java applications, libraries, or components, Scriptom can help bridge
the gap between the native world and the JVM camp.

 Another area where Scriptom shines is in automating repetitive tasks. Some
applications provide custom macro systems to let users write their own sequences
of atomic actions to realize a specific complex job. Let’s see how Scriptom can
fake user actions by sending keystrokes to running applications.

15.4.2 Rolling out your own automation system
The ubiquitous and almighty WScript.Shell object appears yet again and will
enable us to roll out our own automation system. We may even consider it to be a
macro system, as long as the application being automated supports launching
external scripts and assigning shortcuts for these custom commands—some text
editors support that feature, for instance.

 So far, the interaction with native applications we’ve dealt with has been done
through the COM or ActiveX components exposed by those applications. This
time, we are going to use the WScript.Shell object to control running applica-
tions by sending them keystrokes. To illustrate, you can use Notepad or any other
application within which you can enter some text. We’ll fill in some text as key-
strokes to Notepad, as shown in listing 15.6.

import org.codehaus.groovy.scriptom.ActiveXProxy

"cmd /c notepad".execute()

wsh = new ActiveXProxy("WScript.Shell")
wsh.AppActivate("Notepad")

wsh.sendKeys('First name: Guillaume{TAB}')
wsh.sendKeys('Last name: Laforge{ENTER}')
wsh.sendKeys('Book: Groovy in Action{ENTER}')
wsh.sendKeys('Date: {F5}')

Once Notepad is launched at b—here through Groovy’s execute method on
String—we activate the application at c with the AppActivate command to put
its window on the forefront. Then, at d, we can send strings and keystrokes to
the application.

Listing 15.6 Launching Notepad and “ghost typing” in it

Launch the Notepad processb
Find and activate
Notepad

c

Send keystrokes to
the component

d

Where to get documentation 569
 All special keys can be entered with their names between curly braces, such as
{ENTER} for carriage return, {F1} for the F1 key, and so forth. There are also spe-
cial characters to represent combined keystrokes: the Shift key corresponds to +,
Ctrl maps to ̂ , and Alt to %. For a more comprehensive list of available keystrokes,
please refer to the online documentation: http://msdn.microsoft.com/archive/
default.asp?url=/archive/en-us/wsh/htm/wsMthSendKeys.asp.

 This is a rather contrived example because we wanted to show you how the
sendKeys method can be used, but this means you can control a set of applications
to make them collaborate as long as these applications can be operated with key-
strokes. With this method, you may cut and paste selected elements from one
application to another, create automated GUI test suites as if a robot agent were
testing your application, and so on. Furthermore, if the application under control
accepts the definition of external commands, you may launch automation tasks
from within the application, without having to open a shell and execute a Groovy
script manually. For instance, imagine selecting a piece of text and creating a
script invocable by Scriptom that would retrieve translations or definitions. Your
creativity is the only limit!

15.5 Where to get documentation

In the Java world, IDEs are clever enough to propose code completion and Java-
Doc pop-ups to help you discover the available methods and properties on a
given object and also help you understand how to use them. For dynamic lan-
guages, the task is more difficult, because you usually find out the type of an
object—and which methods and properties are available—at runtime. Currently,
the various Groovy integration plug-ins in the most popular IDEs are not capable
of code completion. And the task is even harder when automating native applica-
tions, as you might have already experienced if you tried making some slight
modifications to the scripts you’ve written so far!

 You might be wondering how you can know which methods and properties
are available on a given native object or application. Unfortunately, you will
have to dive into the documentation of the application you are driving and see
what is available through its exposed APIs. For instance, for Microsoft applica-
tions, the best source of information is the Microsoft Developer Network (MSDN) web
site: http://msdn.microsoft.com/library/.

 Although no JavaDoc-like documentation is available, Microsoft does a good
job of providing comprehensive online documentation for its applications and
components on MSDN. For each application, there is a list of properties,

570 CHAPTER 15
Groovy on Windows
methods, and events for each object, often with snippets of code in Visual Basic,
JScript, or C# showing how to use them. It is trivial to translate those examples
to Groovy code.

 Because finding the relevant documentation is like looking for a needle in a hay-
stack on MSDN’s site, in table 15.4 you will find a few pointers for the object model
and documentation of the applications we have used throughout this chapter.

With a few Office applications such as Word or Excel, and with some of the afore-
mentioned Windows Scripting Host tools, you should be able to find interesting
and inventive solutions to common tasks in your everyday life as a developer.

15.6 Summary

Although Groovy is a language that runs on top of a multiplatform JVM, you’ve dis-
covered in this chapter how to leverage Windows native applications through the
use of the complimentary Scriptom module, which wraps an API to access native

Table 15.4 Common applications and their associated documentation

Application Documentation

Excel http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbaxl11/
html/xltocOMMap_HV01049651.asp

Internet Explorer http://msdn.microsoft.com/library/default.asp?url=/workshop/browser/
mshtml/reference/ifaces/document2/document2.asp

ScriptControl http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexpvb/
html/gettingerrorinformation.asp

Scripting.FileSystemObject http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/
html/jsfsotutor.asp

Shell.Application http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/
platform/shell/programmersguide/shell_basics/shell_basics_programming/
objectmap.asp

Windows Media Player http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmplay10/
mmp_sdk/usingtheversion9objectmodel.asp

Word http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_wrcore/
html/wroriautomatingwordusingwordobjectmodel.asp

WScript.Network http://msdn.microsoft.com/library/en-us/script56/html/wsobjwshnetwork.asp

WScript.Shell http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/
html/wsobjwshshell.asp

Summary 571
COM and ActiveX objects through JNI, the Java Native Interface. You learned how
to access properties and call methods on these objects, and you also saw how to
subscribe to events supported by these applications. You put what you learned into
action by creating and running some compelling scripts that automate collabora-
tion between various applications and interact with the host environment.

 Groovy and Scriptom are a powerful combination to bridge two worlds: the
Java world with its many free libraries and server-side applications, and Microsoft’s
platform and its end-user-rich native applications. Scriptom allows you to interact
almost intuitively with the host environment to create complex automation tasks
and control multiple applications and external Java libraries at the same time.

Seeing the Grails light
Human beings, who are almost unique in
having the ability to learn from the experi-
ence of others, are also remarkable for their
apparent disinclination to do so.

—Douglas Adams
572

Setting the stage 573
The book is now officially over, but because you bought the whole album, we’ll
throw in an additional bonus track for you.

 The bonus track is a recording of two developers, Guillaume (G) and Dierk
(D), who work together on a full-blown web application in Groovy. By eavesdrop-
ping on their conversation and looking at the code they produce, you’ll witness
the evolution of the application from first ideas until deployment.

 G and D work for ACME Software, an independent software vendor. Their boss
wants each product to be accompanied by an “interactive tutorial.” At least, these
were his last words before heading for the golf course. While leaving the room, he
grumbled something about “needed by Monday morning” and “only highest
quality accepted.”

16.1 Setting the stage

In which our heroes are given an assignment, make a bold decision, install Grails, and cre-

ate their first page.

It’s Friday afternoon, right after lunch, when Guillaume enters Dierk’s office.

G: Hi!
D: Hi, Mr. G. What’s up?
G: Didn’t you hear the boss? We have to do something about the “interactive

tutorial.”
D: He can’t be serious. I’m not gonna spend the weekend on this.
G: Me neither. We need to find the quickest way to make this happen tonight.
D: You mean “quick and dirty”? Not with me.
G: No, quick and clean. I suggest we use Grails and see how much we can

achieve this afternoon.
D: Grails? What’s that?
G: Grails is a web application framework.
D: Oh no! Not another one. I’ve seen so many of them. They all claim to do

everything in no time. Please spare me another disappointment.
G: Well, all I’ll promise is that it will be fun working with it. I’ve used it in some

other projects, and it worked well. I even think there’s a good chance we’ll
have something running by this evening—and if we don’t, what have we got
to lose?

D: I wouldn’t follow anyone but you after this pitch. [laughs] Okay then. We’ll
give it a try. What’s next? Download and install?

574 CHAPTER 16
Seeing the Grails light
16.1.1 Installing Grails

Guillaume takes a seat next to Dierk. They start working together at Dierk’s
machine, sharing the same keyboard, mouse, and monitor.

G: Point your browser to http://grails.codehaus.org. Downloading and installing is
explained there. We will go for the latest version, which is 0.3.1 at the moment.

Dierk opens the browser and navigates to the web site.

D: Okay, it needs Java 1.4+ and Ant as prerequisites. I’ve got them already.
Strange that it doesn’t need Groovy to be installed. [raises right eyebrow]

G: Grails comes with the embeddable groovy-all.jar included to avoid any ver-
sion conflicts.

D: Wise decision. Now how about installation? Aha—setting a GRAILS_HOME envi-
ronment variable and adding GRAILS_HOME/bin to the Path environment
variable. So far so good—no surprises. But what’s that next thing here: going
to GRAILS_HOME and typing ant?

G: That means we are building Grails from the sources. Isn’t that neat?
D: Neat or not, it’s a bit odd. But hey—as long as it works, it’s fine with me.
G: That was it for installation.
D: Eh—no. Wait. We’re gonna need a database.
G: Yep. That’s included.
D: And this will be a web application, right? So we also need a web server.
G: No, that’s all included. Grails comes with everything you need for development.
D: That can’t possibly be right. In the end, we’ll have to deploy it on our corpo-

rate SphereLogic webserver and the DBacle/2 database! That’s all very spe-
cial. How could we ever develop against a different environment?

G: Well, first of all, Grails will produce a full J2EE-compliant web application as a
web archive file. We can throw that into any compliant server. Second, Grails
uses Hibernate to take care of the database mapping. That means we have a
huge variety of databases that we can choose from.

D: Pretty impressive. Now, how do we start?

16.1.2 Getting your feet wet

G: Go to any directory you like, and open a command shell.
D: I’ll take one that’s already under version control.
G: [nods] Sure. Now create a new application by typing

grails create-app

Setting the stage 575
G: and enter our application name when asked. I think Tutor would be appropriate.
D: It’s created a lot of directories. Any idea what they all do?
G: Yes, it looks like this. [produces table 16.1]

Table 16.1 Directory structure below the Tutor application directory

Directory Content

grails-app The grails-specific part of the web application

conf Configuration data sources and bootstrapping

controllers All Grails controllers; initially empty

domain All Grails domain classes (models); initially empty

i18n Message bundles for internationalization

services All Grails service classes; initially empty

taglib All Grails tag libraries

views All Grails views (GSP or JSP); initially empty

layouts All sitemesh layouts

grails-tests All Grails unit tests; initially empty

hibernate Optional Hibernate configuration and mapping files

lib Additional libraries as jar files

spring Spring configuration file(s)

src

groovy Additional Groovy sources; initially empty

java Additional Java sources; initially empty

web-app Web application document root directory

css Resource directory for Cascading Style Sheets

images Resource directory for images

js Resource directory for JavaScript files

WEB-INF J2EE meta information (web.xml, and so on)

classes Target for compiled classes; initially empty

tld Resource directory for compiled tag libraries

576 CHAPTER 16
Seeing the Grails light
D: Gosh, it’s lucky you had that table with you. I see that the layout of the grails-
app directory suggests that Grails obeys the good-old Model-View-Controller
(MVC) separation or even enforces it.

G: Yes, we will see that throughout the whole project. In general, the model is
made by the domain objects, which drive the whole process.

D: It’s created a whole bunch of files, too.
G: Those are defaults for our application so that we can start right away.
D: You mean we can start the application without having done anything?
G: Yes, we can. [takes the keyboard] Go to the application directory

cd tutor

G: and run the application.

grails run-app

D: That’s a heck of a lot of console output. Is anyone meant to understand that?
G: Well, we’re running at warning log level per default. I bet you’d be glad if any-

thing went wrong.
D: Now it waits and says: watch-context. What does that mean?
G: That’s the Jetty web server, which is included in the distribution. Grails has

generated a full-blown J2EE web application and started the server on it.
D: Very helpful. No tinkering with server configuration files. That’s a big plus.

And where is it running now?
G: http://localhost:8080/tutor/.
D: [grabs the keyboard] Here we go. [figure 16.1 is displayed]
G: Okay, the setup works.
D: Yes, that’s a good installation check. How did you know the URL?
G: 8080 is the default port, but we can of course change it if we want. The /tutor

part comes from the name of the J2EE “application context” that has been
created for us.

D: I see. And now we hack away some static HTML pages to create a prototype?
G: Why would we want to write static HTML pages? Don’t you want to see real data?
D: Of course, eventually, but surely a few dummy pages come first, don’t they?
G: No. If we were going to do any more coding right away, we would create

domain classes, but I think we should lay out some plans first.
D: [nods] Does that mean you’re calling a coffee break?
G: Or tea. 15 minutes after lunch is the perfect time for this.

Laying out the domain model 577
16.2 Laying out the domain model

In which our friends learn of requirements and dream up a schema.

Guillaume and Dierk are standing at a round table next to a whiteboard in the
coffee corner, with mint tea and cappuccino.

D: This can’t be a coincidence.
G: What do you mean?
D: We’re working with Grails and standing at a round table...
G: Oh, please. This isn’t Camelot.
D: [grins] Okay then. What about the “interactive tutorial”?
G: I guess the tutorial needs to consist of at least some text and code examples...
D: ... that we need to create and display.

16.2.1 Thinking through the use cases

G: Yes. We have authors who create a tutorial and users who read it. To make the
authors’ lives easier, it would be nice if they could post tutorial pages through
the web application.

D: You mean like posting to a blog or a wiki?
G: Yes, exactly. We’ll find out what works best. We’ll also need a tree-like structure

for the tutorial entries to organize the tutorial and show a table of contents.

Figure 16.1
Grails welcome page for
the Tutor application

578 CHAPTER 16
Seeing the Grails light
D: And where is the interactive part?
G: I talked with our boss about that before. He has the idea that logged-in users

should be able to see what tutorial elements they’ve already worked through
so that they can concentrate on the new ones.

D: Hm, that’s a bit tricky. A user can scan through the material without reading
much of it. That shouldn’t count as “reading.”

G: Maybe the user clicks a button, indicating that they have visited the page.
D: Hm, sounds doable—with considerable effort.

16.2.2 Designing relations

G: We don’t have much time, so we will
follow the simplest possible route. Let’s
see what we have. [sketches figure 16.2 on
the whiteboard]

D: That’s rather simple.
G: It will become more complex over

time. You know: every complex solu-
tion that works is based on a simple
solution that works.

D: So, what have we got? TutorialEntry seems to be the central abstraction.
G: Yes, it holds most of the information and will be the hub of most references.

After all, the tutorials are the entities we’re doing all this for.
D: And every TutorialEntry refers to an Author?
G: Yes, each one refers to exactly one Author, but many TutorialEntries can

refer to the same one.
D: Therefore the relation from TutorialEntry to Author is many-to-one.
G: Right, and it is unidirectional. That means we assume that every Tutorial-

Entry directly references its Author, but a single Author doesn’t explicitly store
a reference to all their TutorialEntries.

D: But what if we want to show all TutorialEntries of a given Author?
G: Then we can query for all TutorialEntries where the author property matches

the given one.
D: Ah, okay. No need to keep track of all the back references, because we can rely

on the relational model below the surface.
G: Exactly. It means less work with the bookkeeping but at the expense of per-

formance. A query is always slower than following a reference.

Figure 16.2 Relational design of
TutorialEntry and Author with many-
to-one relations

Implementing the domain model 579
D: Hmm. [scratches head] So which is better then: unidirectional or bidirectional?
G: I wish it were that easy. That’s an engineering decision. Making such tricky

decisions is what we are paid for in the first place—besides knowing the tools
and mechanics.

D: You’re making me nervous. What if we decide wrong?
G: They will hang us. [laughs] No, honestly, the cool thing about Grails is that

you can change the design at a later stage without excessive costs. This is
where the knowledge of the tools pays off. They give us leeway to defer and
correct decisions.

D: Good to know. What about that other reference between the Tutorial-
Entries? That seems to be the parent-child relationship.

G: All TutorialEntries have a parent TutorialEntry except the root Tutorial-
Entry, which has a null parent. Many TutorialEntries can have the same par-
ent. They are siblings, so to speak.

D: And the relation is also unidirectional. Every TutorialEntry knows its parent
but not its children? Is that a wise decision?

G: For the moment, it should be good enough. Introducing back references from
the parent to its children is an optimization issue. Grails grants us enough
leeway to care about that later, when we have a better idea of what the actual
access patterns are.

D: I think I need to see some code to understand all this.
G: All right. Let’s go over and get a first version running.

16.3 Implementing the domain model

In which Guillaume creates the first domain class, and Dierk is astonished by the scaffold-

ing and testing capabilities of Grails.

Back at Dierk’s machine, he unlocks the screensaver.

D: Now, how do we start implementing the domain model? Are we creating
POJOs?1 Do we have to follow any conventions?

1 Plain Old Java Objects.

580 CHAPTER 16
Seeing the Grails light
16.3.1 Scaffolding domain classes

G: Both, actually. [grabs the keyboard] But Grails gives us all support we need. Let’s
first create the Author class:

grails create-domain-class

 [input] Enter domain class name:
author

D: Ah, you entered the class name in lowercase?
G: Yes, but that’s only because I’m a lazy typist.
D: And Grails says it has created two classes for us: grails-app/domain/

Author.groovy and grails-tests/AuthorTests.groovy.
G: That’s a scaffolded domain class and a corresponding unit test to give us

something to start with. Author.groovy looks like this. [opens the file in an editor—
listing 16.1 is displayed]

class Author {

}

D: There’s not a lot there, really. Is that it?
G: That’s all it takes to start with. Grails will inject id and version properties at

runtime for internal purposes. It also adds a toString method for the stan-
dard display of the object, showing class name and id. We should change that
to something more meaningful for our domain class.

D: You mean we should make it return something that makes sense to a user
rather than to the computer?

G: [nods] Exactly. Also, every such class will automatically be persistent—that is,
backed by the database and managed by Hibernate.

D: Aha, then let’s create the database, the tables, the schema, and the mapping
descriptor.

G: No, no, no! That’s why I said “automatically.” That’s all done for us behind
the scenes. There’s really nothing we have to do.

D: Wow! Very impressive. But how about the name attribute that we have to add?
G: That’s as simple as this. [edits the file to make it listing 16.2]

Listing 16.1 Scaffolded domain class Author.groovy

Implementing the domain model 581
class Author {

 String name

 String toString() { name }
}

D: And no mapping at all?
G: As I said—it’s all automatic. Grails follows the “convention over configura-

tion” paradigm, which makes all this possible.
D: I would like to see something tangible before we proceed with the domain

model. Can we look at the database?
G: Yes, we can. We can even look at it through the web application.
D: You’re kidding! We don’t have a web application.

16.3.2 Scaffolding views and controllers
G: We don’t have a web application yet, but we will have one in a minute. See here:

grails generate-all

 [input] Enter domain class name:
author

D: Lots more screenfuls of output, I see. And this is creating a web application?
G: Start the server with

grails run-app

G: and point the browser to http://localhost:8080/tutor/author. We need to add
“author” to the URL because that is our domain class of interest. [browsing
around, the screens in figure 16.3 are displayed]

D: Hey, this really works! I can see the initially empty list of authors, create a new
one, see it in the list, and edit and delete it. Not bad for having written only
two lines of code!

G: Yes, this is called scaffolding. It allows us to get something running quickly.
D: Ah, you mean all these views are scaffolded, as you call it?
G: Not only the views but also the controllers...
D: ... which call the database operations.
G: Kind of. They work on the domain objects rather than calling the database

directly. Each change to the domain object gets automatically propagated to
the database.

Listing 16.2 Customized domain class Author.groovy

The name is a more
useful identifier

582 CHAPTER 16
Seeing the Grails light
D: Does that mean we can have a campfire with all our SQL reference manuals
being burned in a big ceremony?

G: Certainly not. We don’t need them for the standard cases any longer, but
when times get tough, you’ll be glad to have them.

D: Right, right. Now, what’s next? Proceed with the other domain classes?
G: Well, we could. But I’d like to show you another feature first.
D: And that is?
G: Functional testing.

16.3.3 Testing the web application

D: You mean we can also test the web application automatically?
G: Yes, and it’s remarkably easy. Look here. We’ll create the webtest, then

scaffold the author tests, and finally run it. Creating the webtest support is a
one-liner:

grails create-webtest

G: This fetches Canoo WebTest if necessary and installs it. The download size is
pretty big. Luckily we have good network connectivity.

G: Now scaffold a webtest for the Author class:

grails generate-webtest

 [input] Enter domain class name:
author

G: And now we run it:

grails run-webtest

Figure 16.3
Screenshots of scaffolded
views to list, create, show,
edit, and delete Authors

Implementing the domain model 583
D: [as figure 16.4 is displayed] Ah, it brings up a test report. That’s pretty. Does it
work by clicking through the web application on my behalf?

G: Yes, and we can run it after every tiny change to the code, asserting that we
haven’t broken anything.

D: That means the tests will fail if our code doesn’t compile?
G: It will even fail if our implementation doesn’t add or delete an author prop-

erly to the database.
D: Very impressive. That’s good-old engineering practice made easy. When we

proceed with changing the application logic, do we have to adapt the tests
as well?

G: Of course—and the best practice is to adapt the test before we change any
functionality. [smiles]

D: How do I change the tests, then?
G: See for example webtest/tests/AuthorTest.groovy. It specifies the test like in

lines like these:

clickLink (label:'New Author')
verifyText (text: 'Create Author')
clickButton(label:'Create')
verifyText (text: 'Show Author', description:'Detail page')
clickLink (label:'List', description:'Back to list view')

D: That reads like a checklist of what to do for manual testing, but it does it
automatically.

Figure 16.4
Excerpt of the WebTest
report for the scaffolded
Author CRUD operations

584 CHAPTER 16
Seeing the Grails light
G: It also is all plain Groovy, which makes it convenient to work with.
D: I feel confident enough to proceed with the domain model.
G: Shall I type?
D: Please let me do it. I think I understand the pattern...

16.3.4 Completing the domain model
Guillaume leans back and folds his hands.

D: We’re going to scaffold TutorialEntry, right?
G: Yep.
D: [starts typing]

grails create-domain-class

 [input] Enter domain class name:
tutorialEntry

D: All fine. Now scaffolding views and controllers?
G: We could do that, but the views are scaffolded from what’s available in the

domain classes, so we should complete them first.
D: Okay, Author is already complete. Now let’s do the TutorialEntry class. It’s

stored in the domain directory, if I remember correctly. [opens the file] Now what?
G: Add a property for every attribute that we defined in our design: title, text,

author, and parentEntry.
D: Do we need to declare property types?
G: Yes. Grails uses the type information for building the model. Having the type

information available is a big plus.
D: Title and text are plain Strings. Is author of type Author then?
G: Of course.
D: And parentEntry is of type TutorialEntry. Very straightforward.
G: [grabs the keyboard] Here we go. [edits TutorialEntry to listing 16.3]

class TutorialEntry {

 String title
 TutorialEntry parentEntry
 String text
 Author author
 String toString() { title }
}

Listing 16.3 Domain class TutorialEntry

Customizing the views 585
D: Can I scaffold the views and controllers now?
G: Go ahead.
D: Piece of cake. [starts typing]

grails generate-all

 [input] Enter domain class name:
tutorialEntry

D: Now starting the server...

grails run-app

[wait-forever]:

D: ... and open the browser and create a TutorialEntry.
G: Every TutorialEntry needs an Author, so we’d better create one first.

Guillaume opens the browser at the URL http://localhost:8080/tutor/author and
creates an Author.

G: Now head over to http://localhost:8080/tutor/
tutorialEntry/create. [figure 16.5 is shown]

D: Wow! We already have the core of the appli-
cation. And it’s working. We have the full
lifecycle for authors and tutorials. The views
are still not what we really want, though.

G: Yes. Scaffolding is only to get you started
and provide you with something that you
can build on. It’s not uncommon to progres-
sively replace all scaffolded artifacts in the
course of the project.

D: Then let’s see what we can do about the TutorialEntry’s list and details view.

16.4 Customizing the views

In which our heroes create some sample data, change a view in GSP, and gain wiki-like

formatting using a tag library.

D: We’ll need a set of example tutorials that we can test the views with. Shall we
create five or so through the interface?

G: We could, but there is an easier way. We can add them to the bootstrapping.

Figure 16.5 Scaffolded create page
for tutorial entries

586 CHAPTER 16
Seeing the Grails light
D: Ah, does that mean we write a SQL script that fills the database on server
startup?

G: Almost. But not via SQL scripts.

16.4.1 Bootstrapping data

G: We create our domain objects programmatically. Look here.
[creates config/ApplicationBootStrap.groovy—listing 16.4]

class ApplicationBootStrap {

 Closure init = { servletContext ->

 def guillaume = new Author(name: 'Guillaume')
 guillaume.save()

 def root = new TutorialEntry(
 title: '1 Root Title',
 text: 'Root holder for all entries',
 author: guillaume
)
 root.save()

 for (i in 1..5) {
 def entry = new TutorialEntry(
 title: "1.$i Some Title",
 text: 'a very long text ' * i,
 author: guillaume,
 parentEntry: root
)
 entry.save()
 }
 }

 Closure destroy = {
 }
}

D: You create your objects with references and such, and when you say “save()” it
all goes to the database?

G: Isn’t that nice? That’s the typical Groovy style of having a smart configura-
tion. Just imagine if this were XML like in other systems. Then we wouldn’t be
able to define any amount of example data as we do in the little for loop.

Listing 16.4 Creating sample data in ApplicationBootStrap.groovy

Create a
persistent author

Create a
root entry

Create five
subentries

Customizing the views 587
D: Well, then let’s display it. [types]

grails run-app

D: Now see what we have in the TutorialEntry list. [web browser displays figure 16.6]

16.4.2 Working with Groovy Server Pages

G: I think the scaffolded list view of tutorials shows too many details. It should
only show titles, like in a table of contents, but with indentations.

D: Okay. How do we change it?
G: It’s all here. [opens views/tutorialEntry/list.gsp]
D: Ah, the directory structure reflects the URL of the view. Very convenient.
G: At least for the standard views as scaffolded. There are alternatives like cre-

ating them dynamically, but for our little thing here the standard way is all
we need.

D: And this GSP is the Groovy version of JSP?
G: Yes, only better. [grins] Look at the snippet here that renders the list of tuto-

rials. [opens the file, showing listing 16.5]

<table>
 <tr>
 <th>Id</th>
 <th>Author</th>
 <th>Parent Entry</th>
 <th>Text</th>
 <th>Title</th>
 <th></th>
 </tr>
 <g:each in="${tutorialEntryList}">
 <tr>
 <td>${it.id}</td>
 <td>${it.author}</td>

Figure 16.6 Scaffolded list view for tutorial entries showing bootstrapped data

Listing 16.5 Snippet of the scaffolded tutorialEntry/list.gsp

GSP
iteration tag

588 CHAPTER 16
Seeing the Grails light
 <td>${it.parentEntry}</td>
 <td>${it.text}</td>
 <td>${it.title}</td>
 <td class="actionButtons">

 <g:link action="show" id="${it.id}">Show</g:link>

 </td>
 </tr>
 </g:each>
</table>

D: Looks familiar. I know nothing about GSP, but I can guess that this renders a
table row for each TutorialEntry with table cells for every property. Not sur-
prising. I assume we delete all cells that we don’t want to see?

G: Yes. And don’t forget the corresponding table header cells.
D: Done. Now restart the server and see what it looks like?
G: No, no. We don’t need to restart the server. Just save the file and reload the

browser page.
D: Wonderful—very convenient. I like this micro-iteration development.
G: Yes. Instant feedback is really helpful. You do a little change and verify the

result without losing your concentration. This is what gets you into the flow
of programming.

D: I know what you mean. When everything seems to just fit.
G: That reminds me—our list view doesn’t fit yet. It doesn’t show indentation.
D: Hm, we need to indent each title as much as its nesting depth counted from root.
G: And that’s equivalent to the number of parents it has.
D: Ah, you mean we count the parents and indent by that number? But that’s a

full-blown tree algorithm that will require a lot of work!
G: Not necessarily. Let me try something. [grabs the keyboard—edits the file to list-

ing 16.6].

<g:each var="page" in="${tutorialEntryList}">
<tr>
<%
 depth = 0
 def runner = page
 while (runner.parentEntry) {
 runner = runner.parentEntry; depth++

Listing 16.6 Snippet adapting tutorialEntry/list.gsp with title indentations

Iterate over each
page in the list

Calculate the depth from
the root of the tree

Customizing the views 589
 }
%>
 <td style="padding-left: ${ 5 + depth*20 }px ">
 <g:link action="show" id="${page.id}">${page.title}</g:link>
 </td>
 <td style="text-align:right;">${page.id}</td>
 <td style="text-align:center;">${page.author}</td>
 <td>
 ${page.text.size() > 40 ? page.text[0..37]+'...' : page.text}
 </td>
</tr>
</g:each>

D: Magic, magic. I’m impressed. What’s that? A scriptlet?
G: Yes, the same as you would do in Java for JSP but in Groovy. The depth vari-

able is calculated in the scriptlet for every TutorialEntry before rendering
and implicitly stored in the binding. Therefore, we can reuse it in the padding
argument of the title table cell style.

D: It works well, and the output looks nice, but it has a smell. I think a view
should never contain logic, and this view does.

G: I’m not so sure. We could easily refactor this code into the TutorialEntry
domain class or into a tag library. On the other hand, although this scriptlet
contains logic, this is only view logic. It has nothing to do with the Tutorial-
Entry model as such nor with the flow of the application. That makes it justi-
fiable to leave it here.

D: But I don’t like the mix of logic here. It doesn’t look well factored. I agree it’s
view logic, but it should go to a separate place.

G: If that’s the only thing that makes you feel uneasy, then we can move it into a
template. Templates are little view pieces that are reused with changing data.

D: Like a row template used for each TutorialEntry?
G: In fact, that is a good name. We make a new file tutorialEntry/_row.gsp and put

all the <tr>-enclosed code there.
D: The leading underscore is a naming convention?
G: That separates it from the normal views and suggests that it doesn’t produce a

full page but only a part of it.
D: And the tutorialEntry/list.gsp refers to it by name?
G: Yes, via the render method. The old line

<g:each var="page" in="${tutorialEntryList}">

Indent based
on the depth

590 CHAPTER 16
Seeing the Grails light
G: is replaced with

<g:render template="row" collection="${tutorialEntryList}" />

G: This will pass all entries of the tutorialEntryList one after the next into the
row template for partial rendering.

D: I like that much better. It clearly shows that the extracted logic affects only
one line.

G: It also makes the view logic reusable. Any view that needs to render a
TutorialEntry in this fashion can refer to the template.

D: What other views need improvement? Ah, the detail view should present tuto-
rial entries in a more readable format. I assume it resides in views/tutorialEntry/
show.gsp.

16.4.3 Working with tag libraries
D: This looks all very comprehensive. Rearranging the fields a little should be

all that’s necessary.
G: I have an idea. In addition to having our authors possibly provide HTML tags

in their contribution, wouldn’t it be nice if they could use some wiki-like
markup for the simple cases? We could then display the transformed markup
on this page.

D: Hm, sounds complicated.
G: For a start, we allow some simple markup: treating newlines as breaks, two

newlines as a paragraph, and support bold, underline, and italic styles.
D: That’s still a lot of work—more than we can do in a scriptlet.
G: Yes. That’s a job for a taglib.
D: Hm. [shakes head] I did some taglib stuff with JSP—lots of configuration and

not a lot of fun.
G: I’ll show you Grails’ no-configuration solution. Go to the taglib dir, and create

a new file WikiTagLib.groovy.
D: And now?
G: We implement the intended tag as a closure property with the respective

name. How about “wikify”? The tag would have a text attribute with the raw
text that is to be transformed to HTML.

D: And how do we pass the result back?
G: We add it to the out result writer. Look here. [creates taglib/WikiTagLib. groovy,

listing 16.7]

Customizing the views 591
class WikiTagLib {

 def replacements = [
 ["\n" , "
\n"],
 ["
\n\\s*
\n" , "<p/>\n"],
 [/*(\b[^*]*?\b)*/ , '$1'],
 [/~(\b[^~]*?\b)~/ , '<i>$1</i>'],
 [/\b_([^_]*?)_\b/ ,
 '<div style="text-decoration:underline">$1</div>'],
]

 def wikify = { attributes ->
 def text = attributes.text
 for (pair in replacements) {
 text = text.replaceAll(pair[0], pair[1])
 }
 out << text
 }
}

D: Pretty slick. All plain Groovy. But how do we use it?
G: In show.gsp we replace

${tutorialEntry?.text}

G: with

<g:wikify text="${tutorialEntry?.text}"/>

D: That’s all logical. I guess we now have to declare our WikiTagLib in the page
header and in web.xml?

G: No, no. That’s all done automatically. Save
the files, and reload the page, [David
Copperfield gesture] et voilà, there it is. [fig-
ure 16.7 appears on the screen]

D: You know what? This is really how web
development should always be: simple and
efficient. Why wasn’t this invented earlier?

G: [nods] I would say: Ruby on Rails invented
the idea, and it took the appearance of
Groovy to make this possible on the Java
platform. The availability of Hibernate

Listing 16.7 Implementing a wiki tag library in taglib/WikiTagLib.groovy

Newlines
to breaks Double breaks

to paragraphs
Star-enclosed to bold
Tilde-enclosed to italic

Underscore-
enclosed to
underline

Figure 16.7 Tutorial entry detail view
with wikified text from WikiTagLib

592 CHAPTER 16
Seeing the Grails light
and Spring was also a prerequisite. But it’s not the pure power of the Java
packages that counts. The dynamic nature of Groovy is just as important.

D: And now the idea can grow.
G: Just like our application. Let’s use it a little to see how it feels.

16.5 Working with controllers and finder methods

In which Dierk and Guillaume take control of the application and ask searching questions

of their database.

D: As a Tutor user, I would like to go through the tutorials in sequence. How
about providing Previous and Next links in the detail page?

G: Yes, you’re right. That’s missing. But how do we determine which tutorial
entry is previous or next?

D: We could guess from the containment in the parent/child relationship or from
conventions about the title.

G: That’s all too shaky. We need to have that in the model itself. After all, the
page sequence is a central part of any tutorial, right?

D: But changing the model is always critical.
G: Not necessarily. Let’s add this line to TutorialEntry

TutorialEntry predecessor

G: and then restart the server.
D: Changing the domain class requires a restart?
G: Not always. Simple changes don’t. Grails tries to avoid making you restart

unless it’s absolutely essential. However, my personal style is to always do it
after changes of the domain classes—just in case, you know.

D: Fair enough. I guess we should also provide our bootstrapped Tutorial-
Entries with a sensible value for predecessor.

G: Ah, right. Thanks. I would have forgotten about that.
D: Okay. All done. The server is restarted.
G: Then let’s change the show.gsp to include Previous and Next buttons. I’d say

we will use menu buttons for this. [edits file to listing 16.8]

 <g:link action="index">Home</g:link>

Listing 16.8 Snippet of views/tutorialEntry/show.gsp introducing Previous
and Next menu buttons

Working with controllers and finder methods 593
 <g:link action="previous" id="${tutorialEntry?.id}">Previous
 </g:link>

 <g:link action="next" id="${tutorialEntry?.id}">Next
 </g:link>

D: And this means?
G: When we click the Previous button, the previous action of the TutorialEntry-

Controller will be invoked. We provide the id of the currently displayed
TutorialEntry as the id attribute.

D: That means we have to extend the TutorialEntryController with that action.
I can guess where the Controller will be: in the controller directory. Yes, there
it is: TutorialEntryController.groovy.

G: You see all the scaffolded actions in it? Does it look familiar?
D: They are implemented as closures and assigned to properties—the same way

we defined tags for the WikiTagLib. Looks like a pattern to me.
G: [smiles] Seems to be more than a coincidence at least. [takes the keyboard] Let

me try this. [makes the controller resemble listing 16.9]

def previous = {
 def entry = TutorialEntry.get(params.id)
 if (entry.predecessor) {
 entry = entry.predecessor
 } else {
 flash.message = "Top of tutorials reached."
 }
 redirect(action: show, id: entry.id)
}

D: I don’t understand a single line.
G: Well, we first fetch the current TutorialEntry instance.
D: Is get a database access?
G: Kind of. It “gets” you the instance from the database or from the cache.

Chances are that when we reach this point, the instance is already in the cache.
D: And params.id is the id we provided in the <g:link/> tag?
G: So it is.
D: Then we work with the object references as usual. That’s okay. What is the

flash object?

Listing 16.9 Previous action in the TutorialEntryController

594 CHAPTER 16
Seeing the Grails light
G: The flash is a scope that lives until the next request and is used for relaying
information from one controller call to the next. It is mostly used in situations
like this, for relaying messages such as information, warnings, errors, and so
on. In the scaffolded views, you will find references to the flash scope to find
out whether there are any messages to be shown.

D: Aha—and finally we redirect to the show action to render the show.gsp as
usual but for the predecessor entry.

G: Exactly, possibly showing the flash message if there is no predecessor.
D: After the explanation, it makes sense.
G: I hope so. The next action will be even more fun. [edits the controller to become

listing 16.10]

def next = {
 def entry = TutorialEntry.get(params.id)
 def nextEntry = TutorialEntry.findByPredecessor(entry)
 if (nextEntry) {
 entry = nextEntry
 } else {
 flash.message = "End of tutorials reached."
 }
 redirect(action: show, id: entry.id)
}

D: What’s different?
G: Look closely at the second line.
D: findByPredecessor? Can that be true? We didn’t define any method with

that name!
G: No, we didn’t, but Grails is smart enough to know what we’re after. That’s a

dynamic finder method made from the domain class information. This
expression is roughly equivalent to this pseudo SQL statement:

SELECT * FROM TutorialEntry AS te WHERE entry.predecessor.id = te.id

D: Why do you say “roughly”?
G: Because strictly speaking, SQL has no notion of “entry” that we used here.

Behind the scenes, Hibernate is doing all the work of providing us with nice
object-oriented query facilities and optimization. Grails makes them available
to us in the most convenient fashion.

Listing 16.10 Next action in the TutorialEntryController

Dynamic
finder
method

Elaborating the model 595
D: That is really amazing, but also very unfamiliar. Is there a reference about all
these dynamic methods?

G: Yes, it’s all on the web under http://grails.org.
D: I know what to read over the weekend, then. Are we finished with the Tutor

application?
G: Not yet. The “interactive” part is still missing. We have no model about our

users, yet, and how they visit TutorialEntries.
D: That sounds like we should have a coffee break for another modeling session.
G: Good idea.

Guillaume and Dierk walk over to the coffee corner.

16.6 Elaborating the model

In which Guillaume and Dierk discover a new entity in their midst.

The coffee corner’s whiteboard still shows figure 16.2.

D: We should add the new predecessor attribute to the picture.
G: [nods silently]
D: And we will have a User class with a name attribute for each User.
G: [nods silently]
D: You’re so quiet. What are you thinking about?
G: About the relation between User and TutorialEntry. I’m afraid it’s a

bit complicated.
D: Why? One User can visit several TutorialEntries. That’s a simple one-to-

many relation, isn’t it?
G: It’s not as simple, because many Users can visit the same TutorialEntry. So it’s

actually many-to-many.
D: Ah, I see. You’re right. If we ask a TutorialEntry for all Users that have seen

it, we will get many Users. If we ask one User for all TutorialEntries he has
visited, we will also get many TutorialEntries. That’s many-to-many. What
worries you about it?

G: The rule of thumb is that when you hit a many-to-many relation, you have
missed an important concept in your design.

D: Aha. So we know at least there’s something missing. Any hint how to find it?
G: The trick is to picture an object that encapsulates the whole many-to-many

relationship. If we had an object that takes TutorialEntries on the one hand

596 CHAPTER 16
Seeing the Grails light
and Users on the other hand to care for their relation, what would that
object represent?

D: Eureka! I have it! That’s a Visit! Look here. [sketches figure 16.8]
G: Good job! That makes sense. Every time a User marks a TutorialEntry as vis-

ited, we create a new Visit for the unique User/TutorialEntry combination.
D: And the relations become much simpler. Many Visits can refer to the same

TutorialEntry. That’s a standard many-to-one relation.
G: And many visits can be stored for the same User. That’s many-to-one as well.
D: In other words, we have split the original many-to-many relation into two

many-to-one relations. How exciting! We invented a whole new world-chang-
ing pattern!

G: I don’t like pouring water in your cappuccino, but this pattern isn’t new at all.
It’s as old as relational databases—if not older.

D: Still, I think we did a really good job modeling the domain. I’m impatient to
see how that looks in code.

16.7 Working with the session

In which Guillaume and Dierk ask their users to introduce themselves, and allow them to

record their visits.

Back on Dierk’s machine.

D: Scaffolding User and Visit is a breeze. Here’s the scaffolded User class, after
customization. [User class is edited to listing 16.11]

class User {
 String name

 String toString() { name }
}

Figure 16.8
Relational design of the Tutor
application completed with
User and Visit

Listing 16.11 Scaffolded and customized User domain class

Working with the session 597
D: And here’s the Visit class, created and similarly customized. [Visit class is
edited to listing 16.12]

class Visit {
 User user
 TutorialEntry entry

 String toString() { user.toString() + ' : ' + entry.toString() }
}

G: The user needs some device to log in.
D: To begin with, they could choose their name from the list of users. Ah, wait—

we have scaffolded the user list view that we can hijack for that purpose. It’s
in views/user/list.gsp.

G: How should that work?
D: We add a new action button to each table row like so:

 <g:link action="select" id="${it.id}"> That's me </g:link>

G: I see. And we add a select action...
D: ... to the scaffolded UserController.
G: Okay, let me do it. [takes the keyboard] We need get hold of the selected User

object and store it in the session. I’d suggest the key user. [UserController
becomes listing 16.13]

def select = {
 def user = User.get(params['id'])
 if(user) {
 session.user = user
 redirect(controller:'tutorialEntry', action:"list")
 } else {
 flash['message'] =
 "Sorry user ${params['id']} cannot be selected."
 redirect(action:show)
 }
}

Listing 16.12 Scaffolded and customized Visit domain class

Listing 16.13 select action in UserController

Load the selected
user profile

Don’t assume the id is valid

598 CHAPTER 16
Seeing the Grails light
D: Session is a simple map that can store objects?
G: It would be more accurate to say that it can be used like a map.
D: And if everything is okay, we forward to the list view of the TutorialEntries.
G: Yes, via the TutorialEntryController.
D: The error handling seems a bit too much. Can it really be that a bad id is

passed into the select action?
G: You’re right. It’s unlikely, but you never know. Call me paranoid, but in con-

trollers with all the redirections and chaining that might happen, I prefer to
keep the code defensive.

D: You’re the boss. What’s next?
G: Users need some device to mark a TutorialEntry as “visited.” They could do

that best when in the detail view of TutorialEntry. Therefore, I’d suggest
adding a Visited button to views/tutorialEntry/show.gsp.

D: Let me do that GUI stuff. [keyboard switch] I will add this line to the <g:form>
section:

<g:actionSubmit value="Visited"/>

G: If we click this, it will be handled by the visited action of the TutorialEntry-
Controller.

D: Let me try to implement this. I will keep it as defensive as you like it. [twinkles
as he edits to listing 16.14]

def visited = {
 def entry = TutorialEntry.get(params.id)
 if (entry && session.user) {
 new Visit(entry: entry, user: session.user).save()
 }
 redirect(action: next, id: entry.id)
}

G: Good. You create the corresponding Visit object and save it. Perfect.
D: And I added a convenience feature in the last line. After the button click,

there is no point in staying on the same page. We go directly to the next one.
G: Your users will love you.
D: I hope so. Are we done?
G: Almost. We still need to provide a filtered view for the TutorialEntry list that

only shows links that haven’t been visited yet. That’s what the boss demanded.

Listing 16.14 visited action in TutorialEntryController

Need both an
entry and a user

Create a new
visit and
save it—all
in one line!

Working with the session 599
D: That concerns views/tutorialEntry/list.gsp. I’d say the simplest solution is to add
the filtering functionality as menu buttons in the top row. [does so to make list-
ing 16.15]

 <g:link controller="user" action="list">
 <%= (session?.user) ? "${session.user.name}": 'Log in' %>
 </g:link>

<g:if test="${session?.user}">

 <g:link action="listVisited">List visited</g:link>

 <g:link action="listUnvisited">List unvisited</g:link>

</g:if>

G: I see you’re going to like GSP.
D: Is that too much?
G: You’re doing a little more than we need. First, you’re displaying the cur-

rent user.
D: Or “Log in” if there is no user in the session yet. The link behind that button

goes to the user list view.
G: And then two filtering buttons to restrict the current view to only the visited of

the unvisited links.
D: But only if the user is known. Otherwise there is no point in showing them.
G: Very user-friendly. But none of this will work until we have the listVisited

and listUnvisited actions in the TutorialEntryController.
D: Can you help me with this?
G: Sure. Remember, it’s all plain Groovy object work. [edits the controller to list-

ing 16.16]

def listVisited = {
 def visited = Visit.findAllByUser(session.user).entry
 render(view:'list', model:[tutorialEntryList: visited)
}

Listing 16.15 Snippet of menu button section in tutorialEntry/list.gsp for providing

filtering views

Listing 16.16 listVisited and listUnvisited actions
in TutorialEntryController

Dynamic finder method for user

600 CHAPTER 16
Seeing the Grails light
def listUnVisited = {
 def unvisited = TutorialEntry.list() -
 Visit.findAllByUser(session.user).entry
 render(view:'list', model:[tutorialEntryList: unvisited])
}

D: Cool. You use the dynamic finder methods to select all visits for the current
user. But why is the simple expression .entry working?

G: The finder method returns a list of Visit objects, and .entry is a GPath
expression that returns a list of all entry properties of each Visit—that is,
our list of TutorialEntries.

D: And in listUnvisited, you subtract this list from the list of all Tutorial-
Entries. This almost reads as if we were working on an object database!

G: Simple and efficient. That’s Grails.
D: I really see the light, now. We’re done, aren’t we?
G: Yes, we’re done with the functionality. But because we still have some time

left, I’d suggest doing some spit’n’polish before finally deploying it.
D: You really want to deploy it? Isn’t that too much work? All the packaging and

so on? Also, I have never before deployed an application that only took an
afternoon to create.

G: Why not? It’s all good and stable, and deployment will be easy. I promise you
can go home early today.

D: Okay then. What do we have to do to finish up?

16.8 Finishing up

In which Guillame and Dierk protect themselves from the forces of evil (well, evil input),

deploy the application to a live system, and go their separate ways.

G: Currently, the user needs to know the URL scheme to handle the application.
I’d say that’s okay for administrators who create new author and user
accounts, but not so nice for the casual reader.

D: We need a welcome page in our corporate design with quick links to the fre-
quent entry points. I think a static HTML page would do it.

G: We can store that as index.html in the web-app directory, and Grails will pick it
up automatically.

D: I expected nothing less. [laughs] I will copy the start page of our corporate
web site for that purpose and change the body to be

Tutorials

Unvisited =
all-visited

Finishing up 601
D: That should be okay for the moment. We can refine that later. Anything else
for the finishing touch?

G: Well, we could go over the style in web-app/css/main.css to adapt it to our cor-
porate style.

D: I think we’ll leave that to the web designer. I’m happy with how it is right now.
G: Okay, just in case the designer asks, we can change the whole page layout for

all the pages at once by adapting views/layout/main.jsp.
D: That’s good to know. Anything else?

16.8.1 Validating constraints

G: Yep. Finally, I’d like to go over field validation to protect the application from
bad user input.

D: I would normally complain that this is too much work, because we have to go
over all the affected actions and views, but I guess you have another ace up
your sleeve?

G: Well, I haven’t—but Grails has. It allows easy declaration of constraints in your
model that are automatically used for validation. Let’s take the User class, for
example. The name property should never be empty, neither should it be too
long or too short. And most importantly, it must be unique in the database.

D: Looks like we have to write some tricky conditionals and database access
code here.

G: Or a simple constraints property like so that goes directly in User.groovy:

def constraints = {
 name(length: 5..15, blank: false, unique: true)
}

D: Marvelous! And how does it work on the user interface?
G: Let’s try to add a user that already exists and see what happens. [tries it, result-

ing in figure 16.9]

Figure 16.9
Validation error message
when trying to create a
new user with a name
that already exists in
the database

602 CHAPTER 16
Seeing the Grails light
D: Really slick and very intuitive. Can you tell me what kind of validations are
available?

G: There’s a fairly long list in the online docs. So far, I’ve been able to do every-
thing I needed, even regular expression matches.

D: That’s fine. Regular expressions should at least cover everything we need to
validate on the syntactic level. But what if I want to have other error messages?

G: Then you can adapt the file i18n/defaultErrorMessages.properties or provide
your own localized message bundle. It all goes through the standard Java way
of internationalization.

D: Perfect. I’d say we are ready for take-off.
G: So would I.

16.8.2 Deploying the application

D: Now, what do we have to do in order to deploy the application?
G: Adapt the database configuration to match the settings of your deployment

target, run the grails prod war command, and use the production server
mechanics to install the generated web archive file.

D: Where is the database configuration?
G: It’s in conf/ProductionDataSource.groovy, just beneath the data source defini-

tions for testing and development. Look here:

class ProductionDataSource {
 boolean pooling = true
 String dbCreate = "update"
 String url = "jdbc:hsqldb:file:prodDb"
 String driverClassName = "org.hsqldb.jdbcDriver"
 String username = "sa"
 String password = ""
}

D: I guess we change this to our production settings. What’s the purpose of the
dbCreate property?

G: This mimics what is in Hibernate: the hibernate.hbm2ddl.auto property. We
can set it to create, create-drop, or update, meaning we want the database
schema to be created automatically.

D: Will that mean that all existing data is lost?
G: Not if we set it to update, which is the best choice for our purpose. Because we

were running with the in-memory test database before, create-drop was the
fastest solution.

D: Where do we get all the information from?

Finishing up 603
G: We’d better ask our database administrator, Martin. For production, we’ll need
his help anyway, because he needs to grant us access rights and provide a user-
name and password.

D: And that’s all?
G: Martin may have some further advice about the best possible driver to use.
D: Do we need to package that driver class with Grails?
G: If we need to package it, we can store it in the lib directory, and it will be pack-

aged with the web archive. However, production systems typically have their
drivers installed in a shared library, so we can rely on having it available. All
we need to know is the class name, and we can add it to the configuration.

D: I will head over to Martin and ask him.
G: Meanwhile, I’ll prepare a text message for the boss, saying that the initial

version of the Tutor application is up and running in production. I guess
they have Internet access in the clubhouse, and he will be able to connect
from there.

D: He will be surprised.
G: Definitely.

Dierk leaves to contact the database administrator and returns with a paper
sheet of the configuration details.

D: Here we go. I owe him a beverage.
G: [smiles] We’ll have one later.
D: Okay, I’ve fixed up the configuration. What was next? Creating the web

archive?
G: Yes. Here it is:

grails prod war

G: We now have the tutor.war web archive ready for deployment.
D: I know how this goes. The server has a web interface where we can upload

the file and start the application. That’s easy. Just a minute. [uploads the file]
Okay. Done.

G: Let’s do some simple click-through testing to verify it’s fine. Open the
browser to http://groovy.canoo.com/tutor.

D: Looks okay. [clicks through the application] Perfect.
G: Gimme a high five. [clap]
D: Okay. Let’s invite Martin and call it a day.

604 CHAPTER 16
Seeing the Grails light
16.8.3 Farewell
Guillaume, Dierk, and the database administrator Martin assemble in the nearest
beer garden.

D: The work with you and Grails was a ton of joy. Thanks for pointing me at it. I
think we did an awesome good job this afternoon.

G: Hm, we could have done a little better.
M: I saw your application and used it a little. Really nice. Others need more than

a week to achieve anything comparable.
G: Thanks, but I would have liked it better if we’d worked in a more test-driven

style. You know: writing unit tests and functional tests as we go along.
D: You’re demanding too much. That’s hardly possible.
G: With all the scaffolded tests, it’s quite easy.
M: And you are testing from a user’s perspective?
G: Yes. Those are the so-called webtests. They are testing the view. We did a little

of that. But we can also have unit tests for our models and controllers.
D: But we tested the views all the time, because we were constantly switching

between coding and using the application.
M: Sounds like an agile programming thing.
D: And the models have no methods at all, so there’s no point in testing them.
G: True; they could have had some methods, though.
D: I agree that testing the controllers automatically would have been beneficial.

They contain the beef of the application logic.
M: Testing controllers is always tricky. You have to set up a server environment

for that, because controllers rely on request parameters, session information,
and such. That’s an awful lot of work.

G: Actually, it’s simple. In Grails, all the information is in common maps that
you can pass into the controller method when testing.

M: Hm, okay. Then it should be easily possible.
D: I was surprised so many times this afternoon that I believe everything.
G: [laughs]
M: You must have had some real fun today.
D: You bet. It felt like everything was just falling in place.
G: Well, almost. Remember how we discussed the design of the domain model?

That was the crucial part.
M: The drawings I saw in the coffee corner? They didn’t look overly complicated.

Finishing up 605
G: But that’s where the work is: making the complex simple.
D: Yes. I think my first attempt would have been to go for more bidirectional ref-

erences. Would that have been possible at all?
G: Of course. It’s also straightforward. The online docs show how to do it.
M: How about database performance? I certainly don’t want you to drag down

my db when your application becomes popular. [twinkles]
G: We still have room for optimization, whether by using bidirectional references

or by optimizing Hibernate usage with direct mappings. However, I expect at
least 90% of our database accesses to hit the Hibernate cache anyway.

M: Perfect. I’ll look into the database logs to see what you produce, anyway.
G: Thanks. I would have asked you for that favor otherwise. [grins]
D: What are we going to do on Monday? I’d like to do some more work with

Grails.
G: We’ll write some more tests first. After that, I’ll say it would make sense to

hook in security.
D: That is possible?
G: Of course; Grails is pure J2EE, and we can use every feature of that platform:

administration, operation surveillance, logging, load balancing, failover, and
so forth, and also security. There is no need to reinvent the wheel just because
we’re groovy.

M: I can help you with the security setup.
G: Great!
D: The little wiki-like markup we implemented in the WikiTagLib made me

think we’re re-inventing the wheel, though. Would it be possible to include
something like the Radeox Wiki engine?

G: Good idea! Yes, of course, that’s possible. We can use any Java library we
fancy. We throw its jar file in the lib directory and rework the WikiTagLib to
use that functionality!

M: You have so many options that virtually anything is possible.
D: Friends, [stands up and raises his glass] I’m afraid the party is over, and I have to

leave now. It was an honor to work with you. I know that working with me has
not always been easy. I appreciate your forbearance when overlooking my lit-
tle mistakes. Thank you very much for spending your precious time with me.
I hope we will soon meet again and share the joy of dynamic programming.

Cheers!

Installation
and documentation
606

Installation 607
A.1 Installation

The only prerequisite for installing Groovy is that you must first have a 1.4 or 1.5
JDK installed (available free from http://java.sun.com/j2se/) and the JAVA_HOME
environment variable set to the location of your JDK installation.

 To install Groovy:

1 Grab the latest stable release from http://groovy.codehaus.org/Download.
2 Unzip the file to a directory on your filesystem; for example, C:\groovy

or /home/username/groovy.
3 We recommend checking whether you have a CLASSPATH variable set in

your environment and unsetting it, at least temporarily, to avoid class-
path problems, especially if you have any problems running basic
Groovy commands.

4 Optionally, set an environment variable GROOVY_HOME whose value is set to
the location where you unzipped the distribution zip file. If you are run-
ning your Groovy commands from the standard install location, you
should not need to set this variable.

5 Optionally, include GROOVY_HOME/bin in your PATH environment variable.
This will make all the Groovy command-line tools available in your path.

6 Test your installation by executing groovysh from a command line-shell.
You should see output like this:

>groovysh
Lets get Groovy!
================
Version: 1.0-RC-01-SNAPSHOT JVM: 1.4.2_05-b04
Type 'exit' to terminate the shell
Type 'help' for command help
Type 'go' to execute the statements

groovy> exit

Congratulations! That is it for installing. Type exit to end the
groovysh program.

 Figure A.1 gives an overview of the contents of GROOVY_
HOME, and table A.1 lists the directories and their purpose.

 That’s all there is. It looks minimal, and that’s on purpose.
You don’t have to deal with any specifics of your operating sys-
tem, such as messing with the quagmire that is Windows regis-
try. If you decide to “uninstall” Groovy, just delete the GROOVY_
HOME directory, and you’re done.

Figure A.1
Overview of the
GROOVY_HOME
directories

608 APPENDIX A
Installation and documentation
A.2 Obtaining up-to-date documentation

This book aims to provide the necessary documentation for Groovy; however,
other sources can provide more detailed, up-to-date, and responsive information.
We only list a few starting points here—as the community expands, so will its
online output.

A.2.1 Using online resources

Groovy’s home page is http://groovy.codehaus.org/. This is where you can find all
the latest information, including

■ Downloads
■ The famous and invaluable Groovy Quick-Reference
■ A short language description and the official Groovy Language Specifica-

tion (GLS), along with the official Groovy grammar in a browsable format
■ Links to the CVS and Fisheye, the web view to CVS, together with RSS feeds

of latest changes for those who prefer to “live on the edge”
■ Links to the continuous integration build server and its feeds
■ The JIRA issue tracker
■ A number of articles, blogs, and tutorials about Groovy on the Web—for

example, the popular “Practically Groovy” series.
■ A “Groovy Online Experience” with live running code samples, available

soon at http://groovy.canoo.com

A.2.2 Subscribing to mailing lists

For any questions concerning the normal use of Groovy, subscribe to user-
subscribe@groovy.codehaus.org. Other mailing lists (replace user with dev, jsr, or scm)

Table A.1 Directories in GROOVY_HOME and their contents

Directory Contents

bin The executables discussed in this appendix

conf Startup configuration files

embeddable A single jar file, which packages Groovy and its dependencies together as a conve-
nience for users embedding Groovy in other applications

lib The Groovy implementation jars plus all the third-party libraries required for various
features

Obtaining up-to-date documentation 609
deal with topics of developing the Groovy core, bringing forward the issues of the
Java Specification Request (JSR-241), and getting notifications from the CVS sys-
tem that is used for Software Configuration Management (SCM).

 We’re constantly surprised by the responsiveness of these lists and the quality of
answers that everybody receives there. All mailing list participants and especially
the project manager Guillaume Laforge make this community a fun place to be.

A.2.3 Connecting to forum and chat

The core developers meet for chat at irc://irc.codehaus.org/groovy, but everybody
else is also welcome. This is like talking with friends in a bar about your favorite
programming language. In other words, it’s highly addictive.

 For questions about this book, there is a forum at Manning at http://www.
manning.com/koenig where you can meet the authors.

Groovy language info
610

Groovy language info 611
Table B.1 lists all the Groovy operators in order of their precedence. Most of these
operators can be overridden. See the respective method names and usages in sec-
tion 3.3, table 3.4.

The list of Groovy language keywords follows. Not all of these keywords are actu-
ally used. Some of them are only reserved for future use. However, no keyword is
allowed to be used as an identifier, such as a class, method, parameter, or variable
name, with the exception of in.

Table B.1 Groovy operators in order of precedence

Level Operator Note

1 $x
new ()
() {} []
. ?. *.
~ ! $ (type)

Scope escape
Explicit parentheses
Method call, closure, list/map
Dot, safe dereferencing, spread-dot
Negate, not, typecast

2 ** Power

3 ++ -- + - Pre/post increment/decrement, unary sign

4 * / % Multiply, div, modulo

5 + - Binary

6 << >> >>>< Shift, range

7 < <= > >= instanceof as

8 == != <=>

9 & Binary and

10 ^ Binary xor

11 | Binary or

12 && Logical and

13 || Logical or

14 ?: Ternary conditional

15 = **= *= /= %= += -= <<= >>= >>>= &=
^= |=

Assignments

612 APPENDIX B
Groovy language info
B.1 Keyword list

abstract, any, as, assert
boolean, break, byte,
case, catch, char, class, continue,
def, default, do, double,
else, enum, extends,
false, final, finally, float, for,
if, import, in,1 instanceof, int, interface,
long,
native, new, null,
private, protected, public,
return,
short, static, strictfp, super, switch, synchronized,
this, threadsafe, throw, throws, transient, true, try,
void, volatile,
while

1 As in for(x in 0..9){}; however, in can still be used as an identifier, as in System.in.

GDK API quick reference
613

614 APPENDIX C
GDK API quick reference
C.1 Arrays and primitives

Method name Parameter types Return type

Array of byte or Byte

encodeBase64 Writable

Array of primitives

getAt int Object

getAt Range Object
Returned object is a list of autoboxed items

getAt Collection Object
Returned object is a list of autoboxed items

putAt int, Object void

size int

toList List

Array of Object

getAt int Object

getAt Range List

getAt Collection List

inject Object, Closure Object

join String String

putAt int, Object void

size int

spread SpreadList

toArrayString String

toList List

toSpreadList SpreadList

toSpreadMap SpreadMap

toString String

Array of String

execute Process

continued on next page

The java.lang package 615
C.2 The java.lang package

double, float, long

downto Number, Closure void

upto Number, Closure void

Method name Parameter types Return type

Boolean

and Boolean Boolean

or Boolean Boolean

xor Boolean Boolean

CharSequence

getAt int CharSequence

getAt Range CharSequence
Argument may also be an IntRange

getAt Collection CharSequence

Character

compareTo Character int
Argument may also be a Number

div Character Number
Argument may also be a Number

intdiv Character Number
Argument may also be a Number

minus Character Number
Argument may also be a Number

multiply Character Number
Argument may also be a Number

next Number

plus Character Number
Argument may also be a Number

previous Number

continued on next page

Method name Parameter types Return type

616 APPENDIX C
GDK API quick reference
Class

isCase Object boolean

ClassLoader

getRootLoader ClassLoader

double, float, long

abs double
Returns float or long, respectively

downto Number, Closure void

round long

upto Number, Closure void

Number

abs int

and Number Number

compareTo Number int
Argument may also be a Character

div Number Number
Argument may also be a Character

downto Number, Closure void

intdiv Number Number
Argument may also be a Character

leftShift Number Number

minus Number Number
Argument may also be a Character

mod Number Number

multiply Number Number
Argument may also be a Character

negate Number

next Number

or Number Number

continued on next page

Method name Parameter types Return type

The java.lang package 617
Number (continued)

plus Number Number
Argument may also be a Character

plus String String

power Number Number

previous Number

rightShift Number Number

rightShiftUnsigned Number Number

step Number, Number,
Closure

void

times Closure void

toBigDecimal java.math.BigDecimal

toBigInteger java.math.BigInteger

toDouble Double

toFloat Float

toInteger Integer

toLong Long

upto Number, Closure void

xor Number Number

Object

any Closure boolean

collect Closure List

collect Collection, Closure Collection

dump String

each Closure void

eachWithIndex Closure void
{item, counter -> …}

every Closure boolean

find Closure Object

continued on next page

Method name Parameter types Return type

618 APPENDIX C
GDK API quick reference
Object (continued)

findAll Closure List

findIndexOf Closure int

getAt String Object
Dynamic property access

getMetaPropertyValues List

getProperties Map

grep Object List

identity Closure Object

inspect String

invokeMethod String, Object Object

is Object boolean

isCase Object boolean

iterator Iterator

print PrintWriter void

print Object void

printf String, Object void
JDK 1.5+

printf String, [Object] void
JDK 1.5+: varargs version

println PrintWriter void

println Object void

println void

putAt String, Object void

use Class, Closure void

use List, Closure void
List of classes

use [Object], Closure void
Variable argument list of classes

continued on next page

Method name Parameter types Return type

The java.lang package 619
Process

consumeProcessOutput void

getErr InputStream

getIn InputStream

getOut OutputStream

getText String

leftShift [byte] OutputStream

leftShift Object Writer

waitForOrKill long void

String

center Number String

center Number, String String

contains String boolean

count String int

decodeBase64 [byte]

eachMatch String, Closure void

execute Process

execute List, File Process

execute [String], File Process

getAt int String

getAt Range String

getAt Collection String

isCase Object boolean

leftShift Object StringBuffer

minus Object String

multiply Number String

negate regex.Pattern

next String

continued on next page

Method name Parameter types Return type

620 APPENDIX C
GDK API quick reference
String (continued)

padLeft Number String

padLeft Number, String String

padRight Number String

padRight Number, String String

plus Object String

previous String

replaceAll String, Closure String

reverse String

size int

toBigDecimal BigDecimal

toBigInteger BigInteger

toBoolean Boolean

toCharacter Character

toDouble Double

toFloat Float

toInteger Integer

toList List

toLong Long

toURI java.net.URI

toURL java.net.URL

tokenize String List

tokenize List

StringBuffer

leftShift Object StringBuffer

plus String String

putAt IntRange, Object void

size int

Method name Parameter types Return type

The java.util and java.sql packages 621
C.3 The java.math package

C.4 The java.util and java.sql packages

Method name Parameter types Return type

BigDecimal

downto Number, Closure void

upto Number, Closure void

BigInteger

downto Number, Closure void

upto Number, Closure void

Method name Parameter types Return type

Collection

asImmutable Collection

asList List

asSynchronized Collection

collect Closure List

collect Collection,
Closure

Collection
Add to the given Collection

count Object int

disjoint Collection boolean

each Closure void

find Closure Object

findAll Closure List

getAt String List

groupBy Closure Map

inject Object, Closure Object

continued on next page

622 APPENDIX C
GDK API quick reference
Collection (continued)

isCase Object boolean

join String String

leftShift Object Collection

max Object

max Closure Object

max Comparator Object

min Object

min Closure Object

min Comparator Object

multiply Number List

plus Collection List

plus Object List

sort List

sort Closure List

sort Comparator List

sum Object

sum Closure Object

toList List

toListString String

toString String

unique Collection

unique Closure Collection

unique Comparator Collection

continued on next page

Method name Parameter types Return type

The java.util and java.sql packages 623
Date (java.util and java.sql)

minus int Date
Returns util or sql versions of Date, respectively

next Date
Returns util or sql versions of Date, respectively

plus int Date
Returns util or sql versions of Date, respectively

previous Date
Returns util or sql versions of Date, respectively

Enumeration

iterator Iterator

List

asImmutable List

asSynchronized List

equals List boolean

execute Process

flatten List

getAt int Object

getAt Collection List

getAt IntRange List

intersect Collection List

minus Collection List

minus Object List

pop Object

putAt int, Object void

putAt IntRange, Object void

putAt List, List void

continued on next page

Method name Parameter types Return type

624 APPENDIX C
GDK API quick reference
List (continued)

putAt List, Object void

reverse List

reverseEach Closure void

sort List

sort Closure List

sort Comparator List

spread SpreadList

toSpreadList SpreadList

Map

asImmutable Map

asSynchronized Map

collect Closure List

collect Collection, Closure Collection
Add to the given Collection

each Closure void

find Closure Object

findAll Closure Map

get Object, Object Object
key, default

getAt Object Object

putAt Object, Object Object

spread SpreadMap

subMap Collection Map

toMapString String

toSpreadMap SpreadMap

toString String

continued on next page

Method name Parameter types Return type

The java.util.regex package 625
C.5 The java.util.regex package

Set

asImmutable Set

asSynchronized Set

SortedMap

asImmutable SortedMap

asSynchronized SortedMap

SortedSet

asImmutable SortedSet

asSynchronized SortedSet

sort SortedSet

Timer

runAfter int, Closure void

Method name Parameter types Return type

Matcher

each Closure void

getAt int Object

getAt Collection String

getCount int

hasGroup boolean

iterator Iterator

setIndex int void

size long

Pattern

isCase Object boolean

Method name Parameter types Return type

626 APPENDIX C
GDK API quick reference
C.6 The java.io package

Method name Parameter types Return type

BufferedReader

getText String

BufferedWriter

writeLine String void

DataInputStream

iterator Iterator
Byte-based

File

append String void

append String, String void
With encoding

asWritable File

asWritable String File
With encoding

eachByte Closure void

eachDir Closure void

eachFile Closure void

eachFileMatch Object, Closure void
isCase() applied to the first argument

eachFileRecurse Closure void

eachLine Closure void

eachObject Closure void

filterLine Writer, Closure void

filterLine Closure Writable

getText String String
With encoding

continued on next page

The java.io package 627
File (continued)

getText String

iterator Iterator
Line-based

leftShift String File

newInputStream BufferedInputStream

newObjectInputStream ObjectInputStream

newOutputStream BufferedOutputStream

newPrintWriter PrintWriter

newPrintWriter String PrintWriter
With encoding

newReader String BufferedReader
With encoding

newReader BufferedReader

newWriter BufferedWriter

newWriter boolean BufferedWriter
Append

newWriter String BufferedWriter
With encoding

newWriter String, boolean BufferedWriter
With encoding, append

readBytes [byte]

readLines List

size long

splitEachLine String, Closure void
First argument is the separator to use

withInputStream Closure void

withOutputStream Closure void

withPrintWriter Closure void

continued on next page

Method name Parameter types Return type

628 APPENDIX C
GDK API quick reference
File (continued)

withReader Closure void

withWriter Closure void

withWriter String, Closure void
With encoding

withWriterAppend String, Closure Void
With encoding

write String Void

write String, String Void
With encoding

InputStream

eachByte Closure Void

eachLine Closure Void

filterLine Writer, Closure Void

filterLine Closure Writable

getText String

getText String String
With encoding

iterator Iterator
Byte-based

newReader BufferedReader

readLine String

readLines List

withReader Closure void

withStream Closure void

ObjectInputStream

eachObject Closure void

continued on next page

Method name Parameter types Return type

The java.io package 629
OutputStream

leftShift Object Writer

leftShift InputStream OutputStream

leftShift [byte] OutputStream
Argument is a byte array

withStream Closure void

withWriter Closure void

withWriter String, Closure void
With encoding

Reader

eachLine Closure void

filterLine Writer, Closure void

filterLine Closure Writable

getText String

iterator Iterator
Line-based

readLine String

readLines List

splitEachLine String, Closure void

transformChar Writer, Closure void

transformLine Writer, Closure void

withReader Closure void

Writer

leftShift Object Writer

withWriter Closure void

write Writable void

Method name Parameter types Return type

630 APPENDIX C
GDK API quick reference
C.7 The java.net package

Method name Parameter types Return type

ServerSocket

accept Closure Socket

Socket

leftShift [byte] OutputStream

leftShift Object Writer

withStreams Closure void

URL

eachByte Closure void

eachLine Closure void

getText String

getText String String
With encoding

withReader Closure void

Cheat sheets
631

632 APPENDIX D
Cheat sheets
Cheat sheets provide you with quick information and examples to get you up and
running quickly. For more details about any topic, refer to the corresponding sec-
tion in the book or on the Groovy web site’s wiki.

D.1 Lists

See section 4.2.

assert [1,2,3,4] == (1..4)
assert [1,2,3] + [1] == [1,2,3,1]
assert [1,2,3] << 1 == [1,2,3,1]
assert [1,2,3,1] - [1] == [2,3]
assert [1,2,3] * 2 == [1,2,3,1,2,3]
assert [1,[2,3]].flatten() == [1,2,3]
assert [1,2,3].reverse() == [3,2,1]
assert [1,2,3].disjoint([4,5,6])
assert [1,2,3].intersect([4,3,1]) == [3,1]
assert [1,2,3].collect{ it+3 } == [4,5,6]
assert [1,2,3,1].unique().size() == 3
assert [1,2,3,1].count(1) == 2
assert [1,2,3,4].min() == 1
assert [1,2,3,4].max() == 4
assert [1,2,3,4].sum() == 10
assert [4,2,1,3].sort() == [1,2,3,4]
assert [4,2,1,3].findAll{ it%2 == 0 } == [4,2]
def animals = ['cat','kangaroo','koala','dog']
assert animals[2] == 'koala'
def kanimals = animals[1..2]
assert animals.findAll{ it =~ /k.*/ } == kanimals
assert animals.find{ it =~ /k.*/ } == kanimals[0]
assert animals.grep(~/k.*/) == kanimals

D.2 Closures

See chapter 5.

def add = { x, y -> x + y }
def mult = { x, y -> x * y }
assert add(1,3) == 4
assert mult(1,3) == 3
def min = { x, y -> [x,y].min() }
def max = { x, y -> [x,y].max() }
def atLeastTen = max.curry(10)
assert atLeastTen(5) == 10
assert atLeastTen(15) == 15
def pairWise(list, Closure invoke) {
 if (list.size() < 2) return []
 def next = invoke(list[0],list[1])
 return [next] + pairWise(list[1..-1], invoke)

Regular expressions 633
}
assert pairWise(1..5, add) == [3, 5, 7, 9]
assert pairWise(1..5, mult) == [2, 6, 12, 20]
assert pairWise(1..5, min) == [1, 2, 3, 4]
assert pairWise(1..5, max) == [2, 3, 4, 5]
assert 'cbaxabc' == ['a','b','c'].inject('x'){
 result, item -> item + result + item }
assert [1,2,3].grep{ it<3 } == [1,2]
assert [1,2,3].any{ it%2 == 0 }
assert [1,2,3].every{ it<4 }
assert (1..9).collect{it}.join() == '123456789'
assert (1..4).collect{it*2}.join() == '2468'

D.3 Regular expressions

See section 3.5.

Table D.1 Regular expressions

Symbol Meaning

. Any character

^ Start of line (or start of document, when in single-line
mode)

$ End of line (or end of document, when in single-line
mode)

\d Digit character

\D Any character except digits

\s Whitespace character

\S Any character except whitespace

\w Word character

\W Any character except word characters

\b Word boundary

() Grouping

(x|y) x or y as in (Groovy|Java|Ruby)

\1 Backmatch to group one; for example, find doubled char-
acters with (.)\1

x* Zero or more occurrences of x

continued on next page

634 APPENDIX D
Cheat sheets
Examples:

def twister = 'she sells sea shells by the sea shore'
// contains word 'shore'
assert twister =~ 'shore'
// contains 'sea' twice (two ways)
assert (twister =~ 'sea').count == 2
assert twister.split(/ /).grep(~/sea/).size() == 2
// words that start with 'sh', \b = word boundary
def shwords = (twister =~ /sh[a-z]*\b/).collect{it}.join(' ')
assert shwords == 'she shells shore'
// four words have three letter, \S = non-Space letter
assert (twister =~ /\b\S{3}\b/).count == 4
// three words start with 's' and have 5 or 6 letters
assert (twister =~ /\bs\S{4}\S?\b/).count == 3
// replace words with 'X', \w = word character
assert twister.replaceAll(/\w+/,'X') == 'X X X X X X X X'
// starts with 'she' and ends with 'shore'
def pattern = ~/she.*shore/

x+ One or more occurrences of x

x? Zero or one occurrence of x

x{m,n} At least m and at most n occurrences of x

x{m} Exactly m occurrences of x

[a-f] Character class containing the characters a, b, c,
d, e, f

[^a] Character class containing any character except a

[aeiou] Character class representing lowercase vowels

[a-z&&[^aeiou]] Lowercase consonants

[a0zA-Z0-9] Uppercase or lowercase letter or digit

[+|-]?(\d+(\.\d*)?)|(\.\d+) Positive or negative floating-point number

^[\w-\.]+@([\w-]+\.)+[\w-]{2,4}$ Simple email validation

(?is:x) Switches mode when evaluating x;
i turns on ignoreCase, s is single-line mode

(?=regex) Positive lookahead

(?<=text) Positive lookbehind

Table D.1 Regular expressions (continued)

Symbol Meaning

Mocks and stubs 635
assert pattern.matcher(twister).matches()
// replace 'sea' with 'ocean' but only if preceded by word 'the'
def ocean = twister.replaceAll('(?<=the)sea','ocean')
assert ocean == 'she sells sea shells by the ocean shore'
// swap 1st and 2nd pairs of words
def pairs = twister =~ /(\S+) (\S+) ?/
assert pairs.hasGroup()
twister = [1, 0, 2, 3].collect{ pairs[it][0] }.join()
assert twister = 'sea shells she sells by the sea shore'

D.4 Unit testing

See chapter 14.
 Groovy tests may be written in scripts or in classes that extend GroovyTestCase,

both of which can use the normal groovy command or a test runner within your
IDE or build environment. One useful method provided by GroovyTestCase is
shouldFail, which lets you easily test failure conditions. You can also use asserts
within your test scripts.

D.5 Mocks and stubs

See section 14.5.2.
 Use stubs when you want to replace an object with one that accepts all the calls

of an original object. This is typically done when you want to perform state-based
testing. Use mocks when you want to apply stricter expectations on your objects
in order to do interaction-based testing.

 As an example, suppose you want to test the following class with sufficient
tests to reach 100 percent coverage, and either method1 or method2 could throw
an exception:

class MyClass {
 def method() {
 try {
 new Collaborator1().method1()
 new Collaborator2().method2()
 } catch (Exception e) {
 new Collaborator3().method3()
 }
 }
}

Here is one way you could write your test code:

import groovy.mock.interceptor.MockFor
class MyClassTest extends GroovyTestCase {
 def mock1 = new MockFor(Collaborator1)

636 APPENDIX D
Cheat sheets
 def mock2 = new MockFor(Collaborator2)
 def mock3 = new MockFor(Collaborator3)
 private static final Closure PASS = {}
 private static final Closure FAIL = {
 throw new RuntimeException()
 }
 void testSuccess() {
 check(PASS, PASS, null)
 }
 void testCollaborator1Fails() {
 check(FAIL, null, PASS)
 }
 void testCollaborator2Fails() {
 check(PASS, FAIL, PASS)
 }
 private check(expected1, expected2, expected3){
 if (expected1) mock1.demand.method1(expected1)
 if (expected2) mock2.demand.method2(expected2)
 if (expected3) mock3.demand.method3(expected3)
 mock1.use { mock2.use { mock3.use {
 new MyClass().method()
 }}}
 }
}

D.6 XML GPath notation

See chapter 12.
 Groovy supports special notation for common XML processing activities. Con-

sider the following XML:

def recipeXml = '''
<recipe>
 <ingredients>
 <ingredient amount='2 cups'>Self-raising Flour</ingredient>
 <ingredient amount='2 tablespoons'>Icing sugar</ingredient>
 <ingredient amount='2 tablespoons'>Butter</ingredient>
 <ingredient amount='3/4 - 1 cup'>Milk</ingredient>
 </ingredients>
 <steps>
 <step>Preheat oven to 230 degrees celsius</step>
 <step>Sift flour and icing sugar into a bowl</step>
 <step>Melt butter and mix into dry ingredients</step>
 <step>Gradually add milk to the mixture until moist</step>
 <step>Turn onto floured board and cut into portions</step>
 <step>Bake for 15 minutes</step>
 <step>Serve with jam and whipped cream</step>
 </steps>
</recipe>
'''

XML GPath notation 637
Using XmlSlurper, XmlParser, or DOMCategory, you can write the following notation
to process this XML:

assert 4 == recipe.ingredients.ingredient.size()
// should be 14 elements in total
assert 14 == recipe.'**'.findAll{true}.size()
// step 4 (index 3 because we start from 0) involves milk
assert recipe.steps.step[3].text().contains('milk')
assert '2 cups' == recipe.ingredients.ingredient[0].'@amount'.toString()
// two ingredients have '2 tablespoons' amount attribute
def ingredients = recipe.ingredients.ingredient.grep{
 it.'@amount' == '2 tablespoons'
}
assert ingredients.size() == 2
// every step has at least 4 words
assert recipe.steps.step.every{
 step -> step.text().tokenize(' ').size() >= 4
}

Initialization for XmlSlurper looks like this:

def recipe = new XmlSlurper().parseText(recipeXml)
/* … processing steps … */

Initialization for XmlParser looks like this:

def recipe = new XmlParser().parseText(recipeXml)
/* … processing steps … */

Initialization for DOMCategory looks like this:

def reader = new StringReader(recipeXml)
def doc = groovy.xml.DOMBuilder.parse(reader)
def recipe = doc.documentElement
use (groovy.xml.dom.DOMCategory) {
 /* … processing steps … */
}

index
A

abstract class 196
Abstract Syntax Tree 51, 343,

496
abstract windowing toolkit

247
Accelerator 250, 261
accept 149
Access 326, 552
accidental change 519
accumulator 146
Action 249–250, 260
action

method 261
nested 261
property 261

ActionEvent 204
ActionListener 204, 248, 260
actionPerformed 204, 248, 258
ActiveDocument 564
ActiveRecord 358
ActiveSheet 561
ActiveX 547, 550
ActiveXProxy 549–550, 556,

561, 567
Adams, Douglas 503, 572
adapter 7
add 105, 117, 120
addAll 101, 120
adder 138
addition 87
address book 124
addTaskDefinition 463

addURL 482
administrator 474
advantage 10
aggregation 520
agile 12, 163, 533
agile programming 604
agile software development

515
agility 400
AJAX 393
Alexa 438
align 257
AllTestSuite 517, 529

configuration 530
ambiguous 86
analysis 491
ancestor 427
ancestor-or-self 427
and 64
animation 276
anonymous inner class 7
Ant 12, 21, 504, 517

build file 534
building integration 539
custom task 464
datatype 243
exec class and 308
Groovy and 151, 243, 461
internals 245
project 463
properties 464
reference 463
task 243
<taskdef> 462

ant command 22, 244, 463
AntBuilder 231, 243, 270, 274,

308, 461
smart 246

AntContrib 247, 462
Antlr 364
antlr.ast 496
any 107, 115, 288
AOP. See Aspect Oriented Pro-

gramming
API documention 494
API. See Application Program

Interface
AppActivate() 568
append 292, 297
appender 527
appending 139
application 317
application layer 347, 350
Application Program Interface

for scripting 394
application server 314, 328
args 473
arguments 479
arithmetic, floating point 90
array 41, 100, 168, 288–289

multi dimensional 106
ArrayList 57, 100
arrow 131
artifact 243, 541
as 186, 192
asImmutable 109, 117
ASM 364
aspect 215, 220
639

640 INDEX
Aspect Oriented Program-
ming 389

assert 33, 158, 166, 196, 222,
527

assertArrayEquals 507
assertContains 507
assertInspect 507
assertion 33, 82, 147, 163, 495,

504, 523
assertLength 507
assertScript 507
assertToString 507
assign 147
assignment 31, 156, 176, 203

type-safe 177
assumption 34
asSynchronized 109, 117
AST. See Abstract Syntax Tree
asWriteable 140, 292
asXml 489
at 477, 483
ATOM 435, 487
at-sign 236
attainGoal 542
attribute 413, 427

@ sign 410
ATTRIBUTE_NODE 405
attributes 239, 405
autoboxing 59, 169, 177
auto-completion, in Windows

567
automation 12, 565

of Windows components
547, 553, 571

axis specifier 426

B

back reference 142, 579
backmatch 79, 86, 633
BackPack 438
backslash 69, 78, 82
backspace 71
backup 476
bad habits 517
base-64 encoding 299
basedir 463
bash 473
basics 29

BBC 435
bean

created by Spring 391
introspection 205

Bean Scripting Framework
394, 399

BeanFactory, getBean() 391
BeanShell 389, 393
bear, Baloo 118
beer garden 604
benchmark 136
benefit 13
best practice 164
BigDecimal 32, 59, 87, 460
BigInteger 32, 59, 87
bind 422
binding 15, 316, 466, 470

accessing variables 368
definition 176
GroovyShell, and 367, 371
templates, and 310

Bindings 395
birth 143
birthday context 142
Biscuit 493
block 131, 456
Bloglines 250
boiler 417
boiling 425
bonus 89
bonus track 573
bookkeeping 578
bookshelf 12
bool 429
boolean 427

test 154, 167
bootstrap 31, 575, 585
bootstrapping, of Grails data

586
borderLayout 255
BorderLayout class 250, 254
boss 12
bound

left 95
right 95

boundary 79, 633
boundedRangeModel 262
bounds 41
boxing 59

boxLayout 255
braces, curly 44
breadthFirst 239, 410
break 170
breakpoint 498
brevity 361
broadcast 435
Brooks, Fred 277
BrowseForFolder() 554
browsing 16, 493
BSF. See Bean Scripting

Framework
bug 536
bug tracking 442
build 243, 504, 516, 534, 539
build automation 22
build listener 463
build process 535
build server 476
build.xml 244
Buildable 422
builder 8, 17, 223, 230, 457

attribute 236
smart 237
unit test 275

builder pattern 150
BuilderSupport 231, 272, 459
building 425
business logic 460
business object 230, 347–348,

355
returning as a map 354
transparent 348, 355

business rules 11, 140, 362
button 251
buttonGroup 251
Byte 296
byte 160
bytecode 48, 51, 188, 201, 218,

282, 497, 535
bytecode instrumentation 372

C

C 190
C++ 56, 149, 175
cache 520
caching 291
calculation 460

INDEX 641
Calendar methods 485
calendaring 487, 493
call 128, 135, 142
callback 125, 129, 136–137,

141, 204
caller 144
camel-case 465
Camelot 577
candidate 95
Canoo 249, 484, 490
Canoo WebTest 582
canvas 265

invisible 270
cardLayout 255
CaretListener 250
carriage return 71
Cascading Style Sheets 575,

601
cast 88, 125
cat 308
catch 127, 131, 171
category 213
CDATA 393, 464
ceiling 428
cell phone 492
Celsius 505
center 286
centralize 127
certificate 386
chainsaw 76
char 71, 160
character 71
character class 80, 634
character encoding 242, 446
charset 295
CharsetToolkit 295
chart 430, 491–492
chat 609
checkBox 251
checkBoxMenuItem 251
checked exception 172
child 233, 427
childNodes 405
children 239
chop 295
circular dependency 381
citizen, first class 125
clarity 211
Class 161

class 5, 31, 131, 280, 464
data storage 190
declaration 36, 188
definition 175
dependency 196, 465
generating dynamically 369
generation 51
identifier 551
loading dynamically 50
member 184
modify at runtime 52
multiple per file 189
nested 190
objects 48
under test 509, 517

ClassCastException 177
classes directory 321
classic for loop 169
classification 64, 86, 98, 104
classifier 140, 161
classloader 48, 50, 467

cache avoidance 388
debugging issues 373
hierarchy 373
parent 373
security 386
setting parent in Groovy-

ScriptEngine 376
setting parent in Groovy-

Shell 372–373
ClassNotFoundException 373,

465
CLASSPATH 607
classpath 20, 320, 386

construction 194
class-reloading 495
clean 22
clean up 127
clear 120, 147
CliBuilder 478

argName 478
args 478
longOpt 478
optionalArg 478
required 478
type 478
valueSeparator 478

clickButton 583
clickLink 583

client-server 442, 475
clink glasses 44
clone 140, 278
close 127
closing braces 421
Closure 136, 142
closure 2, 7, 20, 73, 123, 175,

261, 269, 284
abbreviated 130
applying range 522
as GSP tag 590
assignment 131
calling 135
construction 131
creating in Java 375
declaration 141
declaration alternatives 133
default 130
default parameter 137
demand 522
disconnect 134
end return 148
example 44
execution 141
for loop 169
methods 131, 137
multiple parameters 130
nested 150
new 145, 147
NodeBuilder 236
object 131
parameter 44, 147
parameter count 138
parameter types 134
premature return 148
process 273
processing database query

results 335–346
read 264
reference 132
return 456
return from 148
return one 147
scope 141, 147
simple declaration 130
Sort 467
SwingBuilder 248
unit testing 513
varargs 137

642 INDEX
closure (continued)
Windows component events

556
writable 313
write 264

closureColumn 262
ClosureColumn class 250
ClosureListener 205
CLSID. See class, identifier
clubhouse 603
clutter 128
cmd 473
cmd.exe 305
Cobertura 534
code appearance 30
code block 44
code clarity 129
code completion 23
code generation 309
code mess 129
code source 386–387
codebase 386
Codehaus 442
coding cycle 495
coding style 183
coercion 67, 72, 177, 186

argument types 67
numeric 87
operands 67

coherence 140
colfill 257
collaborator 504, 518–519,

522–523
fake 520

collect 106, 116, 120, 288, 461
Collectable 289
collection 7, 41, 46, 94, 104,

125, 155, 168, 279, 467
modify 120
return copy 120
structural change 119

colon 42
color 269
colorChooser 251
colspan 257
column 16
COM. See Component Object

Model
ComboBox 250

comboBox 251
command 13–14
command line 14, 306, 489

debugger 497
options 472, 477
profiler 500
session 307
tool 230

Command Line Interface 478
command pattern 151, 284
command processor 305
command shell 37, 400, 474
comments 6, 82, 165

Javadoc 31
multi-line 30
shebang 31
single-line 30

compactness 225
Comparable 65, 98, 106
Comparator 129, 467
compareTo 65
comparison 157, 211
ComparisonFailure 514
Compilable 396

compile() 396
compilation

error setting output 374
ordering for solving depen-

dency issues 381
compile 19, 243, 534

conditionally 22
CompiledScript 396

eval() 396
CompilerConfiguration 190,

372–373, 375, 379
compiling transparently 38
complex solution 578
complexity 109, 211, 405, 491
component 199, 230, 258
Component Object Model

547
composite 149
composition 520
compress 541
computer based learning 111
ComputerName property 555
concat 428
concept 7, 13, 216
concern, single 140

concurrent programming 304
Concurrent Versioning Sys-

tem 489
ConcurrentModificationEx-

ception 119
condition 126
conditional 94, 158
configuration mechanism 363
configure 139
conflict 491
connect 485
connection pool 328
console 10, 470

interaction 307
constant 509
constraints 250, 254, 601
construction 128
constructor 36, 175, 185, 459,

537
default 187
implicit 187, 254
parameterless 200

container, standalone 250
containment 250, 253, 263

structure 247
contains 97, 428
containsKey 114
containsValue 114
contentType 317
context 142, 147, 317, 428
continue 170
continuous integration 12,

442
continuous-flow heater 418
control structure 31, 46, 154
controller 585, 594, 604
Controller class 129
convention over configura-

tion 581
conversion 264, 287, 298, 420,

428, 445
copier 422
Copperfield, David 591
copy 463
CORBA 444
corner case 505
corporate style 601
corporate timesheet 566
corpus 111

INDEX 643
correctness 35
count 107
coupling 140
coverage 510, 533

graphical representation
532

report 535
covered lines 535
coyote 23
cpu time 500
craft 173
create DB schema 602
create-drop DB schema 602
createNode 272
createStringBufferWriter 298
createStringWriter 298
createTemplate 310
credit card validation 444
criteria 272
cron 477, 483
cross-cutting concern 220,

223
CRUD 350, 352, 358
CRUD operations 325–338,

354
CSS. See Cascading Style

Sheets
culture, development 166
Cunningham, Ward 438
curly braces 73, 134, 141
currency 445
curry 138
Curry, Haskell Brooks 138
customization 362
cut & paste 18
CVS 608
cyclomatic complexity 185
cygwin 308, 474, 481

D

DAO pattern 151
darth vader 482
dash 477
Data Access Objects 324, 340,

347, 357
Data Definition Language 350
data source 575
data store 230

Data Transfer Objects 324,
340, 352

DataAccessObject 282, 351
database

achieving portability 346
administrators 346
application organization

347
constraints 345
foreign keys 345
Grails development for 574
indexing 330
layered application 347
ORM-friendly 357
populating 331–333
query execution plan 331
querying 334–346
schema 329
updating and deleting data

333
used for script storage 384
views 344, 346

database administrator 603
database connection 127
database query 309
databases 323–358

automatic schema creation
in Grails 580

Grails configuration 602
many-to-one relationships

578
modeling many-to-many

relationships 595
packaging drivers in Grails

603
performance 605

datafeed 291
datapool driven 532
DataSet 324, 340–341, 346

add 341
each 341
findAll 342

restrictions 344
DataSource 328–329
datatype 3, 32, 278, 444

collective 56
simple 56

date 5, 97, 493
DBacle/2 574

DbHelper 351
DbUnit 537
DCOM 444
deadlock 525
debug 17
DebugBuilder 274
debugger 24, 223, 279, 482,

495, 497
source-level 497

decimal 87
decimal point 59
declaration 56
declarative 457, 480
declarative style 237, 247
declareNamespace 414
declarer 142
decompiler 53, 494
decorator 538
Decorator class 215
decorator pattern 151

implemented by DataSet
341

implemented by GroovyRe-
sultSet 336

deep copy 300
def 34, 61, 176, 369
defect free 504
defensive coding 598
deferred start 302
define-before-layout 250
delegate 141, 144, 236, 269,

286, 458
delete 463
deliverable 243, 541
demand 521
demanded behavior 520, 522
dense network 44
dependencies 363–364, 494,

517
issues between Java and

Groovy 380
dependency analysis 544
Dependency Injection 389
dependency resolution 483
dependent file on classpath

467
deploying Grails applications

602
deployment 244

644 INDEX
depth 233
depthFirst 239
descendant 427
descendant-or-self 427
description 35
descriptive 231
design 504

rotten 525
design by contract 166
design pattern 149
Design Patterns 230
designing relations 595
desktopPane 251
destdir 22
destruction 128
development 247
device 12
DI. See Dependency Injection
dialog 248, 251
Dialog class 250
digit 79, 633
Dijkstra, Edsger 453
Dimension 254
dir 306, 474
directory 10, 190, 294

current 294
parent 294
working, current 466

disambiguation 459
discard 15
disjoint 106
dispatch 283, 315
display 15
distributed transactions 328
distribution 212, 223, 364

even 467
div 64, 430
division 88, 136
division of labor 321
document 230, 232

complex 447
Document Object Model 290,

404
documentation 110, 165, 480

for Grails 595
DocumentBuilder 404
DocumentBuilderFactory 404
documentElement 404
dollar 71, 73

DOM 8, 232, 402, 414, 489
DOM parser 403
dom4j 405, 429
domain class 581

scaffold 580
domain driven design 348
domain model 347, 350, 577,

604
domain objects 576, 581

passing in a binding 369
Domain Specific Language

11, 276, 284, 357
DOMBuilder 407
DOMCategory 407–408
DOS 400
Double 59
double buffer 270
double dispatch 68
download 608
downto 90
drag and drop 270
DriverManager 328–329
DTD 433
DTD handler 409
DTO pattern 151
duck typing 62, 109, 275, 290,

379, 518
dump 514
duplication 12, 46, 127, 175,

199–200, 230
duration 493
Dylan 11
dynamic 133
dynamic code 385
dynamic finder method 594,

600
dynamic nature 592
dynamic scripting language

Spring framework support
391

dynamic typing 197
dynamicity 147, 175, 207, 223

E

-e 473
each 83, 107, 148, 288, 456
eachByte 292
eachDir 292

eachFile 292
eachFileMatch 292, 558
eachFileRecurse 10, 292
eachLine 7, 292
eachMatch 82
eachObject 293, 301
eachReverse 107
eachWithIndex 289
echo 308
echo character 248
Eclipse 24, 527

TPTP 531
editor 22, 270
editorPane 251
efficiency 467
Einstein, Albert 56, 94, 153,

175, 301, 323
EJB. See Enterprise Java

Beans
elapsed time 287
element 100
ELEMENT_NODE 405
else 131, 158
else if 158
Emacs 24
email 309–310, 479
embeddable jar file 364
enabled 261
enabled state 260
encapsulation 175

of state without behaviour.
See Data Transfer
Objects

of type/database interaction.
See Data Access Objects

encodeBase64 300
encoding

for script evaluation 394
specifying for script evalua-

tion 374
endless loop 171
engineering 544
enterprise edition 314
Enterprise Java Beans 199,

357
entity 242, 402
entity resolver 409
entrySet 114
enum 160

INDEX 645
enumeration 46, 168
Enumeration class 288
envelope 123, 445
environment variable 305
equality 34, 278, 285, 454
equals 65–66, 114, 198, 278
error handling

centralized 291
in Grails 598

error message 246, 495
escaping 313
eval 429, 499
Eval class 367
evaluate 35, 365–366, 465,

470, 473
evaluating 425
evaluation 184

lazy 425
event 258

closure 205
fire 204
in Windows components 556

event handler 38
closures 556

EventListener 204
EventObject 204
events.listen() 556
EventSource 204
EventSupport 550
every 107, 115, 289
example, understanding 35
Excel 326, 547–570
exception 31, 127, 164
exception handling 171, 513
exclamation mark 120
exec 308
executable 243
executable specification 276
execute 304
exit handling 170
Expando 207, 519

as Data Transfer Object 348
expect 523
expectation 505–506

loose 523
strict 523

experience 36
experiment 14, 36
explicit static typing 61

expression 31, 34, 154, 163,
206, 427

enforce 455
evaluating dynamically 365,

367
last 170
numerical 78
top-level 157

expression evaluation 267
expression language 140
expressiveness 32, 74, 95, 151,

185, 208, 361
extensibility 504
eXtensible Markup Lan-

guage 402
extension 18, 476

JUnit 537
extension point 362
external library 492
extract method 457
extreme programming 12

F

factor 231
Fahrenheit, Gabriel Daniel

506
fail early 495, 523
fail first 164
failed test 515, 532
failure message 163
fake 519
fall through 160
false 154
faultCode 442
faultString 442
feature 6, 35
feature rich 3
feedback 533
Fibonacci 18
field 141, 175, 280

access 203
pretending 179
private 281
reference 178

file 7, 164, 169, 291, 294–295
configuration 284
groovy 188
inclusion 191

file system 243
fileChooser 251
FileChooser class 250
FilenameFilter 44
FileScanner 461
fileset 245, 541
FileSet class 461
filesystem 230
filter 104
filtering 139, 474
Filtering class 294
filterLine 293, 299
final 128, 176, 201
finalize 278
finally 127, 131, 171
finance 460
financial data 444
find 107, 116, 126, 132, 289,

406, 414, 457
findAll 106, 116, 120, 289, 406,

414, 457
findIndexOf 289
finite state machine 85, 284
Fisheye 608
flash, scope in Grails 594
flatten 105
flexibility 13, 140, 231, 362
flexible 110
Float 59
floating point 87, 460
floor 428
flow 588
flowLayout 255
FlowLayout class 250
fluid applications 363
focusGained 270
following 427
following-sibling 427
for 8, 125, 131, 168, 238
for loop 46, 456
form 488

submit 489
format string 287
formatted print 286
formattedTextField 251
FormattedTextField class 250
Formatter 286, 313
formatting 139
formfeed 71

646 INDEX
formula 89, 460
forum 609
Fox 270
frame 249, 251
framework 230

Decorator-based 537
framework, web application

573
freedom 129
Freeman 149
Frege, Gottlob 138
frequency 111, 117
FrontPage 552
function 138, 162, 427
function keys 265

sending to applications 569
function plotter 264
functional programming 138
functional style 213
functional test

in Grails 582
of web applications 604

functional testing 12

G

Gamma, Erich 149, 230
Gang of Four 230
Gant 243
Gauss, Johann Carl Friedrich

45
gbc 255
GDataSupport 493
GDK 6, 16, 49, 101, 278, 494

print 74
generics 125
get 113, 179, 206, 318, 499
getAt 64, 101, 113, 207, 281,

318, 413
getClass 278
getCurrent 273
getLastMatcher 84
getLength 406
getMetaPropertyValues 281
getMethods 208
getName 208, 273
getNamedItem 406
getParameterTypes 138
getProperties 205, 280

getProperty 206, 550
getRessourceAsStream 467
getText 293, 305
getValue 555
getVariable 368–369
gift 93
Glover, Andrew 140
GLS. See Groovy Language

Specification
glue 256
go 14
Google 393, 488, 493
GoogleTalk 442
GORM. See Groovy ORM
GPath 208, 282, 420–436, 600

with database results 337
GPathResult 409, 413, 422
Graham, Paul 146
Grails 224, 358, 539, 573–605

action 593
binding 589
changing the model 592
download 573
filtered view 598
findBy 594
get 593
instant feedback 588
login 597
partial 590
prerequisites 574
property injection 580
reusable logic 590
save() 586
session 597
static typing 584
toString 580

grails
create-app 574
create-domain-class 580
create-webtest 582
generate-all 581
generate-webtest 582
prod war 602
run-app 576, 581
run-webtest 582

GRAILS_HOME 574
grammar 23, 608
graph 492
graphic 127

graphical application 230
graphical test tool 532
graphics 250
greedy 80, 86
grep 64, 86, 98–162, 286, 457
gridBagConstraints 255
gridBagLayout 255
GridBagLayout class 250
gridLayout 255
GridLayout class 250
Groovlet 314

controller 321
groovy 2, 4, 9, 14, 18, 394
Groovy installation directory

547
Groovy Language Specifica-

tion 32, 70, 608
Groovy ORM 358
Groovy Server Pages 321, 575,

585, 587
<groovy> task 247
Groovy website 547
groovy.lang 32
groovy.recompile 190
groovy.util 32
GROOVY_HOME 195, 607
GroovyBean 38, 176
groovyc 19, 48, 189, 361, 381,

494, 513
GroovyClassGenerator 217
GroovyClassLoader 363, 378–

388, 398
constructor variants 379
parseClass() 379, 384, 388

GroovyCodeSource 386–388
GroovyCodeSourcePermis-

sion 388
groovyConsole 14, 17, 208,

250
Groovydoc 31
GroovyInterceptable 220
GroovyJ 23, 527
GroovyLogTestCase 525
groovy-maven-plugin 541
GroovyObject 216, 371, 379,

549, 554
getProperty() 379
invokeMethod() 379–380
setProperty() 379

INDEX 647
GroovyObjectSupport 217,
368

GroovyOne 3
GroovyResourceLoader 384–

385
GroovyResultSet 324, 336
GroovyRowResult 324, 337

as Data Transfer Object 348
GroovyScriptEngine 376–378,

398
run() 377

GroovyServlet 315
groovysh 14, 394, 607
GroovyShell 266, 363–375,

465–470
evaluate() 365, 370, 388
parse() 370, 388
run() 371

GroovySOAP 447
groovy-starter.conf 195
GroovyTestCase 372, 506
GroovyTestSuite 516, 528
grouping 79, 83–84, 633
GSP. See Groovy Server Pages
GString 39, 69–72, 91, 286,

309
evaluation 73
executing as a Prepared-

Statement 332, 338
lazy writing 471
map keys 471
reference 471

GStringTemplateEngine 313
Gtk 270
GUI 127, 151, 247
guide 119

H

handler 128
Handler class 414
hashCode 66, 112, 278
HashMap 112, 513
HashSet 490
Hashtable 513
hbm2ddl 602
hbox 255
header 16, 317
headline 435

heater 424
help 14, 498
helper class 190, 519
HERE 70
hglue 255
Hibernate 357, 574, 591, 594

dependency clashes 364
hierarchy 233
high coherence 525
high five 603
HighLow 318
history 270
Hoare, Tony 109
hostname 475
Hotspot 136
house-elf 477
how 94, 237, 322
HSQLDB 326–328
hstrut 256
HTML 151, 230, 485, 576, 600

static 309
html 316–317
HtmlUnit 488
HTTP. See Hyper Text Trans-

fer Protocol
HttpSession 318
Hypertext Transfer Protocol

42, 434, 438

I

–i 476
I/O 291, 501
ice 506
IDE 22, 344, 421, 493, 504,

516, 527
identifier 206

list of 177
identity 34, 198, 278, 285,

454
identityHashCode 286
idiom 454
idiomatic 7, 30, 172
if 131, 158, 238

attribute in Ant 541
if-else 46
IllegalArgumentException 67
immutable 120, 186
imperative name 120

import 5, 31, 191
default 32

import as 254
inappropriate intimacy 286
incomplete library class 215
increment 147
incrementation 94
indentation 30, 221, 233, 273,

421
index 41, 407, 457

mix 103
negative 99, 102

index card 12
indexer 493
infrastructure application

architecture 347, 350
inheritance 129, 193, 195
initial value 176
initializer 175
inject 107, 139
inner class 128

anonymous 44, 128
in-place edit 476
in-place processing 418
input 247
input stream

as a script source 366
security of scripts 386

input/output 291
InputStream 295, 297
inspect 15, 17, 280, 498
inspection 144, 250, 279, 288
install 606
installation 12–13

of Grails 574
of Scriptom 547

instance 176, 245
instant messaging 442
instantiation 31
instruction 124
instrumentation 534
int 160
intdiv 88, 136, 460
Integer 59, 141, 461
integration 4–5, 361–400
integration mechanism,

choosing between avail-
able options 398

integration test 385, 504

648 INDEX
IntelliJ IDEA 23, 500, 527
intent 99, 193
intention 12, 46
interaction 128
interactive 279
interception 13, 220, 236, 521
Interceptor 222
interface 105, 128, 175, 196,

414
and JSR-223 397
marker 221
placing in a separate mod-

ule 383
shared 494
single-method 44
used to solve compilation

dependency issues 381
internalFrame 251
internationalization 575, 602
Internet Explorer 547, 549,

552–553, 567, 570
interplay 224, 523
interpreter 473
interpreter, interactive 17
InterruptedException 287
interruption 287
intersection 106
interval 95
IntRange 103
introspection 281, 449
invariant 33, 140, 522
Inversion of Control 389
investment 2, 9, 361
Invocable 396, 398

getInterface() 397
invokeFunction() 397
invokeMethod() 397

invokeMethod 183, 217, 282,
439, 550

Invoker 219
InvokerHelper 218
IoC. See Inversion of Control
IP address 475
is 285
isCase 64, 86, 97, 104, 117, 140
isInstance 161
isolation 504, 518–519, 523
it 124, 130, 311
item 42, 406

Item() 554
Items() 554
iterable 168
iteration 94, 560

exit prematurely 456
iterative 14
iterator 125, 168, 413, 461
Ivy 483

J

J2EE 11, 314, 389, 574–575,
605

J2SE 314
Jacob 548–550, 554
JAD 494
Jad 53
Jakarta Axis 444
JApplet 252
jar file 386, 494

signed 386
Java 4, 30–34, 47

border to 60
heritage 532
Java 5 57, 69
naming conventions 553

Java 5 125, 286
Java 6 416
Java Collections API 119
Java COM Bridge. See Jacob
Java Community Process 393
Java Data Objects 357
Java friendly 3
Java Native Interface 547–

548, 566
Java Platform Debugger

Architecture 497
Java Preferences API 566
Java Reflection 217
Java Runtime 278
Java Runtime Environment 4
Java Server Faces 309
Java Server Pages 199, 309,

575
Java tool set 531
Java Virtual Machine 48, 547
java.io 32
java.lang 32
java.net 32

java.util 32
JAVA_HOME 607
JAVA_OPTS 495
Java2D 250
JavaBean 7, 38, 199, 389
javac 381
JavaDoc 569
JavaMail 492
JavaScript 489, 547, 553, 556,

568, 575
JAXB 433
Jaxen 429
JBoss 314
JButton 204
JCCKit 492
jdb 497
JDBC 324, 358

column index 336
driver 326
ResultSet 333
URL 326–327

JDBC-ODBC bridge 326
JdbcOdbcDriver 326
JDK 506, 607
JDOM 405, 429
JEdit 24
Jelly 247
Jetty 314, 576
JExcelApi 492
JFrame 230, 248
JFreeChart 492
JFugue 482
JIRA 442, 608
JMX MBean 363
JNDI 328
JNI. See Java Native Interface
join 107
joke 473
JPanel 230
JPasswordField 248
JPDA 497
JRE. See Java Runtime Envi-

ronment
JRuby 389
jrunscript 394
JSP 431
JSP Expression Language 309
JSP. See Java Server Pages
JSR-223 393–399

INDEX 649
JSR-241 9, 609
JSwat 497
JToolTip 252
jungle 126
JUnit 128, 166, 372, 504, 537

Version 4 515
JUnitPerf 537
Just-In-time compiler 136
jWebUnit 537

K

Kerievsky, Joshua 149
Kernighan, Brian 29
key 42, 113
keySet 114
keystroke 134, 261

sending to applications 553
keyword 213

L

–l 475
label 251
Label class 250
Laforge, Guillaume 609
language 7, 125, 505

functional 43
scripting 53

language boundary
solving dependency issues

381
language test 147
language-oriented program-

ming 322
last 428
layeredPane 251
layout 30, 254
layout management 254
layout manager 248
leaky application layering 348
lecture 145, 518
leftShift 64, 103, 120, 293
less code 211
level of abstraction 322
lexical scope 145
library 6, 193, 494
lifecycle 541, 585
lifetime 142

lightweight container 389
line 474
line break 407
line count 492
line feed 71, 299
lines of code 211, 225
LinkedList 100
Linux 308, 400, 481
LISP 2, 276
Lisp 11, 145
list 7, 41, 100–101, 104, 119,

121, 125, 148, 208, 250–
251, 411, 414, 444, 499

accumulation 107
add item 103
as Data Transfer Object 348
combine 105
content 107
create 105
element type 106
grow 102
iteration 107
list of 106
modify 105
nested 105
operator 101
remove item 103
reverse 102
shrink 102
specification 100

listen 475
Listener 129
ListModel 250
literal 7, 31, 34

character 71
numeric 59

literal inclusion 465
load 518, 537
load-balancer 518
loadScriptByName 377
local change 192
local scope 142
local variable 141, 369
local versioning 493
locale 560
local-name 428
location 294
log 221, 312, 495, 525
log level 527

Log String pattern 527
logger 527
logging 139, 279, 349

of database access 333
SQL statements 332–333

logic 237, 363
logic in views 589
Long 59
longDescription 261
look and feel 250, 270
lookahead 80
lookup 23, 190, 494
loop 94, 154

endless 222
for in range 95

looping 167
LooseExpectation 523
low coupling 525
lowercase 580
ls 306
Lucene 493

M

Mac OS 308
machine translation 111
macro 363
magic 234
mail merge 310
mail server 479
mailing list 608
main 163, 180, 188, 500
Main class 528
maintainability 151, 212
maintenance 163, 247, 460
make 23, 310
MalformedURLException

384
managed environment 328
map 7, 42, 119, 121, 206, 430

add entry 42
as Data Transfer Object 348
assignment 114
declaration 42
empty 112
example 117
get default 113, 117
initialization 42
iteration 115

650 INDEX
map (continued)
key 455
keys in markers 112
operator 113
property 113
property-style access 519
size 42
specification 111
subscript 111

mapping (O/R) 574
mapping descriptor 580
markup 223, 590, 605

lazy generation 422
MarkupBuilder 231, 239, 270,

419
match 468
Matcher 82, 155, 289
Maven 12, 22, 483, 504, 517,

541
configuration 543
plug-in 543

max 107, 431
measure 127
memory

consumption 425
representation 423

memory consumption 291,
500

memory leak 127
memory optimization 415
memory storage 418
menu 251
Menu class 250
menuBar 251
MenuBar class 250
menuItem 251
MenuItem class 250
message 120, 164, 279
message format 447
meta object protocol 2
meta programming 216
metaClass 280
MetaClass class 50, 217, 282,

497
MetaClassRegistry 217
metadata 337

database tables 337
meta-object protocol 216, 223,

549

meta-programming 550
method 31, 141

abstract 196
accessor 38, 201
all-purpose 215
arguments 455
assert 506
category 214
container 256
current 148
declaration 180
dispatch 67
dynamic invocation 282
factory 218
getter 36
in scripts 37
invocation 53
layout management 256
name restrictions 183
object iteration 290, 406,

410, 429, 461
of Windows components

553
operator 58, 63
overloading 62
parameter types 181
pretend 220, 234, 272
relay 220, 234, 272
return type 180
singleton 218
template 272

method body 131
method closure 132, 289, 375,

460
method interception 550
method object pattern 43, 151
metric 185, 491, 541
Meyer, Bertrand 166
micro-iteration 588
Microsoft 547

naming conventions 553
Microsoft Developer Network

555, 569
Microsoft Office 362
min 107
mind 93
mindmap 496
minus 64, 103
miracle 11

MissingPropertyException
369, 455

mix-in 213
mkp 422
mnemonic 261
mock 223, 391, 504, 523
mod 64
mode

direct 19
precompiled 19

model 249, 601, 604
Model View Controller pat-

tern 389, 576
ModelListener 270
Model-View-Controller 262
modifier 36, 176

default 180
module 447, 493–494
Money 65
monitor 476
Mother 143
MouseListener 250
move 463
MP3 467
MSDN. See Microsoft Devel-

oper Network
MS-Office 492, 553
MS-Word 34, 547, 552, 558–

559, 562, 565, 570
multimethod 133, 197
multiplication 87
multiply 64, 103
multithreading 278, 301
music 444, 482
Mustang. See JSR-223
MVC pattern 151
MVC. See Model View Con-

troller pattern

N

–n 474
match 83
name 239, 261, 428
name clash 194, 460
NamedNodeMap 406
namespace 190, 402, 422, 427,

437
namespace-uri 428

INDEX 651
naming 18
naming conflict 192
naming convention 199

use in database helper class
353

native handle 127
native integration with Win-

dows 547
native objects 549
navigation 23, 190

object 208
negate 64
NekoHTML 486
nesting depth 211, 491
nesting structure 230
.NET 80, 416
NetBeans 23
network 434
network connection 127
network scan 520
new 37
newInputStream 293, 298
newObjectInputStream 293
newOutputStream 293, 298
newPrintWriter 293, 298
newReader 293, 298
news 486
news feed 442
news provider 434
newsreader 436
Newton, Isaac 360
newWriter 293, 298
next 64, 97–98
no braces 158
NoClassDefFoundError 373
node 236

modify in-place 418
Node class 405, 408, 413
node test 426
NodeBuilder 231, 234, 270,

457, 466
nodeCompleted 273
nodelist 429
NodeList class 289, 406, 429
nodeName 405
node-set 427
nodeType 405
nodeValue 405
normalize 88

normalize-space 428
notation 54
Notepad 552, 568
notification 492
notify 278, 301
notifyAll 278
null 169, 184, 455, 513
null value, insertion in

DataSets 341
NullPointerException 65, 184,

513
num 429
number 40, 87, 427

declaration 59
sequence 18

Number class 155
number type 460
Nux 433

O

object 123
everything is a 57, 61

Object Browser 15, 17
Object class 278
object database 600
object graph 209, 235
object inspection, unit test

514
object iteration 168
object model 48
object orientation 38
object persistence 358
ObjectBrowser 250, 280
ObjectInputStream 300
object-oriented 175
ObjectOutputStream 300
object-relational mapping

199, 357–358
obscure 11
Observer 129
observer pattern 151, 469
octal escape 71
Office 552
office hours 484
ON DELETE CASCADE 345
one-liner 167, 408, 475
online auction 444
OO. See object-oriented

operating system 547
operation

expansive 521
remote 435

operator 31
- 63
-- 63
! 155
% 63
& 63
* 57, 63, 212
** 63
*. 209
+ 41, 57, 63
++ 63
.& 131
.. 95
.@ 203
/ 63
< 63, 275
<=> 98
= 156
== 34, 103, 156, 285
==~ 77
=~ 40, 77
>> 63
>>> 63
?. 184
?: 159
[]= 63
^ 63
| 63
~ 63, 85
assignment 156
boolean negation 155
commutative 68
division 460
dot 65
dot-at 203
dot-fieldname 179
dot-methodname 220
dot-propertyname 280
equality 156
equals 88, 103
field access 178
field assignment 179
find 40, 77
implement 63, 66
leftshift 275, 297, 421

652 INDEX
operator (continued)
match 77
method 63
method closure 131
more general operand 68
more specific operand 67
new 176
numeric 40
overload 63, 66
override 63, 66
overriding 215
pattern 77, 85
power 88
property access 410
range 95
safe dereferencing 184
spaceship 98
spread 212, 284
spread-dot 209, 412
subscript 41, 100, 178, 212,

280, 407, 410, 457
XPath 427

optimization 13, 62
optimize 13
option

argument 477
long name 477
short name 477

OptionAccessor 479
optional 32

semicolon 34
optional test 541
optional typing 9
optionPane 251
or 64
order tracking 444
ORM. See object-relational

mapping
out 312, 317, 319
Outlook 552
OutputStream 423
overlayLayout 255
overriding 198, 200
overture 29
overview 36
owner 144, 458

P

-p 474
pack 248
package 6, 31, 190
packaging 541
padding 286
page layout 601
PageContext 318
panel 251
parameter 123, 143

default value 182
GroovyOb-

ject.invokeMethod()
380

list, variable length 182
named 182, 186
optional 182
positional 181, 186

parameter, single 124
parameterization 363

of script evaluation 367
params 317
paranoia 510
parent 233, 239, 258, 427
parent-child relationship

579
parentheses 9, 32, 74, 78,

455
extra 157
mandatory 455
optional 455

parents 414
parse 266, 409, 479
parser 51, 157, 486

Groovy 51
pull-style 416
push-style 414

parseText 409
parsing 425

event-based 414
party 44
Pascal 190
pass logic 136
password 247

specifying for database
328

passwordField 251
pastime 145

PATH 607
path expression 184
pattern 80, 85, 139, 161

matches 81
occurence 81
replace 81, 83
split 81
split by group 84

pattern symbols 79
payback 2
payload 413, 447
payment system 444
perception 99
perfection 401
perform 245
performance 85, 166, 270, 361,

429, 578
Perl 70, 74, 119, 145
permission 387
persistence 199, 271, 282
persistency 223

transparent 580
picture gallery 444
pipe 306
piping 473
pivot 109
placeholder 34, 39, 69, 72,

287, 309
resolution 471

Plain Old Java Objects 202,
389, 579

platform 125
platform dependent 308
platform independent 481
play() 558
player 483
PlayStateChange 557
plug-in 197, 541
plugin 493
plumbing 423
plus 64, 103, 120
POGO 389, 448
POI 492
pointer 56
POJOs. See Plain Old Java

Objects
policy 386–387
policy file 387
pop 106, 302

INDEX 653
popupMenu 251
pop-ups, displaying with

WScript.Shell 553
port 441

default for Grails 576
port 1960 475
portal 271
Portlet 271
position 428
posix 80
Post 435
PostScript 309
post-work 136
power 64
PowerPoint 552
practice 454
pragmatic 309
pragmatic programming 12
pragmatism 491
precedence 206
preceding 427
preceding-sibling 427
precision 68, 88
precompilation 365, 495
precompile 11
precondition 184
predicate 427
preferences 466
prefix 287
prepared statement 331–334,

354
placeholder value 331

presentation 434
pretty-print 237, 496
previous 64, 97–98
pre-work 136
primary key 329
prime 13
prime number 497
print 36, 239, 285, 413, 470,

474
printf 285, 313
println 285, 495
PrintStream 286
PrintWriter 286
private 176
probability 467
procedural 457
procedural style 213

process 302, 304
child 305
destroy 306
stream 305

Process class 297
producer/consumer problem

302
product 150
Product class 230
productivity 225
professional 10
profiling 223, 500
Program Arguments 528
Program Structure Interface 23
programming style 36, 166
progress bar, console 468
progressBar 252
project 463, 494
project build 487
Project class 528
project tracking 438
proliferation 44, 129
prompt 14
properties 7, 38, 176, 200, 205,

280, 463
access 202
accessor 459
change broadcast 260
derived value 280
of Windows components

555
read-only 280

property access 455
PropertyChangeEvent 204
propertyColumn 262
PropertyColumn class 250
propertyName 264
PropertyValue 281
PropertyVetoException 204
protected 176
protocol 42, 523
prototype 12
proxies 361
proxy, for native integration

549
ProxyMetaClass 220, 497
pseudo-code 273
PSI. See Program Structure

Interface

public 176
push 106, 302
putAll 112
putAt 64, 101, 281, 318
puzzle 145
Python 2, 11, 145, 175

Q

QName 437, 447
Quartz 483
query 271
question mark 80
quick navigation 265
quick reference 608
quick win 2
Quicksort 109
quote

double 69
single 69
tripled 69

R

rabbit 18
Radeox 605
radioButton 252
radioButtonMenuItem 252
random 318, 467, 473
range 46, 68, 88, 121, 162

custom 99
date 97
half-exclusive 95, 169
implement 98
reversed 95
specification 95
string 97
working days 98

Range class 561
Rasolo, Franck 23
Rayner, Jeremy 475
readability 13, 225, 291
readBytes 293
reader 291
Reader class 295, 297
readLine 293
Really Simple Syndication

435
realtime 483

654 INDEX
receiver 120
recompilation, setting mini-

mum interval 374
recompile 190
record 190
recursion 273, 420

endless 203
recursive 10
redirect 594
redirection 474
refactoring 501, 515, 525
reference 7, 31, 96, 123, 142
Reference class 499
Reference Implementation

of JSR-223 393
reflection 278, 379
Reflector 217, 501
refresh-check-delay 392
regex 77
registry 551, 553, 566–567
Registry Editor 551
regular expression 40, 70, 76,

91, 169, 208, 468
for validation in Grails 602
interactive testing 80
Java 78
mode 80, 634
pattern 77, 136
pattern symbol 79

related projects 9
relational algebra 324
relational database 324

metadata 325
relational model 324, 344,

346, 358
relationship, between objects

389
release 504, 607
reliability 151
relief 11
reloading

beans in Spring framework.
See Spring framework

domain classes in Grails
592

Groovy Server Pages 588
Groovy source 374

remember 142
remote control 489

remove 105, 116, 120
by index 106
by value 106
duplicates 107
null 107

removeAll 120
Renderer 270
repaint 127, 265
repetition 90
replace 35, 493

all 40
replaceAll 468
reporting 492
reporting infrastructure

coverage tools 533
Representational State Trans-

fer 435
request 317, 434, 518
request parameter 283
requirement 212

responding to changes 385
requirements 362
research 460
resource 136, 320, 494
Resource class 128
Resource Description Frame-

work 435
resource handling 127, 358
resource leak 127, 291
resource management 321
ResourceConnector 376–378

getResourceConnection()
378

ResourceHandler 128
response 317, 319, 434
REST 437
restrictive mode 80
ResultSet 336

getDate 336
getString 336
next 336

ResultSetMetaData 338
retainAll 120
return 123, 148, 170, 456

implicit value 466
missing 181
multiple values 212

return value of script evalua-
tion 369

reuse 63
Revenge of the Nerds 146
reverse 16, 105
review 491
revision number 491
RFC 2045 299
RI. See Reference Implemen-

tation
Rich Internet Application 271
Rich Site Summary 435
rightShift 64
rightShiftUnsigned 64
rigidArea 256
RMI 444
robustness 163
roman numeral 41
root node 274
root pane 253
RootLoader 481
round 88, 428
rowfill 257
rowspan 257
RSS 487, 608
RSS Reader 250
Ruby 11, 34, 38, 68
Ruby on Rails 393, 591
rule engine 284
rules of truth 154
run 20, 163, 188, 266, 500
run configuration 528
runAfter 302
Runnable 128–129, 301

implementation by scripts
371

runProtected 128
runtime 38, 501

formula evaluation 365
inspection 496
overload resolution 133

S

safe dereferencing operator,
use in database access 338

safeguard 11
Saint-Exupery, Antoine de

401
salt 506
sample data 505, 585

INDEX 655
sandbox 385
SaveAs() 563
saw, sharpening 12
SAX 402, 414, 486
Saxon 433
SAXParser 409, 487
scaffold 11
scaffolding

domain classes in Grails
580

views and controllers in
Grails 581

scaffolding code 366
scalability 310, 537
schedule 476, 483, 487
Schönfinkel, Moses 138
science 460
scope 141, 204
scope elements 143
scoping rules 176
scramble 468
scraping 486
script 37, 175, 188, 266, 312,

448, 464
as unit test 506
caching by Groovy-

ScriptEngine 377
dependencies 376
dependency 465
generate 38
grouping 38
inclusion 465
injecting functions 375
naming 464
parsing 370
reusing instances 371
specifying as a URL 376

Script class 11, 19, 142, 367
script evaluation

parameters 367
scriptable 175
ScriptContext 395
ScriptControl 556, 570
scriptDef 464
ScriptEngine 395

eval() 395
ScriptEngineManager 395

getEngineByExtension()
395

getEngineByMimeType()
395

getEngineByName() 395
ScriptException 395
scripting 4, 175, 224, 361
scripting engine 364
scripting language 362
Scripting.FileSystemObject

570
Scriptlet 589
Scriptom 224, 492, 547
scrollBar 252
scrollPane 252
ScrollPane class 250
search 488, 493
search engine 111, 442, 493
security 385
security manager 386
security model 385
Select() 563
selectNodeList 429
selectSingleNode 429
self 427
self commenting 470
self documentation 200, 481
selling rank 438
semicolon 5, 32, 34, 74
sendKeys() 568
separating concerns 457
separator 252
serializable 200
Serializable class 300
serialization 300
serializing 425
server 441, 475

HTTP 475
server farm 518
server restart 316
server start 581
ServerSocket 442
service 477, 483
Servlet API 314
ServletCategory 318
ServletContext 318
ServletRequest 318
session 15, 317, 599

use in Grails 596
session transcript 498
set 179, 318

setClasspath 374
setClosureDelegate 273
setDebug 374
setMinimumRecompilationIn-

terval 374
setOutput 374
setParent 272
setProperty 206, 371, 550
setRecompileGroovySource

374
setScriptBaseClass 374
setSourceEncoding 374
setUp 509
setValue 413
setVariable() 368
shared library 603
shell 473, 607
shell script 304
Shell.Application 570
shipment 12
short 160
shortcut 39

** 410
.. 410

shortcut evaluation 185
shortcut expression 247
shortDescription 261
shouldFail 177, 507, 513
show 248
shuffle 467
sibling 233
side effect 145, 291
signature 129
Simple Object Access Proto-

col 435
simple solution 578
SimpleTemplateEngine 311,

351, 431
simplicity 168, 504
sine 460
single step 17, 470
Singleton 218
sink 421
Site Summary 435
sitemesh 575
size 49, 114, 411, 414
sketch 265
slash 70
slashy syntax 40, 78, 82

656 INDEX
sleep 285, 303, 484
slider 252
Slider class 250
smallIcon 261
Smalltalk 11, 145
smart configurations 11, 466,

586
SnipGraph 492
SnipSnap 493
SOAP 435, 444
SOAPAction 445
Socket 297
Solaris 308, 481
something 141
sort 16, 105, 117, 120, 282,

467, 519
argument, single 106
closure 106
comparison logic 106

sortable 110
source event 258
SourceForge 548
sout 317
spaceship 65
spam 476
special character 71, 206, 241
specification 481, 523
SphereLogic 574
spike 12
spinner 252, 265
Spinner class 250
spinnerDateModel 262
spinnerListModel 262
spinnerNumberModel 262
split 470
splitEachLine 293
splitPane 252
spreadsheet 491, 532
Spring framework 399, 483,

592
application context 391
bean factory 390
configuration file 389
dependency clashes 364
documentation 389, 393
dynamic script compilation

391
Inline scripts 392
integration 389–393

refreshable beans 392
wiring xml file 390

springLayout 255
SQL 271, 283, 324, 582

executing 329–340
Sql class 324, 327

constructor 329
dataSet 341
eachRow 334–335
execute 329
executeUpdate 333
firstRow 335, 337
newInstance 327
query 335–336
rows 335, 337

SQL query 73
SQL script 586
SqlException 330
square 231
srcdir 22
stability 291, 467
stack 106, 142, 302
stacktrace 163
standard 9
standard edition 314
standard library 278
star 64
Star Wars 482
start 302
start element, receive 414
startDaemon 302
startElement 415
starter script 482
startsWith 422
state change 523
state pattern 151
stateless 313
stateless protocol 435
statement 31

top-level 455
statement terminator 9, 34
static 176
static initializer 131, 166
statistics 117, 291, 491
StAX 416
stdin 305
step 90, 461
stock ticker 434
storage 300

str 429
Strachan, James 3
Strategy 129
strategy pattern 151
stream 127, 157, 291, 474
streaming 310, 313, 418, 425
StreamingMarkupBuilder 421
strict sequence 523
string 427, 444

change in place 75
immutable 75
interpolation 69
leftshift 75
literal 39, 69–70
multiline 70
slashy syntax 70
span several lines 69

String class 16, 69, 155
StringBuffer 75, 275

leftshift 75
StringBufferWriter 222
StringBuilder 75
string-length 428
Stroustrup, Bjarne 122
struct 190
structural analysis 505
structural stability 119
Structured Query Language.

See SQL
Struts 284
stub 223, 504, 521
StyledDocument 250
styleFormatter 563
subclassing 521
sublist 102, 109
subMap 116
subscript 64, 113, 121

operator 336
substring 428
substring-after 428
substring-before 428
subtraction 87
Subversion 489
suffix, G 59, 461
suite 230, 505, 516, 537
sum 412, 428
summary 317
Sun 393
Sun Microsystems 22

INDEX 657
support 9
surprise 103

no 89
surrogate key 330
swimming belt 166
Swing 15, 151, 204, 230, 247,

270
main loop 249
tutorial 248

SwingBuilder 188, 231, 247,
270

id 258
text attribute 253
variable use 259

switch 46, 64, 160
SWTBuilder 249
synchronized 131, 301
synchronized block 558
synchronizedList 109
synchronizedMap 117
syntactical validation 602
syntax 3, 278
syntax alignment 5
syntax highlighting 22
System 423
system of coordinates 266
system test 504
system-independent 434

T

tab 71
tabbedPane 252
TabbedPane class 250
table 252, 317
Table class 250
tableLayout 255–256
TableLayout class 250
tableModel 262
TableModel class 250
tag 241, 489

division 243
tag library 585
taglib 590
target 22, 463
task 21, 463

<ant> 462
<groovy> 461
<groovyc> 542

<junit> 535
<mail> 480
repetitive 485
<script> 464

taskdef 22, 245
tbody 317
teammate 12
telnet 475
temperature conversion 505
template 73, 309, 589

cache 321
view 321

Template Method 129
template method pattern 151
TemplateEngine 310, 430, 445
TemplateServlet 321
test 80, 127

analyze 531
edit 531
execute 531
monitor 531
profile 531
trace 531

Test & Performance Tools
Platform 531

test case 230, 505
test coverage 127
test first 495, 504, 583
test fixture 513
test harness 165
test log 532
test report 583
test suite 12
testability 517
TestCase 508
test-driven 12

development 33, 515
testing 223, 442

interaction-based 524
protocol-based 524

testing checklist 583
TestRunner 505
text 295, 305, 446
text corpus 117
text message 492
TEXT_NODE 405
textArea 252
TextArea class 250
textField 252

TextPad 24
textPane 252
TextPane class 250
theory 454
this 141
thread 276, 483

daemon 302
suspend 287
watchdog 306

thread of control 301
threading 537
Throwable 499
throws 172
tickmark 270
TimeCategory 493
Timer 302, 483
times 20, 90, 141
timestamp 493
timing 136
tk 270
toDouble 72
toFloat 72
toggleButton 252
toInteger 72, 412
token 157
toList 100
toLong 72
Tomcat 314
tool 12
toolBar 252
toolbox 173
toolTipText 252
toothpick puzzle 82
toString 278, 297
trace 221
tracing 279, 497
TracingInterceptor 222, 497
transaction 199
transcript 307
transform 126
transformation 266, 309, 432,

464
transformChar 293, 299
transformLine 293, 299
translate 428
traverse 125
tree 233, 252
tree-like structure 230, 577
TreeMap 111

658 INDEX
true 154
truth, Groovy 154
try 127, 131, 171
try-catch-finally 46
tutorial interactive 573
type

alias 192
assignment 61
being closed under 67
dynamic 61–62, 197, 518
numeric 87
primitive 56, 175
reference 56
safety 62
static 62, 197
wrapper 57–58

type code 160
typecast 199
typical case 505
typing 56

dynamic 2
typist, lazy 580

U

ULC 249
ULCBuilder 249
UltraEdit 24
UML 136, 209, 218, 520
unboxing 59

intermediate 60
undefined variable 369
understandability 194
undo 284
Unicode 70
uniform access principle 202
unique 282
unit test 34, 243, 494–495, 504

automated 504
challenging situations 518
exception messages 514
grouping 516
inline 165, 506
Maven goal 542
of web applications 604
running from Ant 539
test runner 516, 527

unit testing 12, 391
UNIX 31, 400, 473

UnknownServiceException
378

unless, attribute in Ant 541
unmarshall 447
unmodifiableList 109
unmodifiableMap 117
UnsupportedOperationEx-

ception 378
untestable code 525
untested 525
update 434
update DB schema 602
upper bound 94
upto 45, 90
URL 32, 291, 295, 384, 438,

485
creating a GroovyCode-

Source 387
GroovyResourceLoader and

385
openConnection() 385
permissions and 386
used to find scripts 376

URL pattern 315
URLConnection 376, 378

getInputStream() 385
getLastModified() 385
getURL() 385

URLEncoder 32
usage 479
usage statement 481
use 213, 285, 521

closure 214
use case 577
user agent string 567
user base 9
user group 271
user, specifying for database

328
user.home 195
UTF-8 446

V

validation 510, 601
valign 257
value 114, 239, 413
value object pattern 65, 151
ValueChangedListener 250

variable 15, 34, 176
class, static 176
declare 58
instance 36, 176, 459
local 128, 175, 459, 470, 499
reference 176
undeclared 176
within a binding 369

Variant 554
VariantProxy 550, 554–556
VB. See Visual Basic
VBA Object Inspector 563
vbox 256
VBox class 250
VBScript 556, 568
Velocity 309
verbose 447
verification 165, 523
verify 34, 523
verifyText 583
version control 493, 574
VetoableChangeListener 204
vglue 256
view 249, 585, 604
view logic 589
viewport 252
Vim 24
visibility 176, 189

default 176, 200
package 176

visible 248
Visitor 129
visitor pattern 149

implemented by DataSet
343

Visual Basic 286, 361, 547,
549–550, 553, 556

visual builder 265
vocabulary 111
voice recognition 111
void 170, 180
vstrut 256

W

W3C 232, 402
document 404

wait 278, 301
waitForOrKill 306

INDEX 659
wall-clock 136
WAR file. See web archive
warning 172
waste, without 129
weather forecast 447, 505
weather service 434
web action 487
web application 314, 573, 581
web application framework

309
web archive 602–603
web designer 601
web server 314, 476
web service 309, 434, 448, 487

interface 449
Web Services Description Lan-

guage 369, 444
web.xml 315
webapps 314
WebClient 489
webmail 487
WebTest 490, 539

example 583
report 583

webtests 604
Weinberg, Gerald M. 225
well-formed 241
wget 469
what 94, 237, 322
while 46, 131, 167, 238

assignment 157
Whitehead, Alfred North 1,

229
whitespace 30, 79, 86, 407, 633
why 126
widget

arrangement 254
invisible 257
method 259
size 257

widget toolkit 151

wiki 585
Wiki class 438, 493
wiki markup 590
Wilson, John 439
Win32 548
window 252
Windows 224, 308, 473, 481,

492, 547
Windows Explorer 552
Windows Media Player 552,

557, 570
Windows Scripting Host 554,

570
Wirfs-Brock, Rebecca 195
WITH 286
withInputStream 293
withOutputStream 293, 297
withPrintWriter 293, 297
withReader 293
withStream 293
withWriter 293, 297
withWriterAppend 293,

297
word 79, 633
Word. See MS-Word
Workbooks 561
workflow 284
workflow engine 276
working day 484
World Wide Web 42
World Wide Web Consortium

402
wrappers 361
Writable 298, 310, 421
WritableClosure 422
write 293, 297
writeLine 293
Writer 140, 221, 275, 312
writer 291
writeTo 140
WScript.Network 555, 570

WScript.Shell 548, 553, 566,
568, 570

WSDL. See Web Services
Description Language

X

XFire 444
XML 8, 151, 402, 558

complex query 417
datastore 403
modification 417
transformation 417

XML Remote Procedure Call
435

XML Stylesheet Transforma-
tion 432

XmlBeans 433
XmlNodePrinter 413
XmlParser 239, 408, 412, 560
XMLReader 409
XML-RPC 441
XMLRPCCallFailureExcep-

tion 442
XmlSlurper 408, 413, 487
XmlTemplateEngine 313
XMLUnit 433, 537
XObject 429
XOM 405, 429
xor 64
XPath 208, 402, 426, 431, 486

functions 427
operators 427

XPathAPI 429
XQuery 433
XWiki 493

Y

yield 422
YourKit 500

	Groovy in Action
	foreword
	preface
	acknowledgments
	Your way to Groovy
	1.1 The Groovy story
	1.1.1 What is Groovy?
	1.1.2 Playing nicely with Java: seamless integration
	1.1.3 Power in your code: a feature-rich language
	1.1.4 Community-driven but corporate-backed

	1.2 What Groovy can do for you
	1.2.1 Groovy for Java professionals
	1.2.2 Groovy for script programmers
	1.2.3 Groovy for pragmatic programmers, extremos, and agilists

	1.3 Running Groovy
	1.3.1 Using groovysh for “Hello World”
	1.3.2 Using groovyConsole
	1.3.3 Using groovy

	1.4 Compiling and running Groovy
	1.4.1 Compiling Groovy with groovyc
	1.4.2 Running a compiled Groovy script with Java
	1.4.3 Compiling and running with Ant

	1.5 Groovy IDE and editor support
	1.5.1 IntelliJ IDEA plug-in
	1.5.2 Eclipse plug-in
	1.5.3 Groovy support in other editors

	1.6 Summary

	Part 1 - The Groovy language
	Overture: The Groovy basics
	2.1 General code appearance
	2.1.1 Commenting Groovy code
	2.1.2 Comparing Groovy and Java syntax
	2.1.3 Beauty through brevity

	2.2 Probing the language with assertions
	2.3 Groovy at a glance
	2.3.1 Declaring classes
	2.3.2 Using scripts
	2.3.3 GroovyBeans
	2.3.4 Handling text
	2.3.5 Numbers are objects
	2.3.6 Using lists, maps, and ranges
	2.3.7 Code as objects: closures
	2.3.8 Groovy control structures

	2.4 Groovy’s place in the Java environment
	2.4.1 My class is your class
	2.4.2 GDK: the Groovy library
	2.4.3 The Groovy lifecycle

	2.5 Summary

	The simple Groovy datatypes
	3.1 Objects, objects everywhere
	3.1.1 Java’s type system-primitives and references
	3.1.2 Groovy’s answer-everything’s an object
	3.1.3 Interoperating with Java-automatic boxing and unboxing
	3.1.4 No intermediate unboxing

	3.2 The concept of optional typing
	3.2.1 Assigning types
	3.2.2 Static versus dynamic typing

	3.3 Overriding operators
	3.3.1 Overview of overridable operators
	3.3.2 Overridden operators in action
	3.3.3 Making coercion work for you

	3.4 Working with strings
	3.4.1 Varieties of string literals
	3.4.2 Working with GStrings
	3.4.3 From Java to Groovy

	3.5 Working with regular expressions
	3.5.1 Specifying patterns in string literals
	3.5.2 Applying patterns
	3.5.3 Patterns in action
	3.5.4 Patterns and performance
	3.5.5 Patterns for classification

	3.6 Working with numbers
	3.6.1 Coercion with numeric operators
	3.6.2 GDK methods for numbers

	3.7 Summary

	The collective Groovy datatypes
	4.1 Working with ranges
	4.1.1 Specifying ranges
	4.1.2 Ranges are objects
	4.1.3 Ranges in action

	4.2 Working with lists
	4.2.1 Specifying lists
	4.2.2 Using list operators
	4.2.3 Using list methods
	4.2.4 Lists in action

	4.3 Working with maps
	4.3.1 Specifying maps
	4.3.2 Using map operators
	4.3.3 Maps in action

	4.4 Notes on Groovy collections
	4.4.1 Understanding concurrent modification
	4.4.2 Distinguishing between copy and modify semantics

	4.5 Summary

	Working with closures
	5.1 A gentle introduction to closures
	5.2 The case for closures
	5.2.1 Using iterators
	5.2.2 Handling resources

	5.3 Declaring closures
	5.3.1 The simple declaration
	5.3.2 Using assignments for declaration
	5.3.3 Referring to methods as closures
	5.3.4 Comparing the available options

	5.4 Using closures
	5.4.1 Calling a closure
	5.4.2 More closure methods

	5.5 Understanding scoping
	5.5.1 The simple variable scope
	5.5.2 The general closure scope
	5.5.3 Scoping at work: the classic accumulator test

	5.6 Returning from closures
	5.7 Support for design patterns
	5.7.1 Relationship to the Visitor pattern
	5.7.2 Relationship to the Builder pattern
	5.7.3 Relationship to other patterns

	5.8 Summary

	Groovy control structures
	6.1 The Groovy truth
	6.1.1 Evaluating Boolean tests
	6.1.2 Assignments within Boolean tests

	6.2 Conditional execution structures
	6.2.1 The humble if statement
	6.2.2 The conditional ?: operator
	6.2.3 The switch statement
	6.2.4 Sanity checking with assertions

	6.3 Looping
	6.3.1 Looping with while
	6.3.2 Looping with for

	6.4 Exiting blocks and methods
	6.4.1 Normal termination: return/break/continue
	6.4.2 Exceptions: throw/try-catch-finally

	6.5 Summary

	Dynamic object orientation, Groovy style
	7.1 Defining classes and scripts
	7.1.1 Defining fields and local variables
	7.1.2 Methods and parameters
	7.1.3 Safe dereferencing with the ?. operator
	7.1.4 Constructors

	7.2 Organizing classes and scripts
	7.2.1 File to class relationship
	7.2.2 Organizing classes in packages
	7.2.3 Further classpath considerations

	7.3 Advanced OO features
	7.3.1 Using inheritance
	7.3.2 Using interfaces
	7.3.3 Multimethods

	7.4 Working with GroovyBeans
	7.4.1 Declaring beans
	7.4.2 Working with beans
	7.4.3 Using bean methods for any object
	7.4.4 Fields, accessors, maps, and Expando

	7.5 Using power features
	7.5.1 Querying objects with GPaths
	7.5.2 Injecting the spread operator
	7.5.3 Mix-in categories with the use keyword

	7.6 Meta programming in Groovy
	7.6.1 Understanding the MetaClass concept
	7.6.2 Method invocation and interception
	7.6.3 Method interception in action

	7.7 Summary

	Part 2 - Around the Groovy library
	Working with builders
	8.1 Learning by example-using a builder
	8.2 Building object trees with NodeBuilder
	8.2.1 NodeBuilder in action-a closer look at builder code
	8.2.2 Understanding the builder concept
	8.2.3 Smart building with logic

	8.3 Working with MarkupBuilder
	8.3.1 Building XML
	8.3.2 Building HTML

	8.4 Task automation with AntBuilder
	8.4.1 From Ant scripts to Groovy scripts
	8.4.2 How AntBuilder works
	8.4.3 Smart automation scripts with logic

	8.5 Easy GUIs with SwingBuilder
	8.5.1 Reading a password with SwingBuilder
	8.5.2 Creating Swing widgets
	8.5.3 Arranging your widgets
	8.5.4 Referring to widgets
	8.5.5 Using Swing actions
	8.5.6 Using models
	8.5.7 Putting it all together

	8.6 Creating your own builder
	8.6.1 Subclassing BuilderSupport
	8.6.2 The DebugBuilder example

	8.7 Summary

	Working with the GDK
	9.1 Working with Objects
	9.1.1 Interactive objects
	9.1.2 Convenient Object methods
	9.1.3 Iterative Object methods

	9.2 Working with files and I/O
	9.2.1 Traversing the filesystem
	9.2.2 Reading from input sources
	9.2.3 Writing to output destinations
	9.2.4 Filters and conversions
	9.2.5 Streaming serialized objects

	9.3 Working with threads and processes
	9.3.1 Groovy multithreading
	9.3.2 Integrating external processes

	9.4 Working with templates
	9.4.1 Understanding the template format
	9.4.2 Templates in action
	9.4.3 Advanced template issues

	9.5 Working with Groovlets
	9.5.1 Starting with “hello world”
	9.5.2 The Groovlet binding
	9.5.3 Templating Groovlets

	9.6 Summary

	Database programming with Groovy
	10.1 Basic database operations
	10.1.1 Setting up for database access
	10.1.2 Executing SQL
	10.1.3 Fetching data
	10.1.4 Putting it all together

	10.2 DataSets for SQL without SQL
	10.2.1 Using DataSet operations
	10.2.2 DataSets on database views

	10.3 Organizing database work
	10.3.1 Architectural overview
	10.3.2 Specifying the application behavior
	10.3.3 Implementing the infrastructure
	10.3.4 Using a transparent domain model
	10.3.5 Implementing the application layer

	10.4 Groovy and ORM
	10.5 Summary

	Integrating Groovy
	11.1 Getting ready to integrate
	11.1.1 Integrating appropriately
	11.1.2 Setting up dependencies

	11.2 Evaluating expressions and scripts with GroovyShell
	11.2.1 Starting simply
	11.2.2 Passing parameters within a binding
	11.2.3 Generating dynamic classes at runtime
	11.2.4 Parsing scripts
	11.2.5 Running scripts or classes
	11.2.6 Further parameterization of GroovyShell

	11.3 Using the Groovy script engine
	11.3.1 Setting up the engine
	11.3.2 Running scripts
	11.3.3 Defining a different resource connector

	11.4 Working with the GroovyClassLoader
	11.4.1 Parsing and loading Groovy classes
	11.4.2 The chicken and egg dependency problem
	11.4.3 Providing a custom resource loader
	11.4.4 Playing it safe in a secured sandbox

	11.5 Spring integration
	11.5.1 Wiring GroovyBeans
	11.5.2 Refreshable beans
	11.5.3 Inline scripts

	11.6 Riding Mustang and JSR-223
	11.6.1 Introducing JSR-223
	11.6.2 The script engine manager and its script engines
	11.6.3 Compilable and invocable script engines

	11.7 Choosing an integration mechanism
	11.8 Summary

	Working with XML
	12.1 Reading XML documents
	12.1.1 Working with a DOM parser
	12.1.2 Reading with a Groovy parser
	12.1.3 Reading with a SAX parser
	12.1.4 Reading with a StAX parser

	12.2 Processing XML
	12.2.1 In-place processing
	12.2.2 Streaming processing
	12.2.3 Combining with XPath

	12.3 Distributed processing with XML
	12.3.1 An overview of web services
	12.3.2 Reading RSS and ATOM
	12.3.3 Using a REST-based API
	12.3.4 Using XML-RPC
	12.3.5 Applying SOAP

	12.4 Summary

	Part 3 - Everyday Groovy
	Tips and tricks
	13.1 Things to remember
	13.1.1 Equality versus identity
	13.1.2 Using parentheses wisely
	13.1.3 Returning from methods and closures
	13.1.4 Calling methods in builder code
	13.1.5 Qualifying access to “this”
	13.1.6 Considering number types
	13.1.7 Leveraging Ant
	13.1.8 Scripts are classes but different

	13.2 Useful snippets
	13.2.1 Shuffling a collection
	13.2.2 Scrambling text with regular expressions
	13.2.3 Console progress bar
	13.2.4 Self-commenting single-steps
	13.2.5 Advanced GString usage

	13.3 Using groovy on the command line
	13.3.1 Evaluating a command-line script
	13.3.2 Using print and line options
	13.3.3 Using the listen mode
	13.3.4 In-place editing from the command line

	13.4 Writing automation scripts
	13.4.1 Supporting command-line options consistently
	13.4.2 Expanding the classpath with RootLoader
	13.4.3 Scheduling scripts for execution

	13.5 Example automation tasks
	13.5.1 Scraping HTML pages
	13.5.2 Automating web actions
	13.5.3 Inspecting version control
	13.5.4 Pragmatic code analysis
	13.5.5 More points of interest

	13.6 Laying out the workspace
	13.6.1 IDE setup
	13.6.2 Debugging
	13.6.3 Profiling
	13.6.4 Refactoring

	13.7 Summary

	Unit testing with Groovy
	14.1 Getting started
	14.1.1 Writing tests is easy
	14.1.2 GroovyTestCase: an introduction
	14.1.3 Working with GroovyTestCase

	14.2 Unit-testing Groovy code
	14.3 Unit-testing Java code
	14.4 Organizing your tests
	14.5 Advanced testing techniques
	14.5.1 Testing made groovy
	14.5.2 Stubbing and mocking
	14.5.3 Using GroovyLogTestCase

	14.6 IDE integration
	14.6.1 Using GroovyTestSuite
	14.6.2 Using AllTestSuite
	14.6.3 Advanced IDE integration

	14.7 Tools for Groovy testing
	14.7.1 Code coverage with Groovy
	14.7.2 JUnit extensions

	14.8 Build automation
	14.8.1 Build integration with Ant
	14.8.2 Build integration with Maven

	14.9 Summary

	Groovy on Windows
	15.1 Downloading and installing Scriptom
	15.2 Inside Scriptom
	15.2.1 Introducing Jacob
	15.2.2 Instantiating an ActiveX component
	15.2.3 Invoking methods
	15.2.4 Accessing properties and return values
	15.2.5 Event support

	15.3 Real-world scenario: automating localization
	15.3.1 Designing our document format
	15.3.2 Designing the thesaurus spreadsheet
	15.3.3 Creating a Word document
	15.3.4 Producing the final document

	15.4 Further application automation
	15.4.1 Accessing the Windows registry
	15.4.2 Rolling out your own automation system

	15.5 Where to get documentation
	15.6 Summary

	Seeing the Grails light
	16.1 Setting the stage
	16.1.1 Installing Grails
	16.1.2 Getting your feet wet

	16.2 Laying out the domain model
	16.2.1 Thinking through the use cases
	16.2.2 Designing relations

	16.3 Implementing the domain model
	16.3.1 Scaffolding domain classes
	16.3.2 Scaffolding views and controllers
	16.3.3 Testing the web application
	16.3.4 Completing the domain model

	16.4 Customizing the views
	16.4.1 Bootstrapping data
	16.4.2 Working with Groovy Server Pages
	16.4.3 Working with tag libraries

	16.5 Working with controllers and finder methods
	16.6 Elaborating the model
	16.7 Working with the session
	16.8 Finishing up
	16.8.1 Validating constraints
	16.8.2 Deploying the application
	16.8.3 Farewell

	Installation and documentation
	A.1 Installation
	A.2 Obtaining up-to-date documentation
	A.2.1 Using online resources
	A.2.2 Subscribing to mailing lists
	A.2.3 Connecting to forum and chat

	Groovy language info
	B.1 Keyword list

	GDK API quick reference
	C.1 Arrays and primitives
	C.2 The java.lang package
	C.3 The java.math package
	C.4 The java.util and java.sql packages
	C.5 The java.util.regex package
	C.6 The java.io package
	C.7 The java.net package

	Cheat sheets
	D.1 Lists
	D.2 Closures
	D.3 Regular expressions
	D.4 Unit testing
	D.5 Mocks and stubs
	D.6 XML GPath notation

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

